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Received 31 January 2013; Accepted 8 May 2013

Academic Editor: Sheng-Jie Li

Copyright © 2013 J. Taboada et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this study was to determine spatial distribution and volume of four commercial quartz grades, namely, silicon metal,
ferrosilicon, aggregate, and kaolin (depending on content in impurities) in a quartz seam. The chemical and mineralogical com-
position of the reserves in the seam were determined from samples collected from outcrops, blasting operations, and exploratory
drilling, and compositional kriging was used to calculate the volume and distribution of the reserves. A more accurate knowledge
of the deposit ensures better mine planning, leading to higher profitability and an improved relationship with the environment.

1. Introduction

A problem in exploiting mineral deposits is the limited
knowledge available regarding the continuity, size, and grade
distribution of the deposit, all of which are factors that
determine the exploitability and profitability of the reserves.
This explains why studies of grade and volume have long been
the focus of considerable interest, with exploration efforts
typically extending over the life of the operation.

Different approaches have been taken to reduce the
uncertainty as to the characteristics of a deposit, based on
using various mathematical techniques. These techniques
include kriging—particularly fuzzy kriging [1] and compo-
sitional kriging [2–4] as the two most advanced prediction
techniques. In these methods, the grade distribution of a
deposit is predicted by dividing the deposit into cells of a
specific size and calculating the percentages for the different
grades present in each cell.

Several works in the literature describe the use of kriging
techniques to calculate reserves in mineral deposits. Badel et
al. [5] applied median indicator kriging to estimate grades
of iron in a deposit located in southern Iran. Sohrabian and
Ozcelik [6] studied the exploitability of andesite blocks in
a quarry in Turkey using independent component kriging.
Kriging techniques have been used to evaluate mineral
reserves in Spanish deposits in previous works by our
research group. Thus, Taboada et al. [7] evaluated reserves

of Rosa Porriño ornamental granite in a deposit in southern
Pontevedra (NW Spain) using fuzzy kriging techniques and
Saavedra et al. [8], subsequently modelled the same site using
compositional kriging, obtaining improved results.

The deposit used for this study contains not granite,
but a seam of quartz. Saavedra et al. [9] used fuzzy kriging
techniques to estimate the volume and the spatial distribution
of four commercial grades in the seam,marketed according to
alumina (Al

2
O
3
) content in siliconmetal, ferrosilicon, kaolin,

or aggregate. In the present study, compositional kriging is
applied in order to improve the results obtained with fuzzy
kriging. The objective is to determine the volume and spatial
distribution of the quartz reserves so as enable better plan-
ning of mining operations. Better planning would optimize
resource use and increase mining yield, with the resulting
positive impact on the environment (reduced extraction and
processing waste) and the company (increased profits).

The article is structured as follows: first, we describe the
methodology, the mathematical concepts used, and the field
of study and explain how the data were processed. In the
last two sections, we present the results obtained and the
conclusions drawn from the research.

2. Materials and Methods

2.1. Compositional Kriging. Compositional data are under-
stood to be a set of nonnegative vectors such that the sum
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of their components is constant 𝑘, which takes the value
𝑘 = 100 when the components are percentages and 𝑘 = 1

when the components are proportions.Thus, a compositional
data point (or composition) can be interpreted as providing
information on the relative importance of the various parts of
some whole.

Denoting the centroid of a primary block as 𝑥 ∈ 𝑅3, the
compositional random variable 𝑍(𝑥) = (𝑍

1
(𝑥), . . . , 𝑍

𝑝
(𝑥)) is

defined such that the one-dimensional variables 𝑍
𝑗
(𝑥), 𝑗 =

1, . . . , 𝑝, reflect the 𝑗th part of the composition. Thus, given
a sample realization {𝑧(𝑥

1
), . . . , 𝑧(𝑥

𝑛
)} for the compositional

random variable 𝑍(𝑥), it can be verified that each 𝑧(𝑥
𝑖
) =

(𝑧
1
(𝑥
𝑖
), . . . , 𝑧

𝑝
(𝑥
𝑖
)) is a composition, and hence, 𝑧

𝑗
(𝑥
𝑖
) ≥ 0,

∑
𝑝

𝑗=1
𝑧
𝑗
(𝑥
𝑖
) = 𝑘. The objective is to predict the value of 𝑍(𝑥

0
)

for a new location of interest 𝑥
0
.

Classical spatial statistical methods include predictions
with kriging, based on one-dimensional variables, by means
of linear combinations of the sample realizations: �̂�

𝑗
(𝑥
0
) =

∑
𝑛

𝑖=1
𝜆
𝑖
𝑧
𝑗
(𝑥
𝑖
), 𝑗 = 1, . . . , 𝑝, or predictions with cokriging,

based on the entire set of variables in accordance with the
expression �̂�

𝑗
(𝑥
0
) = ∑
𝑝

𝑗=1
∑
𝑛

𝑖=1
𝜆
𝑖,𝑗
𝑧
𝑗
(𝑥
𝑖
), where 𝜆

𝑖
and 𝜆

𝑖,𝑗
are

weights determined by solving matrix systems. See [10–12]
for a more detailed explanation of these classical prediction
methods.

It is a proven fact that none of thesemethods of prediction
will preserve the characteristics of the compositional data;
that is, the various components may be negative and so may
not respect the constant sum, [4]. Consequently, these classi-
cal prediction techniques may give rise to erroneous results.
The best way to analyse spatial dependence and interpolate
compositional data is to apply a geostatistical technique that
allows all the elements that form the composition to be
handled jointly.

Walvoort and de Gruijter [4] proposed a prediction
method based on classical approaches.These authors include,
in a matrix system, the constraints necessary for the predic-
tions to take admissible values for the composite random
function. Authors like [2] propose a transformation of the
sample data 𝑧∗(𝑥

𝑖
) = 𝑓(𝑧(𝑥

𝑖
)), 𝑖 = 1, . . . , 𝑛, before apply-

ing any kriging-based forecasting technique. If the transfor-
mation function has been appropriately chosen, an admis-
sible composition can be obtained by backtransforming the
predicted values.

Tolosana-Delgado [3] proposed a compositional kriging
approach based on the properties of the simplex, a Euclidean
space formed by the sample space of the compositions and
endowed with the operations of addition, external product,
and internal product. As in any Euclidean space, a vector can
be represented by its coordinates relative to an orthonormal
reference system of dimensions 𝑝 − 1. The spatial variance-
covariance matrices of the coordinates have (𝑝 − 1) × (𝑝 − 1)
elements and have all the properties of a variance-covariance
matrix. The spatial dependence between coordinates and
their subsequent interpolation can be tackled using conven-
tional cokriging programs for regionalized variables. With a
new change of coordinates, the predictions can be expressed
as elements of the original Euclidean space, the simplex.

Theoretical aspects and demonstrations of this methodology
can be found in [2–4].

The procedure can be briefly summarized as follows.

(1) Changing the coordinates, the sample space of com-
posite data is transformed into a new space of dimen-
sion 𝑝 − 1, 𝑧∗(𝑥

𝑖
) = Ψ ln(𝑧(𝑥

𝑖
)), 𝑖 = 1, . . . , 𝑛, where

𝑧
∗
(𝑥
𝑖
) = (𝑧

∗

1
(𝑥
𝑖
), . . . , 𝑧

∗

𝑝−1
(𝑥
𝑖
))
𝑡, Ψ is the coordinate-

change matrix, of dimension (𝑝 − 1) × 𝑝, formed
of vectors with an orthonormal basis arranged in
columns, ln(𝑧(𝑥

𝑖
)) = (ln(𝑧

1
(𝑥
𝑖
)), . . . , ln(𝑧

𝑝
(𝑥
𝑖
)))
𝑡, and

where the superscript 𝑡 indicates “transposed”.
(2) Obtained in the Euclidean space of dimension 𝑝−1 is

the prediction �̂�∗(𝑥
0
) of𝑍∗(𝑥

0
) using cokriging tech-

niques.
(3) The prediction value of 𝑍(𝑥

0
) is given by

�̂�(𝑥
0
) = 𝐶(exp(Ψ𝑡�̂�∗(𝑥

0
))), with 𝐶((𝜀

1
, . . . , 𝜀
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)
𝑡
) =
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1
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𝑝

𝑗=1
𝜀
𝑗
, . . . , 𝜀

𝑝
/∑
𝑝

𝑗=1
𝜀
𝑗
) as a normalization oper-

ator.

This methodology, which ensures admissible compositional
predictions, has been applied to geological compositions
with spatial dependence in studies by Zhang et al. [13] and
Saavedra et al. [8].

In the second step, we need to calculate (𝑝 − 1) auto-
variograms and (𝑝 − 1) × (𝑝 − 2)/2 cross-variograms.
Semivariograms should verify that the variance of any linear
combination of these variables is not negative. Put another
way, it should be ensured that the prediction variance is
always not negative. This could be checked by means of the
Cauchy-Schwarz inequality. To solve this problem of model
selection, a linear coregionalization model is typically used
described briefly below.

Let there be 𝑞 variables, 𝑌
𝑟
, with zero mean, uncorrelated

two by two, in such a way that all the variables can be
expressed as a linear combination:

𝑍
∗

𝑗
(𝑥) = 𝑚

𝑗
+

𝑞

∑

𝑟=1

𝛼
𝑗𝑟
𝑌
𝑟
(𝑥) , 𝑗 = 1, . . . , 𝑝 − 1, (1)

where𝑚
𝑗
is the average of the variable𝑍∗

𝑗
and𝛼
𝑗𝑟
coefficients.

From the previous equation it follows that the semivari-
ograms that model the spatial dependence of the variables𝑍∗

𝑗

and 𝑍∗
𝑗
can be expressed as

𝛾
𝑗𝑗
 (ℎ) = 𝛽

1

𝑗𝑗
𝛾1 (ℎ) + ⋅ ⋅ ⋅ + 𝛽

𝑞

𝑗𝑗

𝛾
𝑞
(ℎ) ,

𝑗, 𝑗

= 1, . . . , 𝑝 − 1,

(2)

with 𝛽𝑟
𝑗𝑗
 = 𝛼𝑗𝑟𝛼𝑗𝑟, 𝑟 = 1, . . . , 𝑞, with 𝛾𝑟 as the semivariogram

function that reflects the spatial structure of the regionalized
variable 𝑌

𝑟
. For further details, see [14].

2.2. Description of the Studied Deposit. The studied deposit is
located in the Sierra del Pico Sacro, southeast of the city of
Santiago de Compostela (NW Spain), at an altitude of about
530 metres above sea level.
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Figure 1: Geological map of the area where the quartz seam is
located.

This deposit, with a vein of pure, white quartz extending
along the marginal fault between Cira and Pico Sacro, has
a fine to very fine-grained saccharoidal matrix with some
coarser grains and with the quartz in lattices (Figure 1,
MAGNA Sheet no. 121). The seam runs N301E, with a dip
varying from 53∘–60∘ to the NE, and has an average potential
of 70 metres.

The quartz seam is quarried for four products and class-
ified according to alumina content as follows.

(i) Silicon metal (alumina content below 0.35%) is a
high-quality product used as raw material in the pro-
duction of aluminium and silicon alloys and in the
manufacture of photovoltaic solar panels.

(ii) Ferrosilicon (alumina content below 0.6%) is a
slightly lower-quality product than silicon metal and
is used mainly in the production of steels and cast
iron.

(iii) Aggregate (alumina content below 3%) is used in con-
struction and in cement and concrete manufacture.

(iv) Kaolin (alumina content above 3%) is a white clay
used in the ceramics and paper industry and in the
manufacture of paints and plastics.

Bearing in mind that the deposit contains products with
different values depending on grade and specifications, it is
clearly important to know the volume and spatial distribution
of each ahead of mining operations.

2.3. Data Processing. A total of 29 profiles, equispaced by a
distance of 100 metres, were constructed to cut across the
seam. The profiles were considered to be representative of
portions of the deposit extending 50 metres each way and
so spanning a total of 100 metres. Information concerning
the geology and mineralogy of the different sampled points

Figure 2: Profiles 100metres equidistant constructed for application
of the method. Grades are indicated as follows: silicon metal (blue),
ferrosilicon (red), aggregate (green) and kaolin (yellow).

was included in order to characterize, in terms of grade, the
reserves intersected by each profile. Data were available from
three sources.

(i) Outcrop inspection: field reconnaissance was con-
ducted, and different outcrops in the area were sam-
pled for subsequent analysis.

(ii) Borehole logging: 288 surveys for 6,048 drilledmetres
were performed before 2000, and 148 surveys for
10,038 drilled metres were performed between 2000
and 2009.

(iii) Sampling of blast material: data were collected from
436 blasting operations conducted in 2000 and in
2003.

Thus, the profiles, covering the entire deposit, contained
information on the grades in cross-sections of the deposit as
determined from the aforementioned data (Figure 2).

Geostatistical data processing began by depicting a grid
of cubic cells with 10-metre edges. The centroid of each cube
contained information about the different percentages of each
marketable product. Since the seam’s real dip (53∘–60∘) and
direction (N301E) would have caused some of the cells to
contain points outside the seam, without information (which
would have implied an additional data processing burden
for no benefit), it was necessary to reorient the seam was
run in a north-south direction with a vertical dip. Boundary
conditions as dictated by the characteristics of the deposit and
by the operating method were applied to the grid.

Using compositional kriging, the vertical grid of the geo-
statistical model was projected onto the established profiles.
The distribution of grades for the entire deposit was then est-
ablished, and kriging results were fitted to the cloud of points
generated by the grid.The percentages of the four grades were
calculated for each cell, and the distribution percentage was
allocated to the centroids of the nearest cells, generating a
database entry with the UTM coordinates (𝑥, 𝑦, 𝑧) and the
grade distributions for the entire mesh.

Geostatistical calculations were performed using the R
freeware program, which also programs and stores packets of
operations [15]. Once the results were available, the deposit
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Figure 3: Experimental semivariograms (circles) together with the fitted theoretical semivariograms (lines) that describe the spatial
correlation between the variables 𝑍∗

𝑗
, 𝑗 = 1, 2, 3.

was plotted in 3D using Rhinoceros, with different colours
assigned to each commercial grade: silicon metal (blue), fer-
rosilicon (red), aggregate (green), and kaolin (yellow).

3. Results

The data obtained in the field constituted a set of 𝑛 = 18267
compositional data, in such a way that their 𝑝 = 4 compo-
nents totalled 100. These components represent the percent-
ages of silicon metal, ferrosilicon, aggregate, and kaolin for
each 10 × 10 × 10 cubic metre cell.

Following a study of themain components of the sampled
data, an orthogonal basis was obtained which determined the
main directions of variability in the observations. This basis,
previously normalized, constituted the orthonormal basis
that would give rise to the coordinate-change matrix 𝜓. As
can be confirmed in [16], the orthonormal basis chosen has
no great bearing on the final results. However, by choosing

directions close to those of maximum variability, we aimed
to reflect as accurately as possible the underlying grade dis-
tribution behaviour. Principal components method has been
applied in order to know the directions close to those of
maximum variability. Then, Gram-Schmidt process has been
applied in order to get an orthonormal basis formed of the
following vectors:

𝑒
1
= (0.4243, −0.2828, −0.1414, 0.8485)

𝑡
,

𝑒
2
= (0.4108, 0.2783, −0.8311, −0.2512)

𝑡
,

𝑒
3
= (−0.3221, 0.8388, −0.011, 0.4388)

𝑡
.

(3)

Since several components in the sampled data were recorded
with null values, a positive constant was added prior to the
change of coordinates 𝑧∗(𝑥

𝑖
) = Ψ ln(𝑧(𝑥

𝑖
)), 𝑖 = 1, 2, . . . , 𝑛.

The sum of this constant does not change the compositional
condition of the observations, but it should be taken into
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Figure 4: Three-dimensional model of the site with the predictions
of grade distributions [siliconmetal (blue), ferrosilicon (red), aggre-
gate (green), and kaolin (yellow)] and the terrain.

Table 1: Co-regionalizationmodel coefficients used in the structural
analysis of the transformed variables 𝑍∗

𝑗
, 𝑗 = 1, 2, 3.

𝛽
𝑟

11
𝛽
𝑟

22
𝛽
𝑟

33
𝛽
𝑟

12
𝛽
𝑟

13
𝛽
𝑟

23

𝑟 = 1 0.0517 0.0382 0.0219 0.0064 0.0060 0.0045
𝑟 = 2 0.0917 0.0534 0.0003 −0.0074 0.0047 0.0016

account in the final stage of the process to obtain predictions
whose components sum 100.

After transformation of the data, the new random vari-
ables 𝑍∗

𝑗
, 𝑗 = 1, 2, 3, were structurally analysed. To fit the

linear coregionalization model, 𝑟 = 2 uncorrelated variables
with the following features were used: 𝛾𝛾

1
pure nugget effect

semivariogram with sill 1 and 𝛾
2
spherical semivariogram

with range 300 and sill 1. The coefficients 𝛽𝑟
𝑗𝑗
 , 𝑗, 𝑗 = 1, 2, 3,

𝑟 = 1, 2, that completed the linear co-regionalization model
(estimated using the R freeware) are shown in Table 1.

Figure 3 shows the experimental semivariograms (circles)
togetherwith the fitted theoretical semivariograms𝛾

𝑗𝑗
 , 𝑗, 𝑗 =

1, 2, 3 (lines). Spatial correlation between the transformed
variables 𝑍∗

𝑗
, 𝑗 = 1, 2, 3, can be observed. Both Table 1

and Figure 3 show how the variable 𝑍
3
has negligible spa-

tial correlation, since the coefficient 𝛽2
33

corresponding to
the spherical semivariogram is practically zero. The reason
for this behaviour is that the orthonormal basis has been
chosen according to the main directions of variability in the
observations.

Applying cokriging techniques and inverting the trans-
formation applied to the data, we obtained grade predictions
for the cells that were not included in the database. This
completed the geological model of the seam, resulting in an
estimate of quartz reserves in terms of the four commercial
grades.The results of the cubicationmeasurements as percen-
tages representing the four grades are shown in Table 2.

The value of the prediction variance obtained by com-
positional kriging was significantly lower than that obtained

Table 2: Commercial grade distribution.

Product As % of all reserves
Silicon metal 17.15
Ferrosilicon 20.94
Aggregate 59.34
Kaolin 2.57
Total 100.00

by the fuzzy kriging in [9]. This is because compositional
kriging used real data for the percentage distribution of the
four grades in the cells, whereas there was an information loss
with fuzzy kriging due to the transformation of the input data
to a triangular function.

Figure 4 shows themodelled deposit with the distribution
in four grades indicated by different colours. Observe that,
although the predominant grade is aggregate, there are some
high quality areas of silicon metal and ferrosilicon. There is
also evidence of the presence of a portion of the seam whose
end use would be kaolin; this area is located in the cen-
tral region of the seam, to the southeast and hidden by the
surrounding areas in the image shown.

4. Conclusions

The compositional kriging method took into account that
each block extracted from a deposit could contain different
grades of quartz. Unlike other prediction methods, such as
classical kriging or cokriging, compositional kriging ensures
that the sum of percentages for the different grades adds to
100%. Despite the apparent complexity of themethod, in pra-
ctice is quite simple to implement in high-level languages
such as program R. It was also possible to generate a three-
dimensional model of the deposit using the program Rhino-
ceros.

The quartz deposit was modelled and zoned in terms
of four different quality grades—silicon metal, ferrosilicon,
aggregate, and kaolin—defined by the market according to
different specifications. The results satisfactorily fitted the
geological reality of the seam.

The knowledge acquired of a deposit in this way improves
mine planning and enables selective exploitation of resources
while reducing the amount of waste generated, all of which
translates into higher profits and a better relationshipwith the
environment.
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