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We deal with the existence of mild solutions of a class of nonlocal impulsive second-order functional differential equations with
finite delay in a real Banach space X. An existence result on the mild solution is obtained by using the theory of the measures of
noncompactness. An example is presented.

1. Introduction

The Cauchy problem for various delay equations in Banach
spaces has been receiving more and more attention during
the past decades (see, e.g., [1–5]).

The literature concerning second- and higher-order ordi-
nary functional differential equations is very extensive. We
only mention the works [1, 6–15], which are directly related
to this work.

On the other hand, the impulsive conditions have advan-
tages over traditional initial value problems because they can
be used to model phenomena that cannot be modeled by
traditional initial value problems, such as the dynamics of
populations subject to abrupt changes (harvesting, diseases,
etc.) (see [16–27] and references therein). For this reason,
the theory of impulsive differential equations has become
an important area of investigation in recent years. Partial
differential equations of first and second order with impulses
have been studied by Rogovchenko [26], Liu [25], Cardinali
and Rubbioni [19], Liang et al. [24], Henŕıquez and Vásquez
[1], Hernández et al., [21–23], Arthi and Balachandran [17],
and so forth.

Moreover, we consider the nonlocal condition 𝑥(0) =

𝑔(𝑥)+𝑥
0
, where 𝑔 is a mapping from some space of functions

so that it constitutes a nonlocal condition (see [24, 28–30]
and the references therein), where it is demonstrated that
nonlocal conditions have better effects in applications than
traditional initial value problems.

In this paper, we pay our attention to the investigation
of the existence of mild solutions to the following impulsive
second-order functional differential equations with finite
delay in a real Banach space 𝑋:

𝑑
2

𝑑𝑡
2
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥

𝑡
, 𝑥 (𝑡)) ,

𝑡 ∈ (0, 𝑇] , 𝑡 ̸= 𝑡
𝑘
, 𝑘 = 1, 2, . . . , 𝑝,

(1)

𝑥 (𝑡) = 𝑔 (𝑥) (𝑡) + 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] , (2)

𝑥

(0) = 𝜉 ∈ 𝑋, (3)

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑘 = 1, 2, . . . , 𝑝, (4)

where 𝐴 is the infinitesimal generator of a strongly con-
tinuous cosine family of bounded linear operators {𝐶(𝑡)}

𝑡∈R
on 𝑋. 𝑓, 𝑔 are given functions to be specified later. 𝜙 ∈

𝐶([−𝑟, 0], 𝑋), where 𝐶([𝑎, 𝑏], 𝑋) denotes the space of all
continuous functions from [𝑎, 𝑏] to 𝑋.

The impulsive moments {𝑡
𝑘
} are given such that 0 = 𝑡

0
<

𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑝

< 𝑡
𝑝+1

= 𝑇, 𝐼
𝑘

: 𝑋 → 𝑋 (𝑘 = 1, 2, . . . , 𝑝)

are appropriate functions, Δ𝑥(𝑡
𝑘
) represents the jump of a

function 𝑥 at 𝑡
𝑘
, which is defined by Δ𝑥(𝑡

𝑘
) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

−

𝑘
),

where 𝑥(𝑡
+

𝑘
) and 𝑥(𝑡

−

𝑘
) are, respectively, the right and the left

limits of 𝑥 at 𝑡
𝑘
.

For any continuous function 𝑥 defined on the interval
[−𝑟, 𝑇] and any 𝑡 ∈ [0, 𝑇], we denote by 𝑥

𝑡
the element of

𝐶([−𝑟, 0], 𝑋) defined by 𝑥
𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for 𝜃 ∈ [−𝑟, 0].
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In this paper, motivated by above works, we study (1)–(4)
in 𝑋 and obtain the existence theorem based on theory on
measures of noncompactness without the assumptions that
the nonlinearity 𝑓 satisfies a Lipschitz type condition and the
cosine family of bounded linear operators {𝐶(𝑡)}

𝑡∈R generated
by 𝐴 is compact.

2. Preliminaries

Throughout this paper, we set 𝐽 = [0, 𝑇], a compact interval
inR. We denote by𝑋 a Banach space with norm ‖ ⋅ ‖, by 𝐿(𝑋)

the Banach space of all linear and bounded operators on 𝑋.
We abbreviate ‖𝑢‖

𝐿
1
(𝐽,R+) with ‖𝑢‖

𝐿
1 , for any 𝑢 ∈ 𝐿

1
(𝐽,R+).

Let

𝑃𝐶 (𝐽,𝑋) := {𝑥 : 𝐽 → 𝑋; 𝑥 (𝑡) is continuous at 𝑡 ̸= 𝑡
𝑘
,

left continuous at 𝑡 = 𝑡
𝑘
, and

the right limit 𝑥 (𝑡
+

𝑘
) exists for 𝑘=1, 2, . . . , 𝑝} .

(5)

It is easy to check that𝑃𝐶(𝐽, 𝑋) is a Banach space with the
norm

‖𝑥‖𝑃𝐶
= sup
𝑡∈𝐽

‖𝑥 (𝑡)‖ , for any 𝑥 ∈ 𝑃𝐶 (𝐽,𝑋) . (6)

We let 𝐽
0
= (𝑡
0
, 𝑡
1
], 𝐽
1
= (𝑡
1
, 𝑡
2
], . . . , 𝐽

𝑝
= (𝑡
𝑝
, 𝑡
𝑝+1

].
ForB ⊆ 𝑃𝐶(𝐽, 𝑋), we denote byB|

𝐽
𝑖

the set

B|
𝐽
𝑖

= {𝑥 ∈ 𝐶 ([𝑡
𝑖
, 𝑡
𝑖+1

] , 𝑋) ; 𝑥 (𝑡
𝑖
) = 𝑣 (𝑡

+

𝑖
) , 𝑥 (𝑡) = 𝑣 (𝑡) ,

𝑡 ∈ 𝐽
𝑖
, 𝑣 ∈ B}

(7)

𝑖 = 0, 1, 2, . . . , 𝑝.
A family {𝐶(𝑡)}

𝑡∈R in 𝐿(𝑋) is called a cosine function on
𝑋 if

(i) 𝐶(0) = 𝐼 is the identity operator in 𝑋;
(ii) 𝐶(𝑡 + 𝑠) + 𝐶(𝑡 − 𝑠) = 2𝐶(𝑡)𝐶(𝑠) for all 𝑠, 𝑡 ∈ R;
(iii) The map 𝑡 → 𝐶(𝑡)𝑥 is strongly continuous for each

𝑥 ∈ 𝑋.

The associated sine function is the family {𝑆(𝑡)}
𝑡∈R of opera-

tors defined by

𝑆 (𝑡) 𝑥 = ∫

𝑡

0

𝐶 (𝑠) 𝑥 𝑑𝑠, for 𝑥 ∈ 𝑋, 𝑡 ∈ R. (8)

One can define the infinitesimal generator 𝐴 of 𝐶(⋅) by

𝐷 (𝐴) = {𝑥 ∈ 𝑋; lim
𝑡→0

2𝑡
−2

(𝐶 (𝑡) 𝑥 − 𝑥) ∈ 𝑋}

𝐴𝑥 = lim
𝑡→0

2𝑡
−2

(𝐶 (𝑡) 𝑥 − 𝑥) , 𝑥 ∈ 𝐷 (𝐴) .

(9)

In this paper, we assume there exist positive constants 𝑀
and 𝑁 such that

‖𝐶 (𝑡)‖ ≤ 𝑀, ‖𝑆 (𝑡)‖ ≤ 𝑁 for every 𝑡 ∈ 𝐽. (10)

The following properties are well known [6, 7, 11, 12]:

(i) 𝐶 (𝑡) 𝑥 ∈ 𝐷 (𝐴) , 𝐶 (𝑡) 𝐴𝑥 = 𝐴𝐶 (𝑡) 𝑥

for 𝑥 ∈ 𝐷 (𝐴) , 𝑡 ∈ R;

(ii) 𝑆 (𝑡) 𝑥 ∈ 𝐷 (𝐴) , 𝑆 (𝑡) 𝐴𝑥 = 𝐴𝑆 (𝑡) 𝑥

for 𝑥 ∈ 𝐷 (𝐴) , 𝑡 ∈ R;

(iii) ∫

𝑡

0

𝑆 (𝑠) 𝑥𝑑𝑠 ∈ 𝐷 (𝐴) ,

𝐴∫

𝑡

0

𝑆 (𝑠) 𝑥𝑑𝑠 = 𝐶 (𝑡) 𝑥 − 𝑥 for 𝑥 ∈ 𝑋, 𝑡 ∈ R;

(iv) 𝐶 (𝑡) 𝑥 − 𝑥 = ∫

𝑡

0

𝑆 (𝑠) 𝐴𝑥𝑑𝑠 for 𝑥 ∈ 𝐷 (𝐴) , 𝑡 ∈ R.

(11)

For more details on strongly continuous cosine and sine
families, we refer the reader to [6, 7, 11, 12].

Next, we recall that the Hausdorff measure of noncom-
pactness 𝜒(⋅) on each bounded subsetΩ of Banach space 𝑌 is
defined by

𝜒 (Ω) = inf {𝜀 > 0; Ω has a finite 𝜀-net in 𝑋} . (12)

This measure of noncompactness satisfies some basic
properties as follows.

Lemma 1 (see [31]). Let 𝑌 be a real Banach space, and let
𝐵, 𝐶 ⊆ 𝑌 be bounded. Then

(1) 𝜒(𝐵) = 0 if and only if 𝐵 is precompact;
(2) 𝜒(𝐵) = 𝜒(𝐵) = 𝜒(𝑐𝑜𝑛𝑣𝐵), where 𝐵 and 𝑐𝑜𝑛𝑣𝐵 mean

the closure and convex hull of 𝐵, respectively;
(3) 𝜒(𝐵) ≤ 𝜒(𝐶) if 𝐵 ⊆ 𝐶;
(4) 𝜒(𝐵 ∪ 𝐶) ≤ max{𝜒(𝐵), 𝜒(𝐶)};
(5) 𝜒(𝐵 + 𝐶) ≤ 𝜒(𝐵) + 𝜒(𝐶), where 𝐵 + 𝐶 = {𝑥 + 𝑦; 𝑥 ∈

𝐵, 𝑦 ∈ 𝐶};
(6) 𝜒(𝛼𝐵) = |𝛼|𝜒(𝐵), for any 𝛼 ∈ R;
(7) let 𝑍 be a Banach space and 𝑄 : 𝐷(𝑄) ⊆ 𝑌 → 𝑍 Lip-

schitz continuous with constant 𝜈. Then 𝜒(𝑄𝐵) ≤ 𝜈 ⋅

𝜒(𝐵) for all 𝐵 ⊆ 𝐷(𝑄) being bounded.

Proposition 2 (see [32], Page 125). Let Ω be a bounded set
for a real Banach space 𝑋. Then, for every 𝜀 > 0 there exists a
sequence {𝑥

𝑛
}
∞

𝑛=1
in Ω such that

𝜒 (Ω) ≤ 2𝜒 ({𝑥
𝑛
}
∞

𝑛=1
) + 𝜀. (13)

In the sequel, we make use of the following formulation
ofTheorem 4.2.2 of [33] obtained by usingTheorem 2 of [34].

Proposition 3. Let {𝑓
𝑛
}
∞

𝑛=1
be a sequence in 𝐿

1
(𝐽, 𝑋) such that

there exist 𝑣, 𝑞 ∈ 𝐿
1

+
([0, 𝑇]) with the properties:

(i) sup
𝑛∈N‖𝑓

𝑛
(𝑡)‖ ≤ 𝑣(𝑡), 𝑎.𝑒. 𝑡 ∈ 𝐽;

(ii) 𝜒({𝑓
𝑛
}
∞

𝑛=1
) ≤ 𝑞(𝑡), 𝑎.𝑒. 𝑡 ∈ 𝐽.
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Then, for every 𝑡 ∈ 𝐽, we have

𝜒({∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓
𝑛
(𝑠) 𝑑𝑠}

∞

𝑛=1

) ≤ 2𝑁∫

𝑡

0

𝑞 (𝑠) 𝑑𝑠, (14)

where 𝑁 is from (10).

A continuous map 𝑄 : 𝑊 ⊆ 𝑌 → 𝑌 is said to be a 𝜒-
contraction if there exists a positive constant 𝜈 < 1 such that
𝜒(𝑄𝐶) ≤ 𝜈 ⋅ 𝜒(𝐶) for any bounded closed subset 𝐶 ⊆ 𝑊.

Theorem4 (see [31] (Darbo-Sadovskii)). If𝑈 ⊆ 𝑌 is bounded
closed and convex, the continuous map F : 𝑈 → 𝑈 is a 𝜒-
contraction, then the mapF has at least one fixed point in 𝑈.

Definition 5. A function 𝑥 : [−𝑟, 𝑇] → 𝑋 is called a mild
solution of system (1)–(4) if 𝑥

0
= 𝑔(𝑥) + 𝜙, 𝑥|

𝐽
∈ 𝑃𝐶(𝐽, 𝑋)

and

𝑥 (𝑡) = 𝐶 (𝑡) (𝜙 (0) + 𝑔 (𝑥) (0)) + 𝑆 (𝑡) 𝜉

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
𝑠
, 𝑥 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

𝐶 (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑡 ∈ 𝐽.

(15)

Remark 6. A mild solution of (1)–(4) satisfies (2) and (4).
However, a mild solution may be not differentiable at zero.

3. Existence Result and Proof

In this section, we study the existence of mild solutions for
the system (1)–(4).

LetF(𝑇) stand for the space

F (𝑇) = {𝑥 : [−𝑟, 𝑇] → 𝑋; 𝑥|
𝐽
∈ 𝑃𝐶 (𝐽, 𝑋) ,

𝑥
0
∈ 𝐶 ([−𝑟, 0] , 𝑋)}

(16)

endowed with norm

‖𝑥‖F(𝑇) = sup
𝑡∈[−𝑟,0]

‖𝑥 (𝑡)‖ + sup
𝑡∈𝐽

‖𝑥 (𝑡)‖ . (17)

We will require the following assumptions.
(H1) (i) 𝑓 : 𝐽×𝐶([−𝑟, 0], 𝑋)×𝑋 → 𝑋 satisfies𝑓(⋅, 𝑣, 𝑤) :

𝐽 → 𝑋 is measurable for all (𝑣, 𝑤) ∈ 𝐶([−𝑟, 0], 𝑋) × 𝑋 and
𝑓(𝑡, ⋅, ⋅) : 𝐶([−𝑟, 0], 𝑋) × 𝑋 → 𝑋 is continuous for a.e. 𝑡 ∈ 𝐽,
and there exists a function 𝜇(⋅) ∈ 𝐿

1
(𝐽,R+) such that





𝑓 (𝑡, 𝑣, 𝑤)





≤ 𝜇 (𝑡) (1 + ‖𝑤‖) (18)

for almost all 𝑡 ∈ 𝐽;
(ii) there exists a function 𝜂 ∈ 𝐿

1
(𝐽,R+) such that for any

bounded sets 𝐷
1
⊂ 𝐶([−𝑟, 0], 𝑋), 𝐷

2
⊂ 𝑋

𝜒 (𝑓 (𝑡, 𝐷
1
, 𝐷
2
)) ≤ 𝜂 (𝑡) ( sup

𝜃∈[−𝑟,0]

𝜒 (𝐷
1 (

𝜃)) + 𝜒 (𝐷
2
)) ,

a.e. 𝑡 ∈ 𝐽.

(19)

(H2) 𝐼
𝑘

: 𝑋 → 𝑋 are compact operators and there
exist positive constants 𝑀

1
,𝑀
2
such that





𝐼
𝑘
(𝑥)





≤ 𝑀
1 ‖

𝑥‖ + 𝑀
2
, for any 𝑥 ∈ 𝑋, 𝑘 = 1, 2, . . . , 𝑝.

(20)

(H3) 𝑔 : 𝐶([−𝑟, 0], 𝑋) → 𝑋 is a compact operator
and there exists a constant 𝑁

1
> 0 such that





𝑔 (𝑥)




[−𝑟,0]

≤ 𝑁
1

for all 𝑥 ∈ 𝐶 ([−𝑟, 0] , 𝑋) , (21)

where ‖𝑔(𝑥)‖
[−𝑟,0]

= sup
𝑡∈[−𝑟,0]

‖𝑔(𝑥)(𝑡)‖.

(H4) There exists 𝑀
∗

∈ (0, 1) such that 8𝑁∫

𝑇

0
𝜂(𝑠)𝑑𝑠 <

𝑀
∗.

Theorem 7. Assume that (H1)–(H4) are satisfied, then there
exists a mild solution of (1)–(4) on [−𝑟, 𝑇] provided that
𝑝𝑀𝑀

1
< 1.

Proof. Define the operator Λ : F(𝑇) → F(𝑇) in the follow-
ing way:

(Λ𝑥) (𝑡) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑔 (𝑥) (𝑡) + 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] ,

𝐶 (𝑡) (𝑔 (𝑥) (0) + 𝜙 (0)) + 𝑆 (𝑡) 𝜉

+∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
𝑠
, 𝑥 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

𝐶 (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑡 ∈ 𝐽.

(22)

It is clear that the operator Λ is well defined, and the fixed
point of Λ is the mild solution of problems (1)–(4).

The operator Λ can be written in the form Λ = Λ
1
+ Λ
2
,

where the operators Λ
1
, Λ
2
are defined as follows:

(Λ
1
𝑥) (𝑡) =

{
{
{

{
{
{

{

𝑔 (𝑥) (𝑡) + 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] ,

𝐶 (𝑡) (𝑔 (𝑥) (0) + 𝜙 (0))

+𝑆 (𝑡) 𝜉, 𝑡 ∈ 𝐽,

(Λ
2
𝑥) (𝑡) =

{
{
{
{
{
{

{
{
{
{
{
{

{

0, 𝑡 ∈ [−𝑟, 0] ,

∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
𝑠
, 𝑥 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

𝐶 (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑡 ∈ 𝐽.

(23)

Obviously, under the assumptions of 𝑔,Λ
1
is continuous.

For 𝑡 ∈ 𝐽, we can prove that Λ
2
is continuous.

Indeed, let {𝑥𝑛}
𝑛∈N be a sequence such that 𝑥𝑛 → 𝑥 in

F(𝑇) as 𝑛 → ∞. Since 𝑓 satisfies (H1)(i), for almost every
𝑡 ∈ 𝐽, we get

𝑓 (𝑡, 𝑥
𝑛

𝑡
, 𝑥
𝑛
(𝑡)) → 𝑓 (𝑡, 𝑥

𝑡
, 𝑥 (𝑡)) , as 𝑛 → ∞. (24)
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Noting that 𝑥𝑛 → 𝑥 inF(𝑇), we can see that there exists
𝜀 > 0 such that ‖𝑥

𝑛
− 𝑥‖F(𝑇) ≤ 𝜀 for 𝑛 sufficiently large.

Therefore, we have




𝑓 (𝑡, 𝑥

𝑛

𝑡
, 𝑥
𝑛
(𝑡)) − 𝑓 (𝑡, 𝑥

𝑡
, 𝑥 (𝑡))






≤ 𝜇 (𝑡) (1 +




𝑥
𝑛
(𝑡)





) + 𝜇 (𝑡) (1 + ‖𝑥 (𝑡)‖)

≤ 2𝜇 (𝑡) + 𝜇 (𝑡)




𝑥
𝑛
(𝑡) − 𝑥 (𝑡)





+ 2𝜇 (𝑡) ‖𝑥 (𝑡)‖

≤ 2𝜇 (𝑡) + 𝜇 (𝑡) 𝜀 + 2𝜇 (𝑡) ‖𝑥‖F(𝑇).

(25)

It follows from the Lebesgue’s dominated convergence theo-
rem that

∫

𝑡

0





𝑆 (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥

𝑛

𝑠
, 𝑥
𝑛
(𝑠)) − 𝑓 (𝑠, 𝑥

𝑠
, 𝑥 (𝑠))]





𝑑𝑠

≤ 𝑁∫

𝑡

0





𝑓 (𝑠, 𝑥

𝑛

𝑠
, 𝑥
𝑛
(𝑠)) − 𝑓 (𝑠, 𝑥

𝑠
, 𝑥 (𝑠))





𝑑𝑠

→ 0, as 𝑛 → ∞.

(26)

Moreover, noting that (H2), we obtain that

lim
𝑛→∞





Λ
2
𝑥
𝑛
− Λ
2
𝑥



F(𝑇)

= 0. (27)

This shows thatΛ
2
is continuous.Therefore,Λ is continuous.

Let us introduce in the space F(𝑇) the equivalent norm
defined as

‖𝑥‖∗
= sup
𝑡∈[−𝑟,0]

‖𝑥 (𝑡)‖ + sup
𝑡∈𝐽

(𝑒
−𝐿𝑡

‖𝑥 (𝑡)‖) , (28)

where 𝐿 > 0 is a constant chosen so that

𝑁sup
𝑡∈𝐽

∫

𝑡

0

𝜇 (𝑠) 𝑒
−𝐿(𝑡−𝑠)

𝑑𝑠 < 1. (29)

Noting that for any 𝜓 ∈ 𝐿
1
(𝐽, 𝑋), we have

lim
𝐿→+∞

sup
𝑡∈𝐽

∫

𝑡

0

𝑒
−𝐿(𝑡−𝑠)

𝜓 (𝑠) 𝑑𝑠 = 0, (30)

so, we can take the appropriate 𝐿 to satisfy (29).
Consider the set

𝐵
𝜌
= {𝑥 ∈ F (𝑇) ; ‖𝑥‖∗

≤ 𝜌} , (31)

where 𝜌 is a constant chosen so that

𝜌 ≥

𝑁
1
+





𝜙



[−𝑟,0]

+ ℓ + 𝑝𝑀𝑀
2

1 − 𝑝𝑀𝑀
1

> 0, (32)

where ℓ := 𝑀(𝑁
1
+ ‖𝜙(0)‖) + 𝑁(‖𝜉‖ + ‖𝜇‖

𝐿
1) and ‖𝜙‖

[−𝑟,0]
=

sup
𝑡∈[−𝑟,0]

‖𝜙(𝑡)‖.
Now, if 𝑡 ∈ [−𝑟, 0], 𝑥 ∈ 𝐵

𝜌
, then

‖(Λ𝑥) (𝑡)‖ =




𝑔 (𝑥) (𝑡) + 𝜙 (𝑡)





≤ 𝑁
1
+





𝜙



[−𝑟,0]

. (33)

For 𝑡 ∈ 𝐽, 𝑥 ∈ 𝐵
𝜌
, we have

‖(Λ𝑥) (𝑡)‖ ≤




𝐶 (𝑡) (𝑔 (𝑥) (0) + 𝜙 (0))





+





𝑆 (𝑡) 𝜉






+ ∫

𝑡

0





𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥

𝑠
, 𝑥 (𝑠))





𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡





𝐶 (𝑡 − 𝑡

𝑘
) 𝐼
𝑘
(𝑥 (𝑡
𝑘
))






≤ 𝑀(𝑁
1
+




𝜙 (0)





+ ∑

0<𝑡
𝑘
<𝑡





𝐼
𝑘
(𝑥 (𝑡
𝑘
))





)

+𝑁(




𝜉




+∫

𝑡

0

𝜇 (𝑠) (1+𝑒
𝐿𝑠
𝑒
−𝐿𝑠

‖𝑥 (𝑠)‖) 𝑑𝑠)

= ℓ + 𝑀 ∑

0<𝑡
𝑘
<𝑡





𝐼
𝑘
(𝑥 (𝑡
𝑘
))






+ 𝑁∫

𝑡

0

𝜇 (𝑠) 𝑒
𝐿𝑠
𝑒
−𝐿𝑠

‖𝑥 (𝑠)‖ 𝑑𝑠,

(34)

then

𝑒
−𝐿𝑡

‖(Λ𝑥) (𝑡)‖ ≤ 𝑒
−𝐿𝑡

[ℓ + 𝑀 ∑

0<𝑡
𝑘
<𝑡





𝐼
𝑘
(𝑥 (𝑡
𝑘
))






+𝑁∫

𝑡

0

𝜇 (𝑠) 𝑒
𝐿𝑠
𝑒
−𝐿𝑠

‖𝑥 (𝑠)‖ 𝑑𝑠]

≤ ℓ + 𝜌𝑝𝑀𝑀
1
+ 𝑝𝑀𝑀

2

+ 𝑁∫

𝑡

0

𝜇 (𝑠) 𝑒
−𝐿(𝑡−𝑠)

𝑑𝑠 ⋅ ‖𝑥‖∗
,

(35)

therefore,

sup
𝑡∈𝐽

(𝑒
−𝐿𝑡

‖(Λ𝑥) (𝑡)‖)

≤ ℓ + 𝑝𝑀𝑀
2

+ [𝑝𝑀𝑀
1
+ sup
𝑡∈𝐽

(𝑁∫

𝑡

0

𝜇 (𝑠) 𝑒
−𝐿(𝑡−𝑠)

𝑑𝑠)] 𝜌.

(36)

It results that

‖Λ𝑥‖∗
= sup
𝑡∈[−𝑟,0]

‖(Λ𝑥) (𝑡)‖ + sup
𝑡∈𝐽

(𝑒
−𝐿𝑡

‖(Λ𝑥) (𝑡)‖)

≤ 𝑁
1
+





𝜙



[−𝑟,0]

+ ℓ + 𝑝𝑀𝑀
2

+ (𝑝𝑀𝑀
1
+ 𝑁sup
𝑡∈𝐽

∫

𝑡

0

𝜇 (𝑠) 𝑒
−𝐿(𝑡−𝑠)

𝑑𝑠) 𝜌.

(37)

Let 𝐿 → +∞, we obtain

‖Λ𝑥‖∗
≤ 𝑁
1
+





𝜙



[−𝑟,0]

+ ℓ + 𝑝𝑀𝑀
2
+ 𝑝𝑀𝑀

1
𝜌 ≤ 𝜌. (38)

Hence for some positive number 𝜌, Λ𝐵
𝜌
⊂ 𝐵
𝜌
.
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Using the strong continuity of {𝐶(𝑡)}
𝑡∈R and the compact-

ness condition on the operators 𝐼
𝑘
, for 𝜀 > 0, there exists 𝛿 > 0

such that





(𝐶 (𝑡 + ℎ) − 𝐶 (𝑡)) 𝐼

𝑘
(𝑥)





≤ 𝜀, 𝑥 ∈ 𝐵

𝜌
,

𝑡 ∈ 𝐽, 𝑘 = 1, 2, . . . , 𝑝,

(39)

when |ℎ| < 𝛿. If 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

] and ℎ < 𝛿 such that 𝑡 + ℎ ∈

[𝑡
𝑘
, 𝑡
𝑘+1

], then













∑

0<𝑡
𝑘
<𝑡

(𝐶 (𝑡 + ℎ − 𝑡
𝑘
) − 𝐶 (𝑡 − 𝑡

𝑘
)) 𝐼
𝑘
(𝑥 (𝑡
𝑘
))













≤

𝑝

∑

𝑘=1





(𝐶 (𝑡 + ℎ − 𝑡

𝑘
) − 𝐶 (𝑡 − 𝑡

𝑘
)) 𝐼
𝑘
(𝑥 (𝑡
𝑘
))





≤ 𝑝𝜀.

(40)

For 𝑥 ∈ 𝐵
𝜌
, by the hypothesis (H1)(i) and (40), we get





(Λ
2
𝑥) (𝑡 + ℎ) − (Λ

2
𝑥) (𝑡)






≤











∫

𝑡+ℎ

0

𝑆 (𝑡 + ℎ − 𝑠) 𝑓 (𝑠, 𝑥
𝑠
, 𝑥 (𝑠)) 𝑑𝑠

−∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
𝑠
, 𝑥 (𝑠)) 𝑑𝑠










+ 𝑝𝜀

≤ 𝑝𝜀 + ∫

𝑡

0





(𝑆 (𝑡 + ℎ − 𝑠) − 𝑆 (𝑡 − 𝑠)) 𝑓 (𝑠, 𝑥

𝑠
, 𝑥 (𝑠))





𝑑𝑠

+ ∫

𝑡+ℎ

𝑡





𝑆 (𝑡 + ℎ − 𝑠) 𝑓 (𝑠, 𝑥

𝑠
, 𝑥 (𝑠))





𝑑𝑠

≤ 𝑝𝜀 + [𝑀ℎ∫

𝑡

0

𝜇 (𝑠) 𝑑𝑠 + 𝑁∫

𝑡+ℎ

𝑡

𝜇 (𝑠) 𝑑𝑠] ⋅ (1 + 𝜌) .

(41)

As ℎ → 0 and 𝜀 → 0, the right-hand side of the inequality
above tends to zero independent of 𝑥, so Λ

2
maps bounded

sets into equicontinuous sets.
For bounded set 𝐵 ⊂ 𝑃𝐶(𝐽, 𝑋), we consider the map

𝜒
𝑝𝑐 (

𝐵) = max
𝑖=0,1,...,𝑝

𝜒
𝑖
(𝐵|
𝐽
𝑖

) , (42)

where 𝜒
𝑖
is the Hausdorff measure of noncompactness on the

Banach space 𝐶(𝐽
𝑖
, 𝑋) and 𝐵|

𝐽
𝑖

is defined in (7).
Furthermore, we define the Hausdorff measure of non-

compactness 𝜒F onF(𝑇) as follows:

𝜒F (Y ) := 𝜒
𝑝𝑐

(Y |
𝑃𝐶(𝐽,𝑋)

) + sup
𝑡∈[−𝑟,0]

𝜒 (Y (𝑡)) , Y ⊂ F (𝑇) .

(43)

For every bounded subset Ω̃ ⊂ 𝑃𝐶(𝐽, 𝑋), by applying
Proposition 2, for any 𝜀 > 0 there exists a sequence {𝑥

𝑛
}
∞

𝑛=1
⊂

Ω̃ such that

𝜒
𝑝𝑐

(Λ
2
Ω̃) ≤ 2𝜒

𝑝𝑐
(Λ
2
{𝑥
𝑛
}) + 𝜀, (44)

noting that the definition of 𝜒
𝑝𝑐
, we have

𝜒
𝑝𝑐

(Λ
2
Ω̃) ≤ 2 max

𝑖=0,1,...,𝑝

𝜒
𝑖
(Λ
2
{𝑥
𝑛
} |
𝐽
𝑖

) + 𝜀. (45)

Then, noting the equicontinuity of Λ
2
|
𝐽
𝑖

, 𝑖 = 0, 1, . . . , 𝑝, we
can apply Lemmas 2.1 and 2.2 of [35] to obtain

𝜒
𝑖
(Λ
2
{𝑥
𝑛
} |
𝐽
𝑖

) = sup
𝑡∈𝐽
𝑖

𝜒 (Λ
2
{𝑥
𝑛
} (𝑡)) . (46)

Then from (45) and (46), we have

𝜒
𝑝𝑐

(Λ
2
Ω̃) ≤ 2 max

𝑖=0,1,...,𝑝

(sup
𝑡∈𝐽
𝑖

𝜒 (Λ
2
{𝑥
𝑛
} (𝑡)))

+ 𝜀 = 2sup
𝑡∈𝐽

𝜒 (Λ
2
{𝑥
𝑛
} (𝑡)) + 𝜀.

(47)

For every bounded subset Ω ⊂ F(𝑇), we have

𝜒F (Λ
2
Ω) = 𝜒

𝑝𝑐
((Λ
2
Ω) |
𝑃𝐶(𝐽,𝑋)

)

+ sup
𝑡∈[−𝑟,0]

𝜒 ((Λ
2
Ω) (𝑡)) = 𝜒

𝑝𝑐
((Λ
2
Ω) |
𝑃𝐶(𝐽,𝑋)

) ,

(48)

moreover, by applying Proposition 2, for any 𝜀 > 0 there exists
a sequence {𝑦

𝑛
}
∞

𝑛=1
⊂ Ω such that

𝜒F (Λ
2
Ω) ≤ 2𝜒F (Λ

2
{𝑦
𝑛
}) + 𝜀

= 2𝜒
𝑝𝑐

((Λ
2
{𝑦
𝑛
}) |
𝑃𝐶(𝐽,𝑋)

) + 𝜀.

(49)

Combining with (48) and (49), we have

𝜒F (Λ
2
Ω) = 𝜒

𝑝𝑐
((Λ
2
Ω) |
𝑃𝐶(𝐽,𝑋)

)

≤ 2𝜒
𝑝𝑐

((Λ
2
{𝑦
𝑛
}) |
𝑃𝐶(𝐽,𝑋)

) + 𝜀.

(50)

Using the induction of (45)–(47) above, we can see

𝜒F (Λ
2
Ω) = 𝜒

𝑝𝑐
((Λ
2
Ω) |
𝑃𝐶(𝐽,𝑋)

)

≤ 2sup
𝑡∈𝐽

𝜒 (Λ
2
{𝑦
𝑛
} (𝑡) |𝑡∈𝐽

) + 𝜀.

(51)
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Thus, from (51), (H2) and Proposition 3 and (3) in Lemma 1,
we can see

𝜒F (Λ
2
Ω) ≤ 2sup

𝑡∈𝐽

𝜒 (Λ
2
{𝑦
𝑛
} (𝑡) |
𝑡∈𝐽

) + 𝜀

= 2sup
𝑡∈𝐽

[𝜒({∫

𝑡

0

𝑆 (𝑡−𝑠)𝑓 (𝑠, 𝑦
𝑛𝑠
, 𝑦
𝑛
(𝑠)) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

𝐶 (𝑡−𝑡
𝑘
) 𝐼
𝑘
(𝑦
𝑛
(𝑡
𝑘
))})]+𝜀

≤ 2sup
𝑡∈𝐽

[2𝑁∫

𝑡

0

𝜂 (𝑠) ( sup
𝜃∈[−𝑟,0]

𝜒 ({𝑦
𝑛
(𝑠 + 𝜃)})

+𝜒 ({𝑦
𝑛 (

𝑠)}) ) 𝑑𝑠] + 𝜀,

(52)

where 𝑦
𝑛
(𝑡) := 𝑦

𝑛
(𝑡)|
𝑡∈𝐽

.
Noting that

sup
𝜃∈[−𝑟,0]

𝜒 ({𝑦
𝑛
(𝑠 + 𝜃)}) ≤ sup

𝜃∈[−𝑟,0]

𝜒 ({𝑦
𝑛
(𝜃)})

+ sup
𝑠∈𝐽

𝜒 ({𝑦
𝑛
(𝑠)})

≤ sup
𝜃∈[−𝑟,0]

𝜒 (Ω (𝜃))

+ sup
𝑠∈𝐽

𝜒 (Ω (𝑠))

≤ sup
𝜃∈[−𝑟,0]

𝜒 (Ω (𝜃))

+ 𝜒
𝑝𝑐 (

Ω) = 𝜒F (Ω) ,

(53)

𝜒 ({𝑦
𝑛
(𝑠)}) ≤𝜒 (Ω (𝑠))

≤ 𝜒
𝑝𝑐

(Ω) .

(54)

Thus, by (52), we see

𝜒F (Λ
2
Ω) ≤ 2sup

𝑡∈𝐽

[2𝑁∫

𝑡

0

𝜂 (𝑠) ( sup
𝜃∈[−𝑟,0]

𝜒 ({𝑦
𝑛
(𝑠 + 𝜃)})

+𝜒 ({𝑦
𝑛 (

𝑠)}) ) 𝑑𝑠] + 𝜀

≤ 2sup
𝑡∈𝐽

(4𝑁∫

𝑡

0

𝜂 (𝑠) 𝑑𝑠) ⋅ 𝜒F (Ω) + 𝜀

= 8𝑁∫

𝑇

0

𝜂 (𝑠) 𝑑𝑠 ⋅ 𝜒F (Ω) + 𝜀.

(55)

Since 𝜀 is arbitrary, we can obtain

𝜒F (Λ
2
Ω) ≤ 8𝑁∫

𝑇

0

𝜂 (𝑠) 𝑑𝑠 ⋅ 𝜒F (Ω) . (56)

Combining with (H3), we have

𝜒F (ΛΩ) ≤ 𝜒F (Λ
1
Ω) + 𝜒F (Λ

2
Ω)

≤ 8𝑁∫

𝑇

0

𝜂 (𝑠) 𝑑𝑠 ⋅ 𝜒F (Ω) < 𝑀
∗
𝜒F (Ω) ,

(57)

hence Λ is a 𝜒F-contraction on F(𝑇). According to Theo-
rem 4, the operator Λ has at least one fixed point 𝑥 in 𝐵

𝜌
.

This completes the proof.

Next, we establish a condition that guarantee that a mild
solution satisfies (3).

Proposition 8. Assume that the hypotheses of Theorem 7 are
fulfilled and that 𝜙(0) + 𝑔(𝑥)(0) ∈ 𝐷(𝐴). If 𝑥(⋅) is a mild
solution of (1)–(4), then condition (3) holds.

Proof. Clearly, (1/𝑡) ∫𝑡
0
𝑆(𝑡−𝑠)𝑓(𝑠, 𝑥

𝑠
, 𝑥(𝑠))𝑑𝑠 → 0 as 𝑡 → 0.

Moreover, noting that𝜙(0)+𝑔(𝑥)(0) ∈ 𝐷(𝐴) and (11), we have
𝐶(⋅)(𝜙(0) + 𝑔(𝑥)(0)) is of class 𝐶1. Therefore, we can see that

lim
𝑡→0
+

𝑥 (𝑡) − 𝑥 (0)

𝑡

= lim
𝑡→0
+

1

𝑡

[ (𝐶 (𝑡) − 𝐼) (𝜙 (0) + 𝑔 (𝑥) (0)) + 𝑆 (𝑡) 𝜉

+∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
𝑠
, 𝑥 (𝑠)) 𝑑𝑠] = 𝜉,

(58)

which shows the assertion.

4. Application

In this section, we consider an application of the theory
developed in Section 3 to the study of an impulsive partial
differential equation with unbounded delay.

Example 9. 𝑋 = 𝐿
2
([0, 𝜋]), 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑋 is the map

defined by 𝐴𝜗 = 𝜗
 with domain 𝐷(𝐴) = {𝜗 ∈ 𝑋 : 𝜗


∈

𝑋, 𝜗(0) = 𝜗(𝜋) = 0}.
We consider the following integrodifferential model:

𝜕
2

𝜕𝑡
2
𝑣 (𝑡, 𝜉) =

𝜕
2

𝜕𝜉
2
𝑣 (𝑡, 𝜉) + sin 




𝑣 (𝑡, 𝜉)






+ 𝑡
2
∫

𝑡

𝑡−𝑟

𝛾 (𝜃 − 𝑡) ⋅ cos(




𝑣 (𝜃, 𝜉)






𝑡

) 𝑑𝜃,

𝑣 (𝑡, 𝜋) = 𝑣 (𝑡, 0) = 0,

𝑣 (𝜃, 𝜉) = 𝑣
0
(𝜃, 𝜉) + ∫

𝜋

0

𝑐 (𝜉, 𝑠) sin (1 + 𝑣 (𝜃, 𝑠)) 𝑑𝑠,

− 𝑟 ≤ 𝜃 ≤ 0,

𝜕

𝜕𝑡

𝑣 (0, 𝜉) = 𝜔 (𝜉) ,

Δ𝑣 (𝑡
𝑘
, 𝜉) = ∫

𝜋

0

𝜌
𝑘
(𝜉, 𝑦) 𝑑𝑦 ⋅ cos2 (𝑣 (𝑡

𝑘
, 𝜉)) , 1 ≤ 𝑘 ≤ 𝑝,

(59)
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where 𝑡 ∈ [0, 𝑇], 𝑟 > 0, 𝜉 ∈ [0, 𝜋], 0 < 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑝
< 𝑇,

𝜔 ∈ 𝑋 and 𝑣
𝑡
(𝜃, 𝜉) = 𝑣(𝑡 + 𝜃, 𝜉). 𝛾 : [−𝑟, 0] → R and 𝑐(𝜉, 𝑠),

𝜌
𝑘
(𝜉, 𝑧) ∈ 𝐿

2
([0, 𝜋] × [0, 𝜋],R) satisfy the following assump-

tions.

(1) The function 𝛾 : [−𝑟, 0] → R is a continuous func-
tion and ∫

0

−𝑟
|𝛾(𝜃)|𝑑𝜃 < ∞.

(2) The function 𝑐(𝜉, 𝑠), 𝜉, 𝑠 ∈ [0, 𝜋] is measur-
able and there exists a constant 𝑁

1
such that

(𝜋 ∫

𝜋

0
∫

𝜋

0
𝑐
2
(𝜉, 𝑠)𝑑𝑠𝑑𝜉)

1/2

≤ 𝑁
1
.

(3) For every 𝑘 = 1, 2, . . . , 𝑝, the function 𝜌
𝑘
(𝜉, 𝑧), 𝑧 ∈

[0, 𝜋], is measurable and there exists a constant 𝑁

such that

(∫

𝜋

0

(∫

𝜋

0

𝜌
𝑘
(𝜉, 𝑧)𝑑𝑧)

2

𝑑𝜉)

1/2

≤ 𝑁. (60)

To treat the above problem, we define

𝐷 (𝐴) = 𝐻
2
([0, 𝜋]) ∩ 𝐻

1

0
([0, 𝜋]) ,

𝐴𝑢 = 𝑢

.

(61)

𝐴 is the infinitesimal generator of a strongly continuous
cosine function {𝐶(𝑡)}

𝑡∈R on 𝑋. Moreover, 𝐴 has a discrete
spectrum, the eigenvalues are −𝑛

2
, 𝑛 ∈ N, with the corre-

sponding normalized eigenvectors 𝜔
𝑛
(𝑥) = √(2/𝜋) sin(𝑛𝑥);

the set {𝜔
𝑛
; 𝑛 ∈ N} is an orthonormal basis of 𝑋 and the

following properties hold.

(a) If 𝜔 ∈ 𝐷(𝐴), then 𝐴𝜔 = −∑
∞

𝑛=1
𝑛
2
⟨𝜔, 𝜔
𝑛
⟩𝜔
𝑛
.

(b) For each 𝜔 ∈ 𝑋, 𝐶(𝑡)𝜔 = ∑
∞

𝑛=1
cos(𝑛𝑡)⟨𝜔, 𝜔

𝑛
⟩𝜔
𝑛
and

𝑆(𝑡)𝜔 = ∑
∞

𝑛=1
(sin(𝑛𝑡)/𝑛)⟨𝜔, 𝜔

𝑛
⟩𝜔
𝑛
. Consequently,

‖𝐶(𝑡)‖ = ‖𝑆(𝑡)‖ ≤ 1 for 𝑡 ∈ R, and {𝑆(𝑡)} is compact
for every 𝑡 ∈ R.

For 𝜉 ∈ [0, 𝜋] and 𝜑 ∈ 𝐶([−𝑟, 0], 𝑋), we set

𝑥 (𝑡) (𝜉) = 𝑣 (𝑡, 𝜉) ,

𝜙 (𝜃) (𝜉) = 𝑣
0 (

𝜃, 𝜉) , 𝜃 ∈ [−𝑟, 0] ,

𝑔 (𝜑 (𝜃)) (𝜉) = ∫

𝜋

0

𝑐 (𝜉, 𝑠) sin (1 + 𝜑 (𝜃) (𝑠)) 𝑑𝑠,

𝑓 (𝑡, 𝜑, 𝑥 (𝑡)) (𝜉) = sin 



𝑥 (𝑡) (𝜉)






+ 𝑡
2
∫

0

−𝑟

𝛾 (𝜃) ⋅ cos(




𝜑 (𝜃) (𝜉)






𝑡

) 𝑑𝜃,

𝐼
𝑘
(𝑥 (𝑡
𝑘
)) (𝜉) = ∫

𝜋

0

𝜌
𝑘
(𝜉, 𝑦) 𝑑𝑦 ⋅ cos2 (𝑥 (𝑡

𝑘
) (𝜉)) .

(62)

Then the above equation (59) can be reformulated as the
abstract (1)–(4).

For 𝑡 ∈ [0, 𝑇], we can see





𝑓 (𝑡, 𝜑, 𝑥 (𝑡))





≤ ‖𝑥 (𝑡)‖ + 𝑡

2
∫

0

−𝑟





𝛾 (𝜃)





𝑑𝜃

≤ 𝜇 (𝑡) (1 + ‖𝑥 (𝑡)‖) ,

(63)

where 𝜇(𝑡) := max{1, 𝑡2 ∫0
−𝑟

|𝛾(𝜃)|𝑑𝜃}.
For any 𝑥

1
, 𝑥
2
∈ 𝑋, 𝜑, 𝜑 ∈ 𝐶([−𝑟, 0], 𝑋),





𝑓 (𝑡, 𝜑, 𝑥

1
(𝑡)) (𝜉) − 𝑓 (𝑡, 𝜑, 𝑥

2
(𝑡)) (𝜉)






≤




𝑥
1 (

𝑡) − 𝑥
2 (

𝑡)




+ 𝑡 ∫

0

−𝑟





𝛾 (𝜃)










𝜑 (𝜃) (𝜉) − 𝜑 (𝜃) (𝜉)





𝑑𝜃.

(64)

Therefore, for any bounded sets𝐷
1
⊂ 𝐶([−𝑟, 0], 𝑋),𝐷

2
⊂

𝑋, we have

𝜒 (𝑓 (𝑡, 𝐷
1
, 𝐷
2
)) ≤ 𝜒 (𝐷

2
) + 𝑡 ∫

0

−𝑟





𝛾 (𝜃)





𝜒 (𝐷
1 (

𝜃)) 𝑑𝜃

≤ 𝜒 (𝐷
2
) + 𝑡 sup
−𝑟≤𝜃≤0

𝜒 (𝐷
1
(𝜃)) ∫

0

−𝑟





𝛾 (𝜃)





𝑑𝜃

≤ 𝜂 (𝑡) ( sup
−𝑟≤𝜃≤0

𝜒 (𝐷
1
(𝜃)) + 𝜒 (𝐷

2
)) ,

a.e. 𝑡 ∈ [0, 𝑇] ,

(65)

where 𝜂(𝑡) := max{1, 𝑡 ∫0
−𝑟

|𝛾(𝜃)|𝑑𝜃}.
For 𝑥 ∈ 𝑋,





𝐼
𝑘
(𝑥)





≤ 𝑁 (1 + ‖𝑥‖) , 𝑘 = 1, 2, . . . , 𝑝. (66)

Suppose further that there exists a constant �̃�∗ ∈ (0, 1)

such that 8 ∫

𝑇

0
𝜂(𝑠)𝑑𝑠 < �̃�

∗ and 𝑝𝑁 < 1, then (59) has at least
a mild solution byTheorem 7.
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