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We characterize a broad class of semilinear dense range operators 𝐺
𝐻
: 𝑊 → 𝑍 given by the following formula, 𝐺

𝐻
𝑤 = 𝐺𝑤 +

𝐻(𝑤), 𝑤 ∈ 𝑊, where 𝑍,𝑊 are Hilbert spaces, 𝐺 ∈ 𝐿(𝑊,𝑍), and 𝐻 : 𝑊 → 𝑍 is a suitable nonlinear operator. First, we give a
necessary and sufficient condition for the linear operator 𝐺 to have dense range. Second, under some condition on the nonlinear
term𝐻, we prove the following statement: If Rang(𝐺) = 𝑍, then Rang(𝐺

𝐻
) = 𝑍 and for all 𝑧 ∈ 𝑍 there exists a sequence {𝑤

𝛼
∈ 𝑍 :

0 < 𝛼 ≤ 1} given by 𝑤
𝛼
= 𝐺

∗
(𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝑧 −𝐻(𝑤

𝛼
)), such that lim

𝛼→0
+ {𝐺𝑢

𝛼
+𝐻(𝑢

𝛼
)} = 𝑧. Finally, we apply this result to prove

the approximate controllability of the following semilinear evolution equation: 𝑧 = 𝐴𝑧 + 𝐵𝑢(𝑡) + 𝐹(𝑡, 𝑧, 𝑢(𝑡)), 𝑧 ∈ 𝑍, 𝑢 ∈ 𝑈, 𝑡 > 0,
where 𝑍, 𝑈 are Hilbert spaces, 𝐴 : 𝐷(𝐴) ⊂ 𝑍 → 𝑍 is the infinitesimal generator of strongly continuous compact semigroup
{𝑇(𝑡)}

𝑡≥0
in 𝑍, 𝐵 ∈ 𝐿(𝑈, 𝑍), the control function 𝑢 belongs to 𝐿2(0, 𝜏; 𝑈), and 𝐹 : [0, 𝜏] × 𝑍 × 𝑈 → 𝑍 is a suitable function. As a

particular case we consider the controlled semilinear heat equation.

1. Introduction

It is well known from functional analysis that continuous
linear surjective operators form an open set in the space of
such operators; that is to say, if a surjective linear continuous
operator is added to a linear continuous operator with a small
enough norm, the resulting operator is still surjective; more-
over, if a linear continuous surjective operator is perturbed by
a nonlinear Lipschitz operator with a Lipschitz constant small
enough, then the resulting operator is still surjective. This
result is not true anymore for continuous linear operators
that only have dense range; for instance, if a dense range
continuous linear operator is perturbed by another linear
operator with norm infinitely small, the resulting operator
may not have dense range; in other words, the property of
having dense range is not robust enough to be surjective.
However, in this paper we proved the following statement: if
a continuous linear operator with dense range is perturbed
by a compact nonlinear operator with bounded range, then
the resulting operator also has dense range. This result can
have an unlimited number of applications, not only in the
study of control theory for semilinear evolution equations,

but it can also be used to find the approximate solution of
functional equations in Hilbert spaces giving a formula for
the error of this approximation, which is very important
from the standpoint of numerical analysis. In addition, it is
well known that approximate controllability is much more
natural and common than exact controlabilidad, since most
of the mechanical processes are diffusive, which implies that
these systems can never be exactly controllable; and many
years have passed to present a general result on semilinear
operators with dense range to facilitate the study of the
approximate controlabilidad for a large class of semilinear
evolution equations whose dynamics are given by compact
semigroups. However, in this work, by way of illustration,
we only show how this result can be applied to study the
approximate controllability of control systems governed by
the semilinear heat equation.

Specifically, in this paper we characterize a broad class of
semilinear dense range operators.

𝐺
𝐻
: 𝑊 → 𝑍 given by the following formula:

𝐺
𝐻
𝑤 = 𝐺𝑤 + 𝐻 (𝑤) , 𝑤 ∈ 𝑊, (1)
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where 𝑍, 𝑊 are Hilbert spaces, 𝐺 : 𝑊 → 𝑍 is a bounded
linear operator (continuous and linear), and 𝐻 : 𝑊 → 𝑍

is a suitable nonlinear operator. First, we give a necessary
and sufficient condition for the linear operator 𝐺 to have
dense range (Rang(𝐺) = 𝑍). Second, we prove the following
statement: If Rang(𝐺) = 𝑍 and 𝐻 is smooth enough and
Rang(𝐻) is compact, then Rang(𝐺

𝐻
) = 𝑍 and for all 𝑧 ∈ 𝑍

there exists a sequence {𝑤
𝛼
∈ 𝑊 : 0 < 𝛼 ≤ 1} given by

𝑤
𝛼
= 𝐺

∗
(𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
)) , (2)

such that

lim
𝛼→0

+

{𝐺𝑤
𝛼
+ 𝐻 (𝑤

𝛼
)} = 𝑧, (3)

and the error of this approximation 𝐸
𝛼
𝑧 is given by

𝐸
𝛼
𝑧 = 𝛼(𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
)) . (4)

This result can be viewed as a generalization of the work done
in [1–8].

We apply these results to prove the approximate control-
lability of the following semilinear evolution equation:

𝑧

= 𝐴𝑧 + 𝐵𝑢 (𝑡) + 𝐹 (𝑡, 𝑧, 𝑢 (𝑡)) ,

𝑧 ∈ 𝑍, 𝑢 ∈ 𝑈, 𝑡 > 0,

(5)

where 𝑍, 𝑈 are Hilbert spaces, 𝐴 : 𝐷(𝐴) ⊂ 𝑍 → 𝑍 is
the infinitesimal generator of strongly continuous compact
semigroup {𝑇(𝑡)}

𝑡≥0
in 𝑍, 𝐵 ∈ 𝐿(𝑈, 𝑍), the control function

𝑢 belongs to 𝐿2(0, 𝜏; 𝑈), and 𝐹 : [0, 𝜏] × 𝑍 × 𝑈 → 𝑍 is a
smooth enough function.

Remark 1 (see [2–4]). The function 𝐹 is smooth enough if

(a) the mild solutions 𝑧(𝑢) = 𝑧
𝑢
of (5) are unique,

(b) the mild solutions 𝑧(𝑢) = 𝑧
𝑢
depends continuously

on 𝑢,
(c) and if 𝐹 is a Lipschitz function, then 𝑧(𝑢) = 𝑧

𝑢
, as a

function of 𝑢, is also a Lipchitz function.

As an application we consider the following example of
controlled semilinear heat equation.

Example 2 (the interior controllability of the 𝑛𝐷 heat equa-
tion). The semilinear heat equation was studied in [8] where
the authors prove the interior controllability of the following
control system:

𝑧
𝑡 (𝑡, 𝑥) = Δ𝑧 (𝑡, 𝑥) + 1𝜔𝑢 (𝑡, 𝑥)

+ 𝑓 (𝑡, 𝑧, 𝑢 (𝑡, 𝑥)) in (0, 𝜏] × Ω,

𝑧 = 0, on (0, 𝜏) × 𝜕Ω,

𝑧 (0, 𝑥) = 𝑧0 (𝑥) , 𝑥 ∈ Ω,

(6)

where Ω is a bounded domain in R𝑁
(𝑁 ≥ 1), 𝑧

0
∈

𝐿
2
(Ω), 𝜔 is an open nonempty subset of Ω, 1

𝜔
denotes the

characteristic function of the set 𝜔, the distributed control
𝑢 belongs to ∈ 𝐿2([0, 𝜏]; 𝐿2(Ω)), and the nonlinear function
𝑓 : [0, 𝜏] × N × N → N is smooth enough and there are
constants 𝑎, 𝑐 ∈ N, with 𝑐 ̸= − 1, such that

sup
(𝑡,𝑧,𝑢)∈𝑞

𝜏

𝑓 (𝑡, 𝑧, 𝑢) − 𝑎𝑧 − 𝑐𝑢
 < ∞, (7)

where 𝑞
𝜏
= [0, 𝜏] × N × N.

We note that the interior approximate controllability of
the linear heat equation,

𝑧
𝑡 (𝑡, 𝑥) = Δ𝑧 (𝑡, 𝑥) + 1𝜔𝑢 (𝑡, 𝑥) in (0, 𝜏] × Ω,

𝑧 = 0, on (0, 𝜏) × 𝜕Ω,

𝑧 (0, 𝑥) = 𝑧0 (𝑥) , 𝑥 ∈ Ω,

(8)

has been study by several authors, particularly by [9], and in
a general fashion in [10].

The approximate controllability of the heat equation
under nonlinear perturbation 𝑓(𝑧) independents of 𝑡 and 𝑢
variables,

𝑧
𝑡
= Δ𝑧 + 1

𝜔
𝑢 (𝑡, 𝑥) + 𝑓 (𝑧) in (0, 𝜏] × Ω,

𝑧 = 0, in (0, 𝜏) × 𝜕Ω,

𝑧 (0, 𝑥) = 𝑧0 (𝑥) , 𝑥 ∈ Ω,

(9)

has been studied by several authors, particularly in [11–13],
depending on conditions imposed to the nonlinear term
𝑓(𝑧). For instance, in [12, 13] the approximate controllability
of the system (9) is proved if 𝑓(𝑧) is sublinear at infinity; that
is,

𝑓 (𝑧)
 ≤ 𝑑 |𝑧| + 𝑒. (10)

Also, in the above reference, they mentioned that when 𝑓 is
superlinear at the infinity, the approximate controllability of
the system (9) fails.

Our result can be applied also to the semilinear Ornstein-
Uhlenbeck equation, the Laguerre equation, and the Jacobi
equation. Specifically, in [8], the following well-known exam-
ple of reaction diffusion equations is studied.

Example 3 (see [14, 15]).

(1) The interior controllability of the semilinear Orn-
stein-Uhlenbeck equation

𝑧
𝑡
=

𝑑

∑

𝑖=1

[
1

2

𝜕
2
𝑧

𝜕𝑥
2

𝑖

− 𝑥
𝑖

𝜕𝑧

𝜕𝑥
𝑖

] + 1
𝜔
𝑢 (𝑡, 𝑥)

+ 𝑓 (𝑡, 𝑧, 𝑢) 𝑡 > 0, 𝑥 ∈ N
𝑑
,

(11)

where 𝑢 ∈ 𝐿
2
(0, 𝜏; 𝐿

2
(N𝑑

, 𝜇)), 𝜇(𝑥) = (1/𝜋
𝑑/2
)∏

𝑑

𝑖=1

𝑒
−|𝑥
𝑖
|
2

𝑑𝑥 is the Gaussian measure inN𝑑, 𝜔 is an open
nonempty subset of N𝑑, and the nonlinear function
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𝑓 : [0, 𝜏] ×N ×N → N is smooth enough and there
are constants 𝑎, 𝑐 ∈ N, with 𝑐 ̸= − 1, such that

sup
(𝑡,𝑧,𝑢)∈𝑞

𝜏

𝑓 (𝑡, 𝑧, 𝑢) − 𝑎𝑧 − 𝑐𝑢
 < ∞, (12)

where 𝑞
𝜏
= [0, 𝜏] ×N ×N.

(2) The interior controllability of the semilinear Laguerre
equation

𝑧
𝑡
=

𝑑

∑

𝑖=1

[𝑥
𝑖

𝜕
2
𝑧

𝜕𝑥
2

𝑖

+ (𝛼
𝑖
+ 1 − 𝑥

𝑖
)
𝜕𝑧

𝜕𝑥
𝑖

] + 1
𝜔
𝑢 (𝑡, 𝑥)

+ 𝑓 (𝑡, 𝑧, 𝑢) , 𝑡 > 0, 𝑥 ∈ N
𝑑

+
,

(13)

where 𝑢 ∈ 𝐿2(0, 𝜏; 𝐿2(N𝑑

+
, 𝜇

𝛼
)), 𝜇

𝛼
(𝑥) = ∏

𝑑

𝑖=1
(𝑥

𝛼
𝑖

𝑖
𝑒
−𝑥
𝑖/

Γ(𝛼
𝑖
+ 1))𝑑𝑥 is the Gamma measure in N𝑑

+
, 𝜔 is

an open nonempty subset of N𝑑

+
, and nonlinear

function 𝑓 : [0, 𝜏] ×N ×N → N is smooth enough
and there are constant 𝑎, 𝑐 ∈ N, with 𝑐 ̸= −1, such that

sup
(𝑡,𝑧,𝑢)∈𝑞

𝜏

𝑓 (𝑡, 𝑧, 𝑢) − 𝑎𝑧 − 𝑐𝑢
 < ∞, (14)

where 𝑞
𝜏
= [0, 𝜏] ×N ×N.

(3) The interior controllability of the semilinear Jacobi
equation

𝑧
𝑡
=

𝑑

∑

𝑖=1

[(1 − 𝑥
2

𝑖
)
𝜕
2
𝑧

𝜕𝑥
2

𝑖

+ (𝛽
𝑖
− 𝛼

𝑖
− (𝛼

𝑖
+ 𝛽

𝑖
+ 2) 𝑥

𝑖
)
𝜕𝑧

𝜕𝑥
𝑖

]

+ 1
𝜔
𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑧, 𝑢) ,

(15)

where 𝑡 > 0, 𝑥 ∈ [−1, 1]
𝑑, 𝑢 ∈ 𝐿

2
(0, 𝜏; 𝐿

2
([−1, 1]

𝑑
,

𝜇
𝛼,𝛽
)), 𝜇

𝛼,𝛽
(𝑥) = ∏

𝑑

𝑖=1
(1−𝑥

𝑖
)
𝛼
𝑖(1+𝑥

𝑖
)
𝛽
𝑖𝑑𝑥 is the Jacobi

measure in [−1, 1]𝑑, 𝜔 is an open nonempty subset of
[−1, 1]

𝑑, and the nonlinear function 𝑓 : [0, 𝜏] × N ×

N → N is smooth enough and there are constants
𝑎, 𝑐 ∈ N, with 𝑐 ̸= − 1, such that

sup
(𝑡,𝑧,𝑢)∈𝑞

𝜏

𝑓 (𝑡, 𝑧, 𝑢) − 𝑎𝑧 − 𝑐𝑢
 < ∞, (16)

where 𝑞
𝜏
= [0, 𝜏] ×N ×N.

2. Dense Range Linear Operators

In this section we shall present a characterization of dense
range bounded linear operators. To this end, we denote by
𝐿(𝑊,𝑍) the space of linear and bounded operators mapping
𝑊 to 𝑍, endowed with the uniform convergence norm, and
we will use the following lemma from [16] in Hilbert space.

Lemma 4. Let 𝐺∗
∈ 𝐿(𝑍,𝑊) be the adjoint operator of 𝐺 ∈

𝐿(𝑊,𝑍). Then the following statements hold:

(i) Rang(𝐺) = 𝑍 ⇔ ∃𝛾 > 0 such that
𝐺

∗
𝑧
𝑊 ≥ 𝛾‖𝑧‖𝑍, 𝑧 ∈ 𝑍, (17)

(ii) Rang(𝐺) = 𝑍 ⇔ Ker(𝐺∗
) = {0}.

The following lemma follows from Lemma 4 (ii).

Lemma 5 (see [1, 7, 8, 16–22]). The following statements are
equivalent:

(a) Rang(𝐺) = 𝑍,
(b) Ker(𝐺∗

) = {0},
(c) ⟨𝐺𝐺∗

𝑧, 𝑧⟩ > 0, 𝑧 ̸= 0 in 𝑍,
(d) lim

𝛼→0
+𝛼(𝛼𝐼 + 𝐺𝐺

∗
)
−1
𝑧 = 0,

(e) for all 𝑧 ∈ 𝑍we have𝐺𝑤
𝛼
= 𝑧−𝛼(𝛼𝐼+𝐺𝐺

∗
)
−1
𝑧, where

𝑤
𝛼
= 𝐺

∗
(𝛼𝐼 + 𝐺𝐺

∗
)
−1
𝑧, 𝛼 ∈ (0, 1] . (18)

So, lim
𝛼→0

𝐺𝑤
𝛼

= 𝑧 and the error 𝐸
𝛼
𝑧 of this

approximation is given by the formula

𝐸
𝛼
𝑧 = 𝛼(𝛼𝐼 + 𝐺𝐺

∗
)
−1
𝑧, 𝛼 ∈ (0, 1] . (19)

Remark 6. Lemma 5 implies that the family of linear opera-
tors Γ

𝛼
: 𝑍 → 𝑊, defined for 0 < 𝛼 ≤ 1 by

Γ
𝛼
𝑧 = 𝐺

∗
(𝛼𝐼 + 𝐺𝐺

∗
)
−1
𝑧, (20)

is an approximate inverse for the right of the operator 𝐺, in
the sense that

lim
𝛼→0

𝐺Γ
𝛼
= 𝐼 (21)

in the strong topology.

Proposition 7. If the Rang(𝐺) = 𝑍, then

sup
𝛼>0


𝛼(𝛼𝐼 + 𝐺𝐺

∗
)
−1

≤ 1. (22)

Proof. If Rang(𝐺) = 𝑍, then from Lemma 4(ii) we have that

⟨𝐺𝐺
∗
𝑧, 𝑧⟩ > 0, 𝑧 ̸= 0. (23)

Therefore,

⟨(𝐺𝐺
∗
+ 𝛼𝐼) 𝑧, 𝑧⟩ ≥ 𝛼‖𝑧‖

2
, 𝑧 ̸= 0, 𝛼 ∈ (0, 1] . (24)

Then, using the Cauchy Schwartz inequality, we obtain
(𝐺𝐺

∗
+ 𝛼𝐼) 𝑧

 ≥ 𝛼 ‖𝑧‖ , 𝑧 ̸= 0, 𝛼 ∈ (0, 1] , (25)

which is equivalents to

𝛼

(𝐺𝐺

∗
+ 𝛼𝐼)

−1
𝑧

≤ ‖𝑧‖ , 𝑧 ̸= 0, 𝛼 ∈ (0, 1] . (26)

Consequently,

sup
𝛼>0


𝛼(𝛼𝐼 + 𝐺𝐺

∗
)
−1

≤ 1. (27)
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Proposition 8. If for some 𝛽 ∈ (0, 1] one has that

𝛽(𝛽𝐼 + 𝐺𝐺

∗
)
−1

< 1, (28)

then

Rang (𝐺) = 𝑍. (29)

Proof. Suppose that ‖𝛽(𝛽𝐼 + 𝐺𝐺∗
)
−1
‖ < 1. Then, from the

following identity:

𝐺𝐺
∗
= 𝛽𝐼 + 𝐺𝐺

∗
− 𝛽𝐼, (30)

we get that

𝐺𝐺
∗
(𝛽𝐼 + 𝐺𝐺

∗
)
−1
= 𝐼 − 𝛽(𝛽𝐼 + 𝐺𝐺

∗
)
−1
. (31)

Since ‖𝛽(𝛽𝐼 + 𝐺𝐺
∗
)
−1
‖ < 1, we obtain that 𝐺𝐺∗

(𝛽𝐼 +

𝐺𝐺
∗
)
−1 is a homeomorphism. Consequently, Rang(𝐺𝐺∗

(𝛽𝐼+

𝐺𝐺
∗
)
−1
) = 𝑍, which implies that Rang(𝐺) = 𝑍.

Corollary 9. If Rang(𝐺) = 𝑍 and Rang(𝐺) ̸= 𝑍, then

𝛼(𝛼𝐼 + 𝐺𝐺

∗
)
−1

= 1, ∀𝛼 ∈ (0, 1] . (32)

Moreover,

lim
𝛼→0

+


(𝛼𝐼 + 𝐺𝐺

∗
)
−1

= ∞. (33)

3. Dense Range Semilinear Operators

In this section we shall look for conditions under which the
semilinear operator

𝐺
𝐻
: 𝑊 → 𝑍, given by

𝐺
𝐻
𝑤 = 𝐺𝑤 + 𝐻 (𝑤) , 𝑤 ∈ 𝑊, (34)

has dense range.

Theorem 10. If Rang(𝐺) = 𝑍,𝐻 is continuous, and Rang(𝐻)
is compact, then Rang(𝐺

𝐻
) = 𝑍, and for all 𝑧 ∈ 𝑍 there exists

a sequence {𝑤
𝛼
∈ 𝑍 : 0 < 𝛼 ≤ 1} given by

𝑤
𝛼
= 𝐺

∗
(𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
)) , (35)

such that

lim
𝛼→0

+

{𝐺𝑤
𝛼
+ 𝐻 (𝑤

𝛼
)} = 𝑧, (36)

and the error of this approximation 𝐸
𝛼
𝑧 is given by

𝐸
𝛼
𝑧 = 𝛼(𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
)) . (37)

Proof. For each 𝑧 ∈ 𝑍 fixed we shall consider the following
family of nonlinear operators𝐾

𝛼
: 𝑊 → 𝑊 given by

𝐾
𝛼 (𝑤) = Γ𝛼 (𝑧 − 𝐻 (𝑤))

= 𝐺
∗
(𝛼𝐼 + 𝐺𝐺

∗
)
−1

(𝑧 − 𝐻 (𝑤)) , (0 < 𝛼 ≤ 1) .

(38)

First, we shall prove that for all 𝛼 ∈ (0, 1] the operator𝐾
𝛼
has

a fix point 𝑤
𝛼
. In fact, since 𝐻 is a continuous function, the

set Rang(𝐻) is compact, and 𝐺 is a linear bounded operator,
then there exists a constant𝑀 > 0 such that

𝐾𝛼 (𝑤)
 ≤

Γ𝛼
 (‖𝑧‖ +𝑀) , ∀𝑤 ∈ 𝑊. (39)

Therefore, the operator𝐾
𝛼
maps the ball 𝐵

𝑟
(0) ⊂ 𝑊 of center

zero and radio 𝑟 ≥ ‖Γ
𝛼
‖(‖𝑧‖ +𝑀) into itself. Hence, applying

the Schauder fixed point theorem, we get that the operator𝐾
𝛼

has a fixed point 𝑤
𝛼
∈ 𝐵

𝑟
(0) ⊂ 𝑊.

Since Rang(𝐻) is compact, without loss of generality, we
can assume that the sequence 𝐻(𝑤

𝛼
) converges to 𝑦 ∈ 𝑍 as

𝛼 → 0. So, if we consider

𝑤
𝛼
= Γ

𝛼
(𝑧 − 𝐻 (𝑤

𝛼
)) = 𝐺

∗
(𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
)) ,

(40)

then,

𝐺𝑤
𝛼
= 𝐺Γ

𝛼
(𝑧 − 𝐻 (𝑤

𝛼
)) = 𝐺𝐺

∗
(𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
))

= (𝛼𝐼 + 𝐺𝐺
∗
− 𝛼𝐼) (𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
))

= 𝑧 − 𝐻 (𝑤
𝛼
) − 𝛼(𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
)) .

(41)

Hence,

𝐺𝑤
𝛼
+ 𝐻 (𝑤

𝛼
) = 𝑧 − 𝛼(𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
)) . (42)

To conclude the proof of this theorem, it is enough to prove
that

lim
𝛼→0

{−𝛼(𝛼𝐼 + 𝐺𝐺
∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
))} = 0. (43)

From Lemma 5(d) we get that

lim
𝛼→0

{−𝛼(𝛼𝐼 + 𝐺𝐺
∗
)
−1
(𝑧 − 𝐻 (𝑤

𝛼
))}

= − lim
𝛼→0

{−𝛼(𝛼𝐼 + 𝐺𝐺
∗
)
−1
𝐻(𝑤

𝛼
)}

= lim
𝛼→0

𝛼(𝛼𝐼 + 𝐺𝐺
∗
)
−1
(𝐻 (𝑤

𝛼
) − 𝑦 + 𝑦)

= lim
𝛼→0

− 𝛼(𝛼𝐼 + 𝐺𝐺
∗
)
−1
(𝐻 (𝑤

𝛼
) − 𝑦) .

(44)

On the other hand, from Proposition 7 we get that


𝛼(𝛼𝐼 + 𝐺𝐺

∗
)
−1
(𝐻 (𝑤

𝛼
) − 𝑦)


≤
(𝐻 (𝑤

𝛼
) − 𝑦)

 .
(45)

Therefore, since𝐻(𝑤
𝛼
) converges to 𝑦 as 𝛼 → 0, we get that

lim
𝛼→0

{−𝛼(𝛼𝐼 + 𝐺𝐺
∗
)
−1
(𝐻 (𝑤

𝛼
) − 𝑦)} = 0. (46)

Consequently,

lim
𝛼→0

𝐺
𝐻
(𝑤

𝛼
) = 𝑧. (47)
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4. Controllability of Nonlinear
Evolution Equations

In this section we shall apply the foregoing results to char-
acterize the approximate controllability of the semilinear
evolution equation

𝑧

= 𝐴𝑧 + 𝐵𝑢 (𝑡) + 𝐹 (𝑡, 𝑧, 𝑢 (𝑡)) ,

𝑧 ∈ 𝑍, 𝑢 ∈ 𝑈, 𝑡 > 0,

(48)

where 𝑍, 𝑈 are Hilbert spaces, 𝐴 : 𝐷(𝐴) ⊂ 𝑍 → 𝑍 is
the infinitesimal generator of strongly continuous compact
semigroup {𝑇(𝑡)}

𝑡≥0
in 𝑍, 𝐵 ∈ 𝐿(𝑈, 𝑍), the control function

𝑢 belongs to 𝐿2(0, 𝜏; 𝑈), and 𝐹 : [0, 𝜏] × 𝑍 × 𝑈 → 𝑍 is
smooth enough and there are constants 𝑎, 𝑐 ∈ N such that

sup
(𝑡,𝑧,𝑢)∈𝑍

𝜏

𝐹(𝑡, 𝑧, 𝑢) − 𝑎𝑧 − 𝑐𝐵1𝑢
𝑍 < ∞, (49)

where 𝑍
𝜏
= [0, 𝜏] × 𝑍 × 𝑈 and 𝐵

1
: 𝑈 → 𝑍 is a linear and

bounded operator.
We observe that the controllability of semilinear systems

has been studied by several authors, particularly interesting
is the work done by [18–26].

Definition 11 (exact controllability). The system (48) is said to
be exactly controllable on [0, 𝜏] if for every 𝑧

0
, 𝑧

1
∈ 𝑍 there

exists 𝑢 ∈ 𝐿2(0, 𝜏; 𝑈) such that the mild solution 𝑧(𝑡) of (48)
corresponding to 𝑢 verifies

𝑧 (0) = 𝑧0, 𝑧 (𝜏) = 𝑧1, (50)

as shown in Figure 1.

Definition 12 (approximate controllability). The system (48)
is said to be approximately controllable on [0, 𝜏] if for every
𝑧
0
, 𝑧

1
∈ 𝑍, 𝜀 > 0 there exists 𝑢 ∈ 𝐿

2
(0, 𝜏; 𝑈) such that the

solution 𝑧(𝑡) of (48) corresponding to 𝑢 verifies

𝑧 (0) = 𝑧0,
𝑧 (𝜏) − 𝑧1

 < 𝜀, (51)

as shown in Figure 2.

Definition 13 (controllability to trajectories). The system (48)
is said to be controllable to trajectories on [0, 𝜏] if for every
𝑧
0
, �̂�

0
∈ 𝑍 and �̂� ∈ 𝐿

2
(0, 𝜏; 𝑈) there exists 𝑢 ∈ 𝐿

2
(0, 𝜏; 𝑈)

such that the mild solution 𝑧(𝑡) of (48) corresponding to 𝑢
verifies:

𝑧 (𝜏, 𝑧
0
, 𝑢) = 𝑧 (𝜏, �̂�

0
, �̂�) , (52)

as shown in Figure 3.

Definition 14 (null controllability). The system (48) is said
to be null controllable on [0, 𝜏] if for every 𝑧

0
∈ 𝑍 there

exists 𝑢 ∈ 𝐿2(0, 𝜏; 𝑈) such that the mild solution 𝑧(𝑡) of (48)
corresponding to 𝑢 verifies:

𝑧 (0) = 𝑧0, 𝑧 (𝜏) = 0, (53)

as shown in Figure 4.

𝑧(𝜏) = 𝑧1

𝑧(0) = 𝑧0

Figure 1

𝑧(𝜏)

𝑧
1

𝜖

𝑧(0) = 𝑧0

Figure 2

�̂�(𝜏, �̂�0, �̂�) = 𝑧(𝜏, 𝑧0, 𝑢)

�̂�0

𝑧0

Figure 3

Remark 15. It is clear that exact controllability of the system
(48) implies approximate controllability, null controllability,
and controllability to trajectories of the system. But, it is well
known [27] that due to the diffusion effect or the compactness
of the semigroup generated by −Δ, the heat equation can
never be exactly controllable. We observe also that the linear
case controllability to trajectories and null controllability are
equivalent. Nevertheless, the approximate controllability and
the null controllability are in general independent.Therefore,
in this paper we will concentrated only on the study of the
approximate controllability of the system (48).

Now, we shall describe the strategy of this work:
First, we characterize the approximate controllability of

the auxiliary linear system

𝑧

= 𝐴𝑧 + 𝐵𝑢 (𝑡) + 𝑎𝑧 + 𝑐𝐵1𝑢 (𝑡) , 𝑡 ∈ [0, 𝜏] . (54)

After that, we write the system (48) in the form

𝑧

= 𝐴𝑧 + 𝐵𝑢 (𝑡) + 𝑎𝑧 + 𝑐𝐵1𝑢 (𝑡) + 𝐺 (𝑡, 𝑧, 𝑢) , 𝑡 ∈ [0, 𝜏] ,

(55)

where 𝐺(𝑡, 𝑧, 𝑢) = 𝐹(𝑡, 𝑧, 𝑢) − 𝑎𝑧 − 𝑐𝐵
1
𝑢 is a smooth enough

and bounded function.
Finally, the approximate controllability of the system (55)

follows from the controllability of (54), the compactness of
the semigroup generated by the operator 𝐴, the uniform
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𝑧(𝜏) = 0

𝑧0

Figure 4

boundedness of the nonlinear term𝐺, and applying Schauder
fixed point theorem.

Remark 16. If 𝑐 ̸= 1 and 𝐵 = 𝐵
1
, then the system 𝑧


= 𝐴𝑧 +

𝐵𝑢(𝑡) is approximately controllable if and only if the system
(55) is approximately controllable.

4.1. The Linear System. First, we shall characterize the
approximate controllability of the linear system (54), and to
this end, for all 𝑧

0
∈ 𝑍 and 𝑢 ∈ 𝐿

2
(0, 𝜏; 𝑈) the initial value

problem

𝑧

= 𝐴𝑧 + 𝐵𝑢 (𝑡) + 𝑎𝑧 + 𝑐𝐵1𝑢 (𝑡) , 𝑡 > 0

𝑧 (0) = 𝑧0,

(56)

admits only one mild solution given by

𝑧 (𝑡) = 𝑒
𝑎𝑡
𝑇 (𝑡) 𝑧0

+ ∫

𝑡

0

𝑒
𝑎(𝑡−𝑠)

𝑇 (𝑡 − 𝑠) (𝐵 + 𝑐𝐵1) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝜏] .

(57)

Definition 17. For the system (54) we define the follow-
ing concept: the controllability map (for 𝜏 > 0) 𝐺

𝑎
:

𝐿
2
(0, 𝜏; 𝑈) → 𝑍 is given by

𝐺
𝑎
𝑢 = ∫

𝜏

0

𝑒
𝑎𝑠
𝑇 (𝑠) (𝐵 + 𝑐𝐵1) 𝑢 (𝑠) 𝑑𝑠, (58)

whose adjoint operator 𝐺∗

𝑎
: 𝑍 → 𝐿

2
(0, 𝜏; 𝑍) is

(𝐺
∗

𝑎
𝑧) (𝑠) = (𝐵

∗
+ 𝑐𝐵

∗

1
) 𝑒

𝑎𝑠
𝑇
∗
(𝑠) 𝑧, ∀𝑠 ∈ [0, 𝜏] , ∀𝑧 ∈ 𝑍.

(59)

The following lemma follows from Lemma 5.

Lemma 18. Equation (54) is approximately controllable on
[0, 𝜏] if and only if one of the following statements holds:

(a) Rang(𝐺
𝑎
) = 𝑍,

(b) Ker(𝐺∗

𝑎
) = {0},

(c) ⟨𝐺
𝑎
𝐺
∗

𝑎
𝑧, 𝑧⟩ > 0, 𝑧 ̸= 0 in 𝑍,

(d) lim
𝛼→0

+𝛼(𝛼𝐼 + 𝐺
𝑎
𝐺
∗

𝑎
)
−1
𝑧 = 0,

(e) (𝐵∗ + 𝑐𝐵∗
1
)𝑒
𝑎𝑡
𝑇
∗
(𝑡)𝑧 = 0, ∀𝑡 ∈ [0, 𝜏],⇒ 𝑧 = 0,

(f) for all 𝑧 ∈ 𝑍 one has 𝐺
𝑎
𝑢
𝛼
= 𝑧 − 𝛼(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
𝑧,

where

𝑢
𝛼
= 𝐺

∗

𝑎
(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
𝑧, 𝛼 ∈ (0, 1] . (60)

So, lim
𝛼→0

𝐺
𝑎
𝑢
𝛼

= 𝑧 and the error 𝐸
𝛼
𝑧 of this

approximation is given by the formula

𝐸
𝛼
𝑧 = 𝛼(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
𝑧, 𝛼 ∈ (0, 1] . (61)

Remark 19. Lemma 5 implies that the family of linear opera-
tors Γ

𝛼
: 𝑍 → 𝐿

2
(0, 𝜏; 𝑈), defined for 0 < 𝛼 ≤ 1 by

Γ
𝛼
𝑧 = (𝐵

∗
+ 𝑐𝐵

∗

1
) 𝑒

𝑎(𝜏−⋅)
𝑇
∗
(𝜏 − ⋅) (𝛼𝐼 + 𝐺𝑎

𝐺
∗

𝑎
)
−1
𝑧

= 𝐺
∗

𝑎
(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
𝑧,

(62)

is an approximate inverse for the right of the operator 𝐺
𝑎
, in

the sense that

lim
𝛼→0

𝐺
𝑎
Γ
𝛼
= 𝐼 (63)

in the strong topology.

4.2. The Semilinear System. Now,we are ready to characterize
the approximate controllability of the semilinear system (48),
which is equivalent to proof of the approximate controllability
of the system (55). To this end, we notice that, for all 𝑧

0
∈ 𝑍

and 𝑢 ∈ 𝐿2(0, 𝜏; 𝑈) the initial value problem

𝑧

= 𝐴𝑧 + 𝐵𝑢 + 𝑎𝑧 + 𝑐𝐵

1
𝑢 + 𝐺 (𝑡, 𝑧, 𝑢) , 𝑧 ∈ 𝑍, 𝑡 ≥ 0,

𝑧 (0) = 𝑧0

(64)

admits only one mild solution given by

𝑧
𝑢 (𝑡) = 𝑒

𝑎𝑡
𝑇 (𝑡) 𝑧0 + ∫

𝑡

0

𝑒
𝑎(𝑡−𝑠)

𝑇 (𝑡 − 𝑠) (𝐵 + 𝑐𝐵1) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝑎(𝑡−𝑠)

𝑇 (𝑡−𝑠) 𝐺 (𝑠, 𝑧𝑢 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠, 𝑡∈[0, 𝜏] .

(65)

Definition 20. For the system (55) we define the following
concept: the nonlinear controllability map (for 𝜏 > 0) 𝐺

𝑔
:

𝐿
2
(0, 𝜏; 𝑈) → 𝑍 is given by

𝐺
𝑔
𝑢 = ∫

𝜏

0

𝑒
𝑎(𝜏−𝑠)

𝑇 ((𝜏 − 𝑠)) (𝐵 + 𝑐𝐵1) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝜏

0

𝑒
𝑎(𝜏−𝑠)

𝑇 ((𝜏 − 𝑠)) 𝐺 (𝑠, 𝑧𝑢 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠

= 𝐺
𝑎 (𝑢) + 𝐻 (𝑢) ,

(66)

where 𝐻 : 𝐿
2
(0, 𝜏; 𝑈) → 𝑍 is the nonlinear operator given

by

𝐻(𝑢) = ∫

𝜏

0

𝑒
𝑎(𝜏−𝑠)

𝑇 ((𝜏 − 𝑠)) 𝐺 (𝑠, 𝑧𝑢 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠,

𝑢 ∈ 𝐿
2
(0, 𝜏; 𝑈) .

(67)

The following lemma is trivial.
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Lemma 21. Equation (55) is approximately controllable on
[0, 𝜏] if and only if Rang(𝐺

𝑔
) = 𝑍.

Definition 22. The following equation will be called the
controllability equations associated to the nonlinear equation
(55)

𝑢
𝛼
= Γ

𝛼
(𝑧 − 𝐻 (𝑢

𝛼
))

= 𝐺
∗

𝑎
(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
(𝑧 − 𝐻 (𝑢

𝛼
)) , (0 < 𝛼 ≤ 1) .

(68)

Now, we are ready to present a result on the approximate
controllability of the semilinear evolutions equation (48).

Theorem 23. If the linear system (54) is approximately con-
trollable, then system (55) is approximately controllable on
[0, 𝜏]. Moreover, a sequence of controls steering the system (55)
from initial state 𝑧

0
to an 𝜖 neighborhood of the final state 𝑧

1
at

time 𝜏 > 0 is given by the formula

𝑢
𝛼 (𝑡) = (𝐵

∗
+ 𝑐𝐵

∗

1
) 𝑒

𝑎(𝜏−𝑡)
𝑇
∗
(𝜏 − 𝑡)

× (𝛼𝐼 + 𝐺
𝑎
𝐺
∗

𝑎
)
−1
(𝑧

1
− 𝑒

𝑎𝜏
𝑇 (𝜏) 𝑧0 − 𝐻 (𝑢

𝛼
)) ,

(69)

and the error of this approximation 𝐸
𝛼
is given by

𝐸
𝛼
= 𝛼(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
(𝑧

1
− 𝑒

𝑎𝜏
𝑇 (𝜏) 𝑧0 − 𝐻 (𝑢

𝛼
)) . (70)

Proof. From Theorem 10, it is enough to prove that the
function 𝐻 given by (103) is continuous and Rang(𝐻) is
a compact set, which follows from the compactness of the
semigroup {𝑇(𝑡)}

𝑡≥0
, the smoothness and the boundedness of

the nonlinear term 𝐺 (see [8, 27]).
So, putting 𝑧 = 𝑧

1
− 𝑒

𝑎𝜏
𝑇(𝜏)𝑧

0
and using (65), we obtain

the desired result

𝑧
1
= lim

𝛼→0
+

{𝑇 (𝜏) 𝑧0 + ∫

𝜏

0

𝑇 (𝜏 − 𝑠) 𝐵𝑢𝛼 (𝑠) 𝑑𝑠

+∫

𝜏

0

𝑇 (𝜏 − 𝑠) 𝐹 (𝑠, 𝑧𝑢
𝛼

(𝑠) , 𝑢𝛼 (𝑠)) 𝑑𝑠} .

(71)

5. Application to the Nonlinear Heat Equation

As an application of this result we shall prove the controlla-
bility of the semilinear 𝑛𝐷 heat equation (6). To this end, we
shall use the following strategy:

first, we prove that the auxiliary linear system

𝑧
𝑡 (𝑡, 𝑥) = Δ𝑧 (𝑡, 𝑥) + 1𝜔𝑢 (𝑡, 𝑥)

+ 𝑎𝑧 + 𝑐𝑢 (𝑡, 𝑥) in (0, 𝜏] × Ω,

𝑧 = 0, on (0, 𝜏) × 𝜕Ω,

𝑧 (0, 𝑥) = 𝑧0 (𝑥) , 𝑥 ∈ Ω,

(72)

is approximately controllable.

After that, we write the system(6) as follows:

𝑧
𝑡 (𝑡, 𝑥) = Δ𝑧 (𝑡, 𝑥) + 1𝜔𝑢 (𝑡, 𝑥) + 𝑎𝑧

+ 𝑐𝑢 (𝑡, 𝑥) + 𝑔 (𝑡, 𝑧, 𝑢) in (0, 𝜏] × Ω,

𝑧 = 0, on (0, 𝜏) × 𝜕Ω,

𝑧 (0, 𝑥) = 𝑧0 (𝑥) , 𝑥 ∈ Ω,

(73)

where 𝑔(𝑡, 𝑧, 𝑢) = 𝑓(𝑡, 𝑧, 𝑢)−𝑎𝑧−𝑐𝑢 is a smooth and bounded
function.

Then to prove the controllability of the linear equation
(72), we use the classical Unique Continuation Principle for
Elliptic Equations (see [28]) and the following results.

Lemma 24 (see Lemma 3.14 from [16, page 62]). Let {𝛼
𝑗
}
𝑗≥1

and {𝛽
𝑖,𝑗
: 𝑖 = 1, 2, . . . , 𝑚}

𝑗≥1
be two sequences of real numbers

such that: 𝛼
1
> 𝛼

2
> 𝛼

3
⋅ ⋅ ⋅. Then

∞

∑

𝑗=1

𝑒
𝛼
𝑗
𝑡
𝛽
𝑖,𝑗
= 0, ∀𝑡 ∈ [0, 𝑡

1
] , 𝑖 = 1, 2, . . . , 𝑚, (74)

iff

𝛽
𝑖,𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . ,∞. (75)

Finally, the approximate controllability of the system (73)
follows from the controllability of (72), the compactness of
the semigroup generated by the Laplacean operator Δ, and
the uniform boundedness of the nonlinear term 𝑔 by applying
Theorem 23.

5.1. Abstract Formulation of the Problem. In this part we
choose a Hilbert space where system (6) can be written as
an abstract differential equation; to this end, we consider the
following notations.

Let us consider the Hilbert space 𝑍 = 𝐿
2
(Ω) and 0 =

𝜆
1
< 𝜆

2
< ⋅ ⋅ ⋅ < 𝜆

𝑗
→ ∞ the eigenvalues of −Δ, each

one with finite multiplicity 𝛾
𝑗
equal to the dimension of the

corresponding eigenspace. Then we have the following well-
known properties.

(i) There exists a complete orthonormal set {𝜙
𝑗,𝑘
} of

eigenvectors of 𝐴 = −Δ.
(ii) For all 𝑧 ∈ 𝐷(𝐴) we have

𝐴𝑧 =

∞

∑

𝑗=1

𝜆
𝑗

𝛾
𝑗

∑

𝑘=1

⟨𝜉, 𝜙
𝑗,𝑘
⟩𝜙

𝑗,𝑘
=

∞

∑

𝑗=1

𝜆
𝑗
𝐸
𝑗
𝑧, (76)

where ⟨⋅, ⋅⟩ is the inner product in 𝑍 and

𝐸
𝑛
𝑧 =

𝛾
𝑗

∑

𝑘=1

⟨𝑧, 𝜙
𝑗,𝑘
⟩𝜙

𝑗,𝑘
. (77)

So, {𝐸
𝑗
} is a family of complete orthogonal projections

in 𝑍 and 𝑧 = ∑∞

𝑗=1
𝐸
𝑗
𝑧, 𝑧 ∈ 𝐻.
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(iii) −𝐴 generates a compact analytic semigroup {𝑇(𝑡)}

given by

𝑇 (𝑡) 𝑧 =

∞

∑

𝑗=1

𝑒
−𝜆
𝑗
𝑡
𝐸
𝑗
𝑧. (78)

Consequently, systems (6), (72), and (73) can be written,
respectively, as an abstract differential equations in 𝑍:

𝑧

= −𝐴𝑧 + 𝐵

𝜔
𝑢 + 𝑓

𝑒
(𝑡, 𝑧, 𝑢) , 𝑧 ∈ 𝑍, 𝑡 ≥ 0, (79)

𝑧

= −𝐴𝑧 + 𝐵

𝜔
𝑢 + 𝑎𝑧 + 𝑐𝑢, 𝑧 ∈ 𝑍, 𝑡 ≥ 0, (80)

𝑧

= −𝐴𝑧 + 𝐵

𝜔
𝑢 + 𝑎𝑧 + 𝑐𝑢 + 𝑔

𝑒
(𝑡, 𝑧, 𝑢) , 𝑧 ∈ 𝑍, 𝑡 ≥ 0,

(81)

where 𝑢 ∈ 𝐿2([0, 𝜏]; 𝑈), 𝑈 = 𝑍, 𝐵
𝜔
: 𝑈 → 𝑍, 𝐵

𝜔
𝑢 = 1

𝜔
𝑢 is a

bounded linear operator, 𝑓𝑒 : [0, 𝜏] × 𝑍 × 𝑈 → 𝑍 is defined
by 𝑓𝑒(𝑡, 𝑧, 𝑢)(𝑥) = 𝑓(𝑡, 𝑧(𝑥), 𝑢(𝑥)), ∀𝑥 ∈ Ω, and 𝑔𝑒(𝑡, 𝑧, 𝑢) =
𝑓
𝑒
(𝑡, 𝑧, 𝑢) − 𝑎𝑧 − 𝑐𝑢.
On the other hand, the hypothesis (7) implies that

sup
(𝑡,𝑧,𝑢)∈𝑍

𝜏

𝑓
𝑒
(𝑡, 𝑧, 𝑢) − 𝑎𝑧 − 𝑐𝑢

𝑍 < ∞, (82)

where𝑍
𝜏
= [0, 𝜏]×𝑍×𝑈. Therefore, 𝑔𝑒 : [0, 𝜏]×𝑍×𝑈 → 𝑍

is bounded and smooth enough.

5.2. The Linear Heat Equation. In this part we shall prove the
interior controllability of the linear system (80). To this end,
we notice that for all 𝑧

0
∈ 𝑍 and 𝑢 ∈ 𝐿

2
(0, 𝜏; 𝑈) the initial

value problem,

𝑧

= −𝐴𝑧 + 𝐵

𝜔
𝑢 (𝑡) + 𝑎𝑧 (𝑡) + 𝑐𝑢 (𝑡) , 𝑧 ∈ 𝑍,

𝑧 (0) = 𝑧0,

(83)

admits only one mild solution given by

𝑧 (𝑡) = 𝑒
𝑎𝑡
𝑇 (𝑡) 𝑧0

+ ∫

𝑡

0

𝑒
𝑎(𝑡−𝑠)

𝑇 (𝑡 − 𝑠) (𝐵𝜔 + 𝑐𝐼) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝜏] .

(84)

Definition 25. For the system (80) we define the follow-
ing concept: the controllability map (for 𝜏 > 0) 𝐺

𝑎
:

𝐿
2
(0, 𝜏; 𝑈) → 𝑍 is given by

𝐺
𝑎
𝑢 = ∫

𝜏

0

𝑒
𝑎𝑠
𝑇 (𝑠) (𝐵𝜔 + 𝑐𝐼) 𝑢 (𝑠) 𝑑𝑠, (85)

whose adjoint operator 𝐺∗

𝑎
: 𝑍 → 𝐿

2
(0, 𝜏; 𝑍) is given by

(𝐺
∗

𝑎
𝑧) (𝑠) = (𝐵

∗

𝜔
+ 𝑐𝐼) 𝑒

𝑎𝑠
𝑇
∗
(𝑠) 𝑧, ∀𝑠 ∈ [0, 𝜏] , ∀𝑧 ∈ 𝑍.

(86)

As a consequence of Lemma 18 and (101) one can prove the
following result.

Lemma 26. Equation (80) is approximately controllable on
[0, 𝜏] if and only if one of the following statements holds:

(a) Rang(𝐺
𝑎
) = 𝑍,

(b) Ker(𝐺∗

𝑎
) = {0},

(c) ⟨𝐺
𝑎
𝐺
∗

𝑎
𝑧, 𝑧⟩ > 0, 𝑧 ̸= 0 in 𝑍,

(d) lim
𝛼→0

+𝛼(𝛼𝐼 + 𝐺
𝑎
𝐺
∗

𝑎
)
−1
𝑧 = 0,

(e) (𝐵∗
𝜔
+ 𝑎𝐼)𝑒

𝑎𝑡
𝑇
∗
(𝑡)𝑧 = 0, ∀𝑡 ∈ [0, 𝜏],⇒ 𝑧 = 0,

(f) for all 𝑧 ∈ 𝑍 one has 𝐺𝑢
𝛼
= 𝑧 − 𝛼(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
𝑧,

where

𝑢
𝛼
= 𝐺

∗

𝑎
(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
𝑧, 𝛼 ∈ (0, 1] . (87)

So, lim
𝛼→0

𝐺
𝑎
𝑢
𝛼

= 𝑧 and the error 𝐸
𝛼
𝑧 of this

approximation is given by

𝐸
𝛼
𝑧 = 𝛼(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
𝑧, 𝛼 ∈ (0, 1] . (88)

Theorem 27. The system (80) is approximately controllable on
[0, 𝜏]. Moreover, a sequence of controls steering the system (80)
from initial state 𝑧

0
to an 𝜖 neighborhood of the final state 𝑧

1
at

time 𝜏 > 0 is given by

𝑢
𝛼 (𝑡) = (𝐵

∗

𝜔
+ 𝑐𝐼) 𝑒

𝑎𝑡
𝑇
∗
(𝜏 − 𝑡)

× (𝛼𝐼 + 𝐺
𝑎
𝐺
∗

𝑎
)
−1
(𝑧

1
− 𝑇 (𝜏) 𝑧0) ,

(89)

and the error of this approximation 𝐸
𝛼
is given by

𝐸
𝛼
= 𝛼(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
(𝑧

1
− 𝑇 (𝜏) 𝑧0) . (90)

Proof. It is enough to show that the restriction 𝐺
𝑎,𝜔

=

𝐺
𝑎
|
𝐿
2
(0,𝜏;𝐿

2
(𝜔))

of 𝐺
𝑎
to the space 𝐿2(0, 𝜏; 𝐿2(𝜔)) has range

dense; that is, Rang(𝐺
𝑎,𝜔
) = 𝑍 or Ker(𝐺∗

𝑎,𝜔
) = {0}.

Consequently,𝐺
𝑎,𝜔

: 𝐿
2
(0, 𝜏; 𝐿

2
(𝜔)) → 𝑍 takes the following

form:

𝐺
𝑎,𝜔
𝑢 = ∫

𝜏

0

𝑒
𝑎𝑠
𝑇 (𝑠) (1 + 𝑐𝐼) 𝐵𝜔𝑢 (𝑠) 𝑑𝑠, (91)

whose adjoint operator 𝐺∗

𝑎,𝜔
: 𝑍 → 𝐿

2
(0, 𝜏; 𝐿

2
(𝜔)) is given

by

(𝐺
𝑎,𝜔
𝑧) (𝑠) = (1 + 𝑐) 𝐵

∗

𝜔
𝑒
𝑎𝑠
𝑇
∗
(𝑠) 𝑧, ∀𝑠 ∈ [0, 𝜏] , ∀𝑧 ∈ 𝑍.

(92)

To this end, we observe that 𝐵
𝜔
= 𝐵

∗

𝜔
and 𝑇∗(𝑡) = 𝑇(𝑡).

Suppose that

(1 + 𝑐) 𝐵
∗

𝜔
𝑒
𝑎𝑡
𝑇
∗
(𝑡) 𝑧 = 0, ∀𝑡 ∈ [0, 𝜏] . (93)

Then, since 1 + 𝑐 ̸= 0, this is equivalent to

𝐵
∗

𝜔
𝑇
∗
(𝑡) 𝑧 = 0, ∀𝑡 ∈ [0, 𝜏] . (94)
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On the other hand,

𝐵
∗

𝜔
𝑇
∗
(𝑡) 𝑧 =

∞

∑

𝑗=1

𝑒
−𝜆
𝑗
𝑡
𝐵
∗

𝜔
𝐸
𝑗
𝑧 =

∞

∑

𝑗=1

𝑒
−𝜆
𝑗
𝑡

𝛾
𝑗

∑

𝑘=1

⟨𝑧, 𝜙
𝑗,𝑘
⟩ 1

𝜔
𝜙
𝑗,𝑘
= 0,

⇐⇒

∞

∑

𝑗=1

𝑒
−𝜆
𝑗
𝑡

𝛾
𝑗

∑

𝑘=1

⟨𝑧, 𝜙
𝑗,𝑘
⟩ 1

𝜔
𝜙
𝑗,𝑘 (𝑥) = 0, ∀𝑥 ∈ 𝜔.

(95)

Hence, from Lemma 24, we obtain that

𝐸
𝑗
𝑧 (𝑥) =

𝛾
𝑗

∑

𝑘=1

⟨𝑧, 𝜙
𝑗,𝑘
⟩𝜙

𝑗,𝑘 (𝑥) = 0, ∀𝑥 ∈ 𝜔, 𝑗 = 1, 2, 3, . . . .

(96)

Now, putting 𝑓(𝑥) = ∑𝛾
𝑗

𝑘=1
⟨𝑧, 𝜙

𝑗,𝑘
⟩𝜙

𝑗,𝑘
(𝑥), ∀𝑥 ∈ Ω, we obtain

that

(Δ + 𝜆
𝑗
𝐼) 𝑓 ≡ 0 inΩ,

𝑓 (𝑥) = 0 ∀𝑥 ∈ 𝜔.

(97)

Then, from the classical Unique Continuation Principle for
Elliptic Equations (see [28]), it follows that𝑓(𝑥) = 0, ∀𝑥 ∈ Ω.
So,

𝛾
𝑗

∑

𝑘=1

⟨𝑧, 𝜙
𝑗,𝑘
⟩𝜙

𝑗,𝑘 (𝑥) = 0, ∀𝑥 ∈ Ω. (98)

On the other hand, {𝜙
𝑗,𝑘
} is a complete orthonormal set in

𝑍 = 𝐿
2
(Ω), which implies that ⟨𝑧, 𝜙

𝑗,𝑘
⟩ = 0. Hence, 𝑧 = 0. So,

Rang(𝐺
𝑎,𝜔
) = 𝑍, and consequently Rang(𝐺

𝑎
) = 𝑍. Hence,

the system (80) is approximately controllable on [0, 𝜏], and
the remainder of the proof follows from Lemma 26.

5.3. The Semilinear Heat Equation. In this part we shall
prove the interior controllability of the semilinear 𝑛𝐷 heat
equation given by (6), which is equivalent to the proof of the
approximate controllability of the system (81). To this end, for
all 𝑧

0
∈ 𝑍 and 𝑢 ∈ 𝐿2(0, 𝜏; 𝑈) the initial value problem,

𝑧

= −𝐴𝑧 + 𝐵

𝜔
𝑢 + 𝑎𝑧 + 𝑐𝑢 + 𝑔

𝑒
(𝑡, 𝑧, 𝑢) , 𝑧 ∈ 𝑍, 𝑡 ≥ 0

𝑧 (0) = 𝑧0,

(99)

admits only one mild solution given by

𝑧
𝑢 (𝑡) = 𝑒

𝑎𝑡
𝑇 (𝑡) 𝑧0 + ∫

𝑡

0

𝑒
𝑎(𝑡−𝑠)

𝑇 (𝑡 − 𝑠) (𝐵𝜔 + 𝑐𝐼) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝑎(𝑡−𝑠)

𝑇 (𝑡 − 𝑠) 𝑔
𝑒
(𝑠, 𝑧

𝑢 (𝑠) , (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝜏] .

(100)

Definition 28. For the system (81) we define the following
concept: the nonlinear controllability map (for 𝜏 > 0) 𝐺

𝑔
:

𝐿
2
(0, 𝜏; 𝑈) → 𝑍 is given by

𝐺
𝑔
𝑢 = ∫

𝜏

0

𝑒
𝑎(𝜏−𝑠)

𝑇 (𝜏 − 𝑠) (𝐵𝜔 + 𝑐𝐼) 𝑢 (𝑠) 𝑑𝑠 (101)

+ ∫

𝜏

0

𝑒
𝑎(𝜏−𝑠)

𝑇 (𝜏 − 𝑠) 𝑔
𝑒
(𝑠, 𝑧

𝑢 (𝑠) , (𝑠)) 𝑑𝑠

= 𝐺
𝑎 (𝑢) + 𝐻 (𝑢) ,

(102)

where 𝐻 : 𝐿
2
(0, 𝜏; 𝑈) → 𝑍 is the nonlinear operator given

by

𝐻(𝑢) = ∫

𝜏

0

𝑒
𝑎(𝜏−𝑠)

𝑇 (𝜏 − 𝑠) 𝑔
𝑒
(𝑠, 𝑧

𝑢 (𝑠) , (𝑠)) 𝑑𝑠,

𝑢 ∈ 𝐿
2
(0, 𝜏; 𝑈) .

(103)

The following lemma is trivial.

Lemma 29. Equation (81) is approximately controllable on
[0, 𝜏] if and only if Rang(𝐺

𝑔
) = 𝑍.

Definition 30. The following equation will be called the
controllability equations associated to the nonlinear equation
(81):

𝑢
𝛼
= Γ

𝛼
(𝑧 − 𝐻 (𝑢

𝛼
)) = 𝐺

∗

𝑎
(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
(𝑧 − 𝐻 (𝑢

𝛼
)) ,

(0 < 𝛼 ≤ 1) .

(104)

Now, we are ready to present a result on the interior
approximate controllability of the semilinear 𝑛𝐷 heat equa-
tion (6).

Theorem 31. The system (81) is approximately controllable on
[0, 𝜏]. Moreover, a sequence of controls steering the system (81)
from initial state 𝑧

0
to an 𝜖 neighborhood of the final state 𝑧

1
at

time 𝜏 > 0 is given by

𝑢
𝛼 (𝑡) = (𝐵

∗

𝜔
+ 𝑐𝐼) 𝑒

𝑎(𝜏−𝑡)
𝑇
∗
(𝜏 − 𝑡) (𝛼𝐼 + 𝐺𝑎

𝐺
∗

𝑎
)
−1

× (𝑧
1
− 𝑇 (𝜏) 𝑧0 − 𝐻 (𝑢

𝛼
)) ,

(105)

and the error of this approximation 𝐸
𝛼
is given by

𝐸
𝛼
= 𝛼(𝛼𝐼 + 𝐺

𝑎
𝐺
∗

𝑎
)
−1
(𝑧

1
− 𝑇 (𝜏) 𝑧0 − 𝐻 (𝑢

𝛼
)) . (106)

6. Conclusion

We believe that these results can be applied to a broad class
of reaction diffusion equation like the following well-known
systems of partial differential equations.
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Example 32. The thermoelastic plate equation

𝑤
𝑡𝑡
+ Δ

2
𝑤 + 𝛼Δ𝑤

= 1
𝜔
𝑢
1 (𝑡, 𝑥) + 𝑓1 (𝑡, 𝑤, 𝑤𝑡

, 𝑢) , in (0, 𝜏) × Ω,

𝜃
𝑡
− 𝛽Δ𝜃 − 𝛼Δ𝑤

𝑡

= 1
𝜔
𝑢
2 (𝑡, 𝑥) + 𝑓2 (𝑡, 𝑤, 𝑤𝑡

, 𝑢) , in (0, 𝜏) × Ω,

𝜃 = 𝑤 = Δ𝑤 = 0, on (0, 𝜏) × 𝜕Ω,

(107)

where 𝛼 ̸= 0, 𝛽 > 0, Ω is a sufficiently regular bounded
domain inN3,𝜔 is an open nonempty subset ofΩ, 1

𝜔
denotes

the characteristic function of the set𝜔, the distributed control
𝑢
𝑖
∈ 𝐿

2
([0, 𝜏]; 𝐿

2
(Ω)), 𝑖 = 1, 2, 𝑤, 𝜃 denote the vertical

deflection and the temperature of the plate, respectively, and
the nonlinear terms 𝑓

𝑖
(𝑡, 𝑧, 𝑢), 𝑖 = 1, 2, are smooth enough

and there are constants 𝑎
𝑖
, 𝑐
𝑖
∈ N, with 𝑐

𝑖
̸= − 1, 𝑖 = 1, 2, such

that
sup

(𝑡,𝑤,V,𝑢)∈𝑞
𝜏

𝑓𝑖 (𝑡, 𝑤, V, 𝑢) − 𝑎𝑖𝑤 − 𝑐𝑖𝑢
 < ∞, 𝑖 = 1, 2, (108)

where 𝑞
𝜏
= [0, 𝜏] × N × N × N.

Example 33. The equation modelling the damped flexible
beam:

𝜕
2
𝑧

𝜕2𝑡
= −

𝜕
4
𝑧

𝜕4𝑥
+ 2𝛼

𝜕
3
𝑧

𝜕𝑡𝜕2𝑥
+ 1

𝜔
𝑢 (𝑡, 𝑥)

+ 𝑓 (𝑡, 𝑧, 𝑧
𝑡
, 𝑢) 𝑡 ≥ 0, 0 ≤ 𝑥 ≤ 1,

𝑧 (𝑡, 1) = 𝑧 (𝑡, 0) =
𝜕
2
𝑧

𝜕2𝑥
(0, 𝑡)

=
𝜕
2
𝑧

𝜕2𝑥
(1, 𝑡) = 0,

𝑧 (0, 𝑥) = 𝜙0 (𝑥) ,
𝜕𝑧

𝜕𝑡
(0, 𝑥) = 𝜓0 (𝑥) , 0 ≤ 𝑥 ≤ 1,

(109)

where 𝛼 > 0, 𝑢 ∈ 𝐿2([0, 𝑟]; 𝐿2[0, 1]), 𝜔 is an open nonempty
subset of [0, 1], 𝜙

0
, 𝜓

0
∈ 𝐿

2
[0, 1], and nonlinear function 𝑓 :

[0, 𝜏] × N × N → N is smooth enough and there are
constant 𝑎, 𝑐 ∈ N, with 𝑐 ̸= − 1, such that

sup
(𝑡,𝑧,V,𝑢)∈𝑞

𝜏

𝑓 (𝑡, 𝑧, V, 𝑢) − 𝑎𝑧 − 𝑐𝑢
 < ∞, (110)

where 𝑞
𝜏
= [0, 𝜏] × N × N × N.

Example 34. The strongly damped wave equation with
Dirichlet boundary conditions:

𝜕
2
𝑤

𝜕2𝑡
+ 𝜂(−Δ)

1/2 𝜕𝑤

𝜕𝑡
+ 𝛾 (−Δ)𝑤

= 1
𝜔
𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑤, 𝑤𝑡

, 𝑢) , 𝑡 ≥ 0, 𝑥 ∈ Ω,

𝑤 (𝑡, 𝑥) = 0, 𝑡 ≥ 0, 𝑥 ∈ 𝜕Ω,

𝑤 (0, 𝑥) = 𝜙0 (𝑥) ,
𝜕𝑧

𝜕𝑡
(0, 𝑥) = 𝜓0 (𝑥) , 𝑥 ∈ Ω,

(111)

whereΩ is a sufficiently smooth bounded domain inN𝑁, 𝑢 ∈
𝐿
2
([0, 𝑟]; 𝐿

2
(Ω)),𝜔 is an open nonempty subset ofΩ, 𝜙

0
, 𝜓

0
∈

𝐿
2
(Ω), and nonlinear function𝑓 : [0, 𝜏]× N × N → N is

smooth enough and there are constants 𝑎, 𝑐 ∈ N, with 𝑐 ̸= −1,
such that

sup
(𝑡,𝑤,V,𝑢)∈𝑞

𝜏

𝑓 (𝑡, 𝑤, V, 𝑢) − 𝑎𝑤 − 𝑐𝑢
 < ∞, (112)

where 𝑞
𝜏
= [0, 𝜏] × N × N × N.
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