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This paper is concerned with impulsive cellular neural networks with time-varying delays in leakage terms. Without assuming
bounded andmonotone conditions on activation functions, we establish sufficient conditions on existence and exponential stability
of periodic solutions by using Lyapunov functional method and differential inequality techniques. Our results are complement to
some recent ones.

1. Introduction

It is well known that impulsive differential equations are
mathematical apparatus for simulation of process and phe-
nomena observed in control theory, physics, chemistry,
population dynamics, biotechnologies, industrial robotics,
economics, and so forth [1–3]. Thus, many neural networks
with impulses have been studied extensively, and a great deal
of literature is focused on the existence and stability of an
equilibrium point [4–7]. In [8–10], the authors discussed the
existence and global exponential stability of periodic solution
of a class of cellular neural networks (CNNs) with impulse.
Recently,Wang et al. [11] considered the followingCNNswith
impulses and leakage delays:
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where Δ𝑥
𝑖
(𝑡
𝑘
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are continuous periodic functions with period 𝑇. Suppose
that the following conditions are satisfied.
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By using the continuation theorem of coincidence degree
theory and a suitable degenerate Lyapunov-Krasovskii func-
tional together with model transformation technique, some
results were obtained in [11] to guarantee that all solutions
of system (1) converge exponentially to a periodic function.
However, to the best of our knowledge, few authors have
considered the existence and stability of periodic solutions
of system (1) without the assumptions (𝐴

1
) and (𝐴

2
). Thus,

it is worthwhile to continue to investigate the convergence
behavior of system (1) in this case. In view of the fact that
the coefficients and delays in neural networks are usually time
varying in the real world, motivated by the above discussions,
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in this paper, we will consider the problem on periodic
solution of the following impulsive CNNs with time-varying
delays in the leakage terms:
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(4)

in which 𝑛 corresponds to the number of units in a neural
network, 𝑥

𝑖
(𝑡) corresponds to the state vector of the 𝑖th unit

at the time 𝑡, and 𝑐
𝑖
(𝑡) represents the rate with which the 𝑖th

unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs at
the time 𝑡. 𝑎
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denotes the external bias on the 𝑖th unit at the time 𝑡, 𝑓
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and
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are activation functions of signal transmission, Δ𝑥
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increasing sequence such that lim
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𝑖
(𝑡) is a constant

function, (1) is a special case of (4).
The main purpose of this paper is to give the condi-

tions for the existence and exponential stability of the peri-
odic solutions for system (4). By applying Lyapunov func-
tional method and differential inequality techniques, without
assuming (𝐴

1
) and (𝐴

2
), we derive some new sufficient con-

ditions ensuring the existence, uniqueness, and exponential
stability of the periodic solution for system (4), which are
new and complement previously known results.Moreover, an
example is also provided to illustrate the effectiveness of our
results.

Throughout this paper, we assume that the following
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For convenience, let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛, in

which “𝑇” denotes the transposition. We define |𝑥| =

(|𝑥
1
|, |𝑥
2
|, . . . , |𝑥

𝑛
|)
𝑇 and ‖𝑥‖ = max

1≤𝑖≤𝑛
{|𝑥
𝑖
|}. As usual in

the theory of impulsive differential equations, at the points of
discontinuity 𝑡

𝑘
of the solution 𝑡 󳨃→ (𝑥

1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇,

we assume that (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
≡ (𝑥
1
(𝑡 − 0), 𝑥

2
(𝑡 −

0), . . . , 𝑥
𝑛
(𝑡 − 0))

𝑇. It is clearly that, in general, the derivative
𝑥
󸀠

𝑖
(𝑡
𝑘
) does not exist. On the other hand, according to system

(4), there exists the limit 𝑥󸀠
𝑖
(𝑡
𝑘
∓ 0). In view of the above

convention, we assume that 𝑥󸀠
𝑖
(𝑡
𝑘
) ≡ 𝑥
󸀠

𝑖
(𝑡
𝑘
− 0).

The initial conditions associated with (4) are assumed to
be of the form

𝑥
𝑖
(𝑠) = 𝜙

𝑖
(𝑠) , 𝑠 ∈ [−𝜏

𝑖
, 0] , 𝑖 = 1, 2, . . . , 𝑛, (9)

where𝜙
𝑖
(⋅)denotes a real-valued continuous function defined

on [−𝜏
𝑖
, 0].

2. Preliminary Results

The following lemmas will be used to prove our main results
in Section 3.

Lemma 1. Let (H
1
)–(H
5
) hold. Suppose that 𝑥(𝑡) = (𝑥

1
(𝑡),

𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 is a solution of system (1) with the initial

conditions

𝑥
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) ,

󵄨
󵄨
󵄨
󵄨
𝜑
𝑖
(𝑠)
󵄨
󵄨
󵄨
󵄨
< 𝜉
𝑖

𝛾

𝜂

, 𝑠 ∈ [−𝜏
𝑖
, 0] , (10)

where 𝛾 = 1 +max
𝑖=1,2,...,𝑛

{[𝑐
+

𝑖
𝜂
+

𝑖
+ 1]𝐼
+

𝑖
}, 𝑖 = 1, 2, . . . , 𝑛. Then
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󵄨
󵄨
𝑥
𝑖
(𝑡)
󵄨
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󵄨
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𝑖

𝛾

𝜂

, ∀𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛. (11)

Proof. Assume that (11) does not hold. From (𝐻
2
), we have
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󵄨
󵄨
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󵄨
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󵄨
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󵄨
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𝑥
𝑖
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𝑘
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󵄨
≤
󵄨
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𝑥
𝑖
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𝑘
)
󵄨
󵄨
󵄨
󵄨
. (12)
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So, if |𝑥
𝑖
(𝑡
+

𝑘
)| > 𝛾, then |𝑥

𝑖
(𝑡
𝑘
)| > 𝛾.Thus, wemay assume that

there exist 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡
∗
∈ (𝑡
𝑘
, 𝑡
𝑘+1

) such that

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
∗
)
󵄨
󵄨
󵄨
󵄨
= 𝜉
𝑖

𝛾

𝜂

,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝜉
𝑗

𝛾

𝜂

∀𝑡 ∈ [−𝜏
𝑖
, 𝑡
∗
) , 𝑗 = 1, 2, . . . , 𝑛.

(13)

According to (4), we get

𝑥
󸀠

𝑖
(𝑡) = −𝑐

𝑖
(𝑡) 𝑥
𝑖
(𝑡 − 𝜂
𝑖
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𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
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𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))) + 𝐼

𝑖
(𝑡)

= −𝑐
𝑖
(𝑡) 𝑥
𝑖
(𝑡) + 𝑐

𝑖
(𝑡) [𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡 − 𝜂
𝑖
(𝑡))]

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))) + 𝐼

𝑖
(𝑡)

= −𝑐
𝑖
(𝑡) 𝑥
𝑖
(𝑡) + 𝑐

𝑖
(𝑡) ∫

𝑡

𝑡−𝜂𝑖(𝑡)

𝑥
󸀠

𝑖
(𝑠) 𝑑𝑠

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))) + 𝐼

𝑖
(𝑡) ,

𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛.

(14)

Calculating the upper left derivative of |𝑥
𝑖
(𝑡)|, together

with (13), (14), (𝐻
5
), and

𝛾 > [𝑐
+

𝑖
𝜂
+

𝑖
+ 1] 𝐼

+

𝑖
, (15)

we obtain

0 ≤ 𝐷
− 󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
∗
)
󵄨
󵄨
󵄨
󵄨

≤ −𝑐
𝑖
(𝑡
∗
)
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
∗
)
󵄨
󵄨
󵄨
󵄨
+ 𝑐
𝑖
(𝑡
∗
) ∫

𝑡∗

𝑡∗−𝜂𝑖(𝑡∗)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
󸀠

𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝑡
∗
) 𝑓
𝑗
(𝑥
𝑗
(𝑡
∗
))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡
∗
)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑥
𝑗
(𝑡
∗
− 𝜏
𝑖𝑗
(𝑡
∗
)))

󵄨
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝐼
𝑖
(𝑡
∗
)
󵄨
󵄨
󵄨
󵄨

= −𝑐
𝑖
(𝑡
∗
)
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
∗
)
󵄨
󵄨
󵄨
󵄨
+ 𝑐
𝑖
(𝑡
∗
)

× ∫

𝑡∗

𝑡∗−𝜂𝑖(𝑡∗)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

− 𝑐
𝑖
(𝑠) 𝑥
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) 𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

+𝐼
𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠

+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝑡
∗
) 𝑓
𝑗
(𝑥
𝑗
(𝑡
∗
))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡
∗
)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑥
𝑗
(𝑡
∗
− 𝜏
𝑖𝑗
(𝑡
∗
)))

󵄨
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝐼
𝑖
(𝑡
∗
)
󵄨
󵄨
󵄨
󵄨

≤ − [𝑐
𝑖
(𝑡
∗
) − 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑐
+

𝑖
]
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
∗
)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝑡
∗
)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑎
+

𝑖𝑗
) 𝐿
𝑓

𝑗
𝜉
𝑗

𝛾

𝜂

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡
∗
)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗

𝛾

𝜂

+ [𝑐
+

𝑖
𝜂
+

𝑖
+ 1] 𝐼

+

𝑖

=

{

{

{

− [𝑐
𝑖
(𝑡
∗
) − 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑐
+

𝑖
] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝑡
∗
)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑎
+

𝑖𝑗
) 𝐿
𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡
∗
)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗

}

}

}

𝛾

𝜂

+ [𝑐
+

𝑖
𝜂
+

𝑖
+ 1] 𝐼

+

𝑖

< −𝜂

𝛾

𝜂

+ [𝑐
+

𝑖
𝜂
+

𝑖
+ 1] 𝐼

+

𝑖

< 0.

(16)

It is a contradiction and shows that (11) holds. The proof is
now completed.

Remark 2. After the conditions (𝐻
1
)–(𝐻
5
), the solution of

system (4) always exists (see [1, 2]). In view of the bounded-
ness of this solution, from the theory of impulsive differential
equations in [1], it follows that the solution of system (4) with
initial conditions (10) can be defined on [0, +∞).

Lemma 3. Suppose that (H
1
)–(H
5
) are true. Let 𝑥∗(𝑡) =

(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇 be the solution of system (4) with
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initial value 𝜑∗ = (𝜑
∗

1
(𝑡), 𝜑
∗

2
(𝑡), . . . , 𝜑

∗

𝑛
(𝑡))
𝑇, and let 𝑥(𝑡) =

(𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 be the solution of system (4) with

initial value 𝜑 = (𝜑
1
(𝑡), 𝜑
2
(𝑡), . . . , 𝜑

𝑛
(𝑡))
𝑇. Then, there exists

a positive constant 𝜆 such that

𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡) = 𝑂 (𝑒

−𝜆𝑡
) , 𝑖 = 1, 2, . . . , 𝑛. (17)

Proof. Let 𝑦(𝑡) = 𝑥(𝑡) − 𝑥
∗
(𝑡). Then, for 𝑖 ∈ {1, 2, . . . , 𝑛}, it is

followed by

𝑦
󸀠

𝑖
(𝑡) = −𝑐

𝑖
(𝑡) (𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡)) − 𝑥

∗

𝑖
(𝑡 − 𝜂
𝑖
(𝑡)))

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))] ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

𝑦
𝑖
(𝑡
+

𝑘
) = (1 + 𝑑

𝑖𝑘
) 𝑦
𝑖
(𝑡
𝑘
) , 𝑘 = 1, 2, . . . .

(18)

Define continuous functions Γ
𝑖
(𝜔) by setting

Γ
𝑖
(𝜔) = − [𝑐

𝑖
(𝑡) 𝑒
𝜔𝜂𝑖(𝑡)

− 𝜔

−𝑐
𝑖
(𝑡) 𝑒
𝜔𝜂𝑖(𝑡)

𝜂
𝑖
(𝑡) (𝜔 + 𝑐

+

𝑖
𝑒
𝜔𝜂
+

𝑖
)] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝑒
𝜔𝜂𝑖(𝑡)

𝜂
𝑖
(𝑡)) 𝐿
𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝜔𝜏𝑖𝑗(𝑡)

+𝑏
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝑒
𝜔𝜂𝑖(𝑡)

𝜂
𝑖
(𝑡) 𝑒
𝜔𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗
,

𝜔 ≥ 0, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(19)

Then

Γ
𝑖
(0) = − [𝑐

𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑐
+

𝑖
] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝜂
𝑖
(𝑡)) 𝐿
𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝜂
𝑖
(𝑡)) 𝐿
𝑔

𝑗
𝜉
𝑗

< −𝜂, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(20)

which, together with the continuity of Γ
𝑖
(𝜔), implies that we

can choose two positive constants 𝜆 and 𝜂 such that

−𝜂 > Γ
𝑖
(𝜆)

= − [𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

− 𝜆

−𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

𝜂
𝑖
(𝑡) (𝜆 + 𝑐

+

𝑖
𝑒
𝜆𝜂
+

𝑖
)] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

𝜂
𝑖
(𝑡)) 𝐿
𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝜏𝑖𝑗(𝑡)

+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

× 𝜂
𝑖
(𝑡) 𝑒
𝜆𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗
, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(21)

Let

𝑌
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) 𝑒
𝜆𝑡
, 𝑖 = 1, 2, . . . , 𝑛. (22)

Then

𝑌
󸀠

𝑖
(𝑡) = 𝜆𝑌

𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝑒
𝜆𝑡
𝑦
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

+ 𝑒
𝜆𝑡
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))]

}

}

}

= 𝜆𝑌
𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

𝑌
𝑖
(𝑡)

+ 𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

[𝑌
𝑖
(𝑡) − 𝑌

𝑖
(𝑡 − 𝜂
𝑖
(𝑡))]

+ 𝑒
𝜆𝑡
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))]

}

}

}
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= 𝜆𝑌
𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

𝑌
𝑖
(𝑡)

+ 𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

∫

𝑡

𝑡−𝜂𝑖(𝑡)

𝑌
󸀠

𝑖
(𝑠) 𝑑𝑠

+ 𝑒
𝜆𝑡
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))]

}

}

}

= 𝜆𝑌
𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

𝑌
𝑖
(𝑡) + 𝑐

𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

× ∫

𝑡

𝑡−𝜂𝑖(𝑡)

{

{

{

𝜆𝑌
𝑖
(𝑠) − 𝑐

𝑖
(𝑠) 𝑒
𝜆𝑠
𝑦
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) [𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑠))]

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) [𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))]

}

}

}

𝑑𝑠

+ 𝑒
𝜆𝑡
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))]

}

}

}

,

𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

(23)
󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑡
+

𝑘
)
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
1 + 𝑑
𝑖𝑘

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑡
𝑘
)
󵄨
󵄨
󵄨
󵄨
, 𝑖 = 1, 2, . . . , 𝑛. (24)

We define a positive constant𝑀 as follows:

𝑀 = max
1≤𝑖≤𝑛

{

{

{

sup
𝑠∈[−𝜏𝑖 , 0]

󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑠)
󵄨
󵄨
󵄨
󵄨

}

}

}

. (25)

Let 𝐾 be a positive number such that

󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 < 𝐾𝜉

𝑖
∀𝑡 ∈ [−𝜏

𝑖
, 0] , 𝑖 = 1, 2, . . . , 𝑛. (26)

We claim that

󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
< 𝐾𝜉
𝑖
, ∀𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑛. (27)

Obviously, (27) holds for 𝑡 = 0. We first prove that (27) is
true for 0 < 𝑡 ≤ 𝑡

1
. Otherwise, there exist 𝑖 ∈ {1, 2, . . . , 𝑛}

and 𝜌 ∈ (0, 𝑡
1
] such that one of the following two cases must

occur;

(1) 𝑌
𝑖
(𝜌) = 𝐾𝜉

𝑖
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝐾𝜉
𝑗

∀𝑡 ∈ [0, 𝜌) , 𝑗 = 1, 2, . . . , 𝑛,

(28)

(2) 𝑌
𝑖
(𝜌) = −𝐾𝜉

𝑖
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝐾𝜉
𝑗

∀𝑡 ∈ [0, 𝜌) , 𝑗 = 1, 2, . . . , 𝑛.

(29)

Now, we distinguish two cases to finish the proof.

Case (i). If (28) holds. Then, from (21), (23), and (𝐻
1
)–

(𝐻
5
), we have

0 ≤ 𝑌
󸀠

𝑖
(𝜌)

= 𝜆𝑌
𝑖
(𝜌) − 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝑌
𝑖
(𝜌) + 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× ∫

𝜌

𝜌−𝜂𝑖(𝜌)

{

{

{

𝜆𝑌
𝑖
(𝑠) − 𝑐

𝑖
(𝑠) 𝑒
𝜆𝑠
𝑦
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) [𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑠))]

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) [𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))]

}

}

}

𝑑𝑠
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+ 𝑒
𝜆𝜌
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝜌) [𝑓

𝑗
(𝑥
𝑗
(𝜌)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝜌))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝜌) [𝑔

𝑗
(𝑥
𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌)))]

}

}

}

≤ 𝜆𝑌
𝑖
(𝜌) − 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝑌
𝑖
(𝜌) + 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× ∫

𝜌

𝜌−𝜂𝑖(𝜌)

{

{

{

𝜆𝑌
𝑖
(𝑠) + 𝑐

+

𝑖
𝑒
𝜆𝜂𝑖(𝑠) 󵄨󵄨

󵄨
󵄨
𝑌
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))

󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

𝑏
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑒
𝜆𝜏𝑖𝑗(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨

}

}

}

𝑑𝑠

+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐿
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐿
𝑔

𝑗
𝑒
𝜆𝜏𝑖𝑗(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌))

󵄨
󵄨
󵄨
󵄨
󵄨

≤ − [𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

− 𝜆 − 𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)

× (𝜆 + 𝑐
+

𝑖
𝑒
𝜆𝜂
+

𝑖
)]𝐾𝜉

𝑖

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)) 𝐿

𝑓

𝑗
𝐾𝜉
𝑗

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝜏𝑖𝑗(𝜌)

+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× 𝜂
𝑖
(𝜌) 𝑒
𝜆𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝐾𝜉
𝑗

=

{

{

{

− [𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

− 𝜆 − 𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)

× (𝜆 + 𝑐
+

𝑖
𝑒
𝜆𝜂
+

𝑖
)] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)) 𝐿

𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝜏𝑖𝑗(𝜌)

+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× 𝜂
𝑖
(𝜌) 𝑒
𝜆𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗

}

}

}

𝐾

< −𝜂𝐾 < 0.

(30)

Case (ii). If (29) holds. Then, from (21), (23), and (𝐻
1
)–

(𝐻
5
), we get

0 ≥ 𝑌
󸀠

𝑖
(𝜌)

= 𝜆𝑌
𝑖
(𝜌) − 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝑌
𝑖
(𝜌) + 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× ∫

𝜌

𝜌−𝜂𝑖(𝜌)

{

{

{

𝜆𝑌
𝑖
(𝑠) − 𝑐

𝑖
(𝑠) 𝑒
𝜆𝑠
𝑦
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) [𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑠))]

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) [𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))]

}

}

}

𝑑𝑠

+ 𝑒
𝜆𝜌
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝜌) [𝑓

𝑗
(𝑥
𝑗
(𝜌)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝜌))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝜌) [𝑔

𝑗
(𝑥
𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌)))]

}

}

}

≥ 𝜆𝑌
𝑖
(𝜌) − 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝑌
𝑖
(𝜌) + 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× ∫

𝜌

𝜌−𝜂𝑖(𝜌)

{

{

{

𝜆𝑌
𝑖
(𝑠) − 𝑐

+

𝑖
𝑒
𝜆𝜂𝑖(𝑠) 󵄨󵄨

󵄨
󵄨
𝑌
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))

󵄨
󵄨
󵄨
󵄨

−

𝑛

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑛

∑

𝑗=1

𝑏
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑒
𝜆𝜏𝑖𝑗(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨

}

}

}

𝑑𝑠

−

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐿
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐿
𝑔

𝑗
𝑒
𝜆𝜏𝑖𝑗(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌))

󵄨
󵄨
󵄨
󵄨
󵄨

≥ − [𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

− 𝜆 − 𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)

× (𝜆 + 𝑐
+

𝑖
𝑒
𝜆𝜂
+

𝑖
)] (−𝐾𝜉

𝑖
)

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)) 𝐿

𝑓

𝑗
(−𝐾𝜉
𝑗
)

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝜏𝑖𝑗(𝜌)

+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× 𝜂
𝑖
(𝜌) 𝑒
𝜆𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
(−𝐾𝜉
𝑗
)



Abstract and Applied Analysis 7

=

{

{

{

− [𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

− 𝜆 − 𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× 𝜂
𝑖
(𝜌) (𝜆 + 𝑐

+

𝑖
𝑒
𝜆𝜂
+

𝑖
) ] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)) 𝐿

𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝜏𝑖𝑗(𝜌)

+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× 𝜂
𝑖
(𝜌) 𝑒
𝜆𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗

}

}

}

(−𝐾)

> 𝜂𝐾 > 0.

(31)

Therefore, (27) holds for 𝑡 ∈ [0, 𝑡
1
]. From (24) and (27), we

know that

󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑡
1
)
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑡
1
)
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝑡1

< 𝐾𝜉
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑡
+

1
)
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
1 + 𝑑
𝑖1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑡
1
)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑡
1
)
󵄨
󵄨
󵄨
󵄨
< 𝐾𝜉
𝑖
,

𝑖 = 1, 2, . . . , 𝑛.

(32)

Thus, for 𝑡 ∈ [𝑡
1
, 𝑡
2
], we may repeat the above procedure and

obtain

󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝑡
< 𝐾𝜉
𝑖
, ∀𝑡 ∈ [𝑡

1
, 𝑡
2
] , 𝑖 = 1, 2, . . . , 𝑛.

(33)

Further, we have

󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝑡
< 𝐾𝜉
𝑖
, ∀𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑛. (34)

That is,

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
≤ 𝐾𝜉
𝑖
𝑒
−𝜆𝑡
, ∀𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑛. (35)

Remark 4. If 𝑥∗(𝑡) = (𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇 is the 𝑇-pe-

riodic solution of system (4), it follows from Lemma 3 that
𝑥
∗
(𝑡) is globally exponentially stable.

3. Main Results

In this section, we will study existence and exponential sta-
bility for periodic solutions of system (4).

Theorem 5. Suppose that all conditions in Lemma 3 are
satisfied. Then system (4) has exactly one 𝑇-periodic solution
𝑥
∗
(𝑡). Moreover, 𝑥∗(𝑡) is globally exponentially stable.

Proof. Let 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 be a solution

of system (4) with initial conditions (10). By Remark 2, the

solution 𝑥(𝑡) can be defined for all 𝑡 ∈ [0, +∞). By hypothesis
(𝐻
1
), we have, for any natural number ℎ,

[𝑥
𝑖
(𝑡 + (ℎ + 1) 𝑇)]

󸀠

= −𝑐
𝑖
(𝑡) 𝑥
𝑖
(𝑡 + (ℎ + 1) 𝑇 − 𝜂

𝑖
(𝑡))

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡 + (ℎ + 1) 𝑇))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 + (ℎ + 1) 𝑇 − 𝜏

𝑖𝑗
(𝑡)))

+ 𝐼
𝑖
(𝑡) , 𝑡 ̸= 𝑡

𝑘
, 𝑖 = 1, 2, . . . , 𝑛.

(36)

Further, by hypothesis of (𝐻
3
), we obtain

𝑥
𝑖
((𝑡
𝑘
+ (ℎ + 1) 𝑇)

+

)

= 𝑥
𝑖
(𝑡
+

𝑘+(ℎ+1)𝑞
)

= (1 + 𝑑
𝑖(𝑘+(ℎ+1)𝑞)

) 𝑥
𝑖
(𝑡
𝑘+(ℎ+1)𝑞

)

= (1 + 𝑑
𝑖𝑘
) 𝑥
𝑖
(𝑡
𝑘
+ (ℎ + 1) 𝑇) , 𝑘 = 1, 2, . . . .

(37)

Thus, for any natural number ℎ, we obtain that 𝑥(𝑡+ (ℎ+1)𝑇)
is a solution of system (4) for all 𝑡 + (ℎ + 1)𝑇 ≥ 0. Hence,
𝑥(𝑡 + 𝑇) is also a solution of (4) with initial values

𝑥
𝑖
(𝑠 + 𝑇) , 𝑠 ∈ [−𝜏

𝑖
, 0] , 𝑖 = 1, 2, . . . , 𝑛. (38)

Then, by the proof of Lemma 3, there exists a constant𝐾 > 0

such that for any natural number ℎ,

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡 + (ℎ + 1) 𝑇) − 𝑥

𝑖
(𝑡 + ℎ𝑇)

󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡 + ℎ𝑇 + 𝑇) − 𝑥

𝑖
(𝑡 + ℎ𝑇)

󵄨
󵄨
󵄨
󵄨

≤ 𝐾𝜉
𝑖
𝑒
−𝜆(𝑡+ℎ𝑇)

= 𝐾𝜉
𝑖
𝑒
−𝜆𝑡
(

1

𝑒
𝜆𝑇
)

ℎ

, 𝑡 + ℎ𝑇 ≥ 0,

𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
((𝑡
𝑘
+ (ℎ + 1) 𝑇)

+

) − 𝑥
𝑖
((𝑡
𝑘
+ ℎ𝑇)

+

)

󵄨
󵄨
󵄨
󵄨
󵄨

= (1 + 𝑑
𝑖𝑘
)
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
𝑘
+ (ℎ + 1) 𝑇) − 𝑥

𝑖
(𝑡
𝑘
+ ℎ𝑇)

󵄨
󵄨
󵄨
󵄨

≤ 𝐾𝜉
𝑖
𝑒
−𝜆(𝑡𝑘+ℎ𝑇)

= 𝐾𝜉
𝑖
𝑒
−𝜆𝑡𝑘

(

1

𝑒
𝜆𝑇
)

ℎ

, ∀𝑘 ∈ 𝑍
+
, 𝑖 = 1, 2, . . . , 𝑛.

(39)
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Moreover, for any natural number𝑚, we can obtain

𝑥
𝑖
(𝑡 + (𝑚 + 1) 𝑇)

= 𝑥
𝑖
(𝑡) +

𝑚

∑

ℎ=0

[𝑥
𝑖
(𝑡 + (ℎ + 1) 𝑇) − 𝑥

𝑖
(𝑡 + ℎ𝑇)] ,

𝑡 + ℎ𝑇 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

(𝑥
𝑖
((𝑡
𝑘
+ (𝑚 + 1) 𝑇)

+

))

= 𝑥
𝑖
(𝑡) +

𝑚

∑

ℎ=0

[𝑥
𝑖
((𝑡
𝑘
+ (ℎ + 1) 𝑇)

+

)

− (𝑥
𝑖
((𝑡
𝑘
+ ℎ𝑇)

+

))] ,

∀𝑘 ∈ 𝑍
+
, 𝑖 = 1, 2, . . . , 𝑛.

(40)

Combining (39) with (40), we know that 𝑥(𝑡 + 𝑚𝑇)

will converge uniformly to a piecewise continuous function
𝑥
∗
(𝑡) = (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇 on any compact set of 𝑅.

Now we are in the position of proving that 𝑥∗(𝑡) is a
𝑇-periodic solution of system (4). It is easily known that 𝑥∗(𝑡)
is 𝑇-periodic since

𝑥
∗

𝑖
(𝑡 + 𝑇) = lim

𝑚→+∞

𝑥
𝑖
(𝑡 + 𝑇 + 𝑚𝑇)

= lim
𝑚+1→+∞

𝑥
𝑖
(𝑡 + (𝑚 + 1) 𝑇)

= 𝑥
∗

𝑖
(𝑡) , 𝑡 ̸= 𝑡

𝑘
,

𝑥
∗

𝑖
((𝑡
𝑘
+ 𝑇)
+

) = lim
𝑚→+∞

𝑥
𝑖
((𝑡
𝑘
+ 𝑇 + 𝑚𝑇)

+

)

= 𝑥
∗

𝑖
(𝑡
+

𝑘
) , 𝑘 = 1, 2, . . . ,

(41)

where 𝑖 = 1, 2, . . . , 𝑛. Noting that the right side of (4) is
piecewise continuous, together with (36) and (37), we know
that {𝑥󸀠

𝑖
(𝑡 + (𝑚 + 1)𝑇)} converges uniformly to a piecewise

continuous function on any compact set of 𝑅 \ {𝑡
1
, 𝑡
2
, . . .}.

Therefore, letting 𝑚 → +∞ on both sides of (36) and (37),
we get

𝑥
∗

𝑖

󸀠

(𝑡) = −𝑐
𝑖
(𝑡) 𝑥
∗

𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
∗

𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+ 𝐼
𝑖
(𝑡) , 𝑡 ̸= 𝑡

𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

𝑥
∗

𝑖
(𝑡
+

𝑘
) = (1 + 𝑑

𝑖𝑘
) 𝑥
∗

𝑖
(𝑡
𝑘
) ,

𝑘 = 1, 2, . . . , 𝑖 = 1, 2, . . . , 𝑛.

(42)

Thus, 𝑥∗(𝑡) = (𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇 is a 𝑇-periodic

solution of system (4).
Finally, by Lemma 3, we can prove that 𝑥∗(𝑡) is globally

exponentially stable. This completes the proof.

4. An Example

In this section, we give an example to demonstrate the results
obtained in the previous sections.

Example 6. Consider the following impulsive cellar neural
network consisting of two neurons with time-varying delays
in the leakage terms, which is described by

𝑥
󸀠

1
(𝑡) = −3 (|sin𝜋𝑡| + 1) 𝑥

1
(𝑡 −

sin2𝜋𝑡
1000

)

+

1

16

cos2𝜋𝑡𝑓
1
(𝑥
1
(𝑡))

+

1

16

sin2𝜋𝑡𝑓
2
(𝑥
2
(𝑡))

+

1

16

sin2𝜋𝑡𝑔
1
(𝑥
1
(𝑡 − cos2𝜋𝑡))

+

1

16

sin2𝜋𝑡𝑔
2
(𝑥
2
(𝑡 − 2sin2𝜋𝑡))

+ 100 cos𝜋𝑡 𝑡 ̸= 2𝑘 − 1,

𝑥
󸀠

2
(𝑡) = −3 (|cos𝜋𝑡| + 1) 𝑥

1
(𝑡 −

sin4𝜋𝑡
1000

)

+

1

16

cos3𝜋𝑡𝑓
1
(𝑥
1
(𝑡))

+

1

16

sin3𝜋𝑡𝑓
2
(𝑥
2
(𝑡))

+

1

16

sin3𝜋𝑡𝑔
1
(𝑥
1
(𝑡 − cos2𝜋𝑡))

+

1

16

sin3𝜋𝑡𝑔
2
(𝑥
2
(𝑡 − 2sin2𝜋𝑡))

+ 100 sin𝜋𝑡 𝑡 ̸= 2𝑘 − 1,

𝑥
𝑖
(𝑡
+

𝑘
) = (1 + 𝑑

𝑖𝑘
) 𝑥
𝑖
(𝑡
𝑘
) ,

𝑑
𝑖(2𝑠)

= −2, 𝑑
𝑖(2𝑠−1)

= −1,

𝑡
𝑘
= 𝑘, 𝑖 = 1, 2, 𝑘, 𝑠 = 1, 2, . . . .

(43)

Here, it is assumed that the activation functions are

𝑔
1
(𝑥) = 𝑔

2
(𝑥) = 𝑥 + 2 sin𝑥,

𝑓
1
(𝑥) = 𝑓

2
(𝑥) = 𝑥 + 3 sin𝑥.

(44)

Noting that

𝜂
1
(𝑡) =

sin2𝜋𝑡
1000

, 𝜂
2
(𝑡) =

sin4𝜋𝑡
1000

,

𝑐
1
(𝑡) = 3 (|sin𝜋𝑡| + 1) , 𝑐

2
(𝑡) = 3 (|cos𝜋𝑡| + 1) ,
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𝑎
11
(𝑡) =

1

16

cos2𝜋𝑡, 𝑎
12
(𝑡) =

1

16

sin2𝜋𝑡,

𝑏
11
(𝑡) =

1

16

sin2𝜋𝑡, 𝑏
12
(𝑡) =

1

16

sin2𝜋𝑡,

𝑎
21
(𝑡) =

1

16

cos3𝜋𝑡, 𝑎
22
(𝑡) =

1

16

sin3𝜋𝑡,

𝑏
21
(𝑡) =

1

16

sin3𝜋𝑡, 𝑏
22
(𝑡) =

1

16

sin3𝜋𝑡,

𝜏
11
(𝑡) = 𝜏

21
(𝑡) = cos2𝜋𝑡,

𝜏
12
(𝑡) = 𝜏

22
(𝑡) = 2sin2𝜋𝑡,

(45)

then we obtain

− [𝑐
𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑐
+

𝑖
] 𝜉
𝑖

+

2

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑐
𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑎
+

𝑖𝑗
) 𝐿
𝑓

𝑗
𝜉
𝑗

+

2

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝑐
𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗

< −(3 − 6 ×

1

1000

× 6)

+ 2 (

1

16

+ 6 ×

1

1000

×

1

16

) × 3

+ 2 (

1

16

+ 6 ×

1

1000

×

1

16

) × 4

< −1, 𝜉
𝑖
= 1, 𝑖 = 1, 2.

(46)

This yields that system (43) satisfies (𝐻
1
)–(𝐻
5
). Hence, from

Theorem 5, system (43) has exactly one 2-periodic solution.
Moreover, the 2-periodic solution is globally exponentially
stable.

Remark 7. Since 𝑔
1
(𝑥) = 𝑔

2
(𝑥) = 𝑥 + 2 sin𝑥, 𝑓

1
(𝑥) =

𝑓
2
(𝑥) = 𝑥 + 3 sin𝑥 and CNNs (43) is a very simple form

of CNNs with time-varying delays in the leakage terms, it
is clear that the conditions (𝐴

1
) and (𝐴

2
) are not satisfied.

Therefore, all the results in [11–19] and the references therein
cannot be applicable to system (43) to obtain the existence
and exponential stability of the 2-periodic solutions.
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