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We make use of the properties of the Sumudu transform to solve nonlinear fractional partial differential equations describing
heat-like equation with variable coefficients. The method, namely, homotopy perturbation Sumudu transform method, is the
combination of the Sumudu transform and the HPM using He’s polynomials. This method is very powerful, and professional
techniques for solving different kinds of linear and nonlinear fractional differential equations arising in different fields of science
and engineering.

1. Introduction

In the literature one can find a wide class of methods dealing
with the problem of approximate solutions to problems
described by nonlinear fractional differential equations, for
instance, asymptotic methods and perturbation methods
[1]. The perturbation methods have some limitations; for
instance, the approximate solution engages series of small
parameters which causes difficulty since most nonlinear
problems have no small parameters at all [1]. Even though a
suitable choice of small parameters occasionally lead to ideal
solution, in most cases unsuitable choices leads to serious
effects in the solutions [1]. Therefore, an analytical method
which does not require a small parameter in the equation
modeling of the phenomenon is welcome [2–4]. To deal
with the pitfall presented by these perturbation methods for
solving nonlinear equations, a literature review in some new
asymptotic methods for the search for the solitary solutions
of nonlinear differential equations, nonlinear differential-
difference equations, and nonlinear fractional differential
equations is presented in [5]. The homotopy perturbation
method (HPM) was first initiated by He [6]. The HPM was

also studied by many authors to present approximate and
exact solution of linear and nonlinear equations arising in
various scientific and technological fields [7–13]. The Ado-
mian decomposition method (ADM) [14–19] and variational
iterationmethod (VIM) [2–4] have also been applied to study
the various physical problems.The homotopy decomposition
method (HDM)was recently proposed by [20, 21] to solve the
groundwater flow equation and the modified fractional KDV
equation [20, 21]. The homotopy decomposition method is
actually the combination of the perturbation method and
Adomian decompositionmethod. Singh et al. [22] havemade
used of studying the solutions of linear and nonlinear partial
differential equations by using the homotopy perturbation
Sumudu transformmethod (HPSTM).TheHPSTM is a com-
bination of Sumudu transform, HPM, and He’s polynomials.

2. Sumudu Transform

The Sumudu transform is an integral transform similar to the
Laplace transform, introduced in the early 1990s byWatugala
[23] to solve differential equations and control engineering
problems.



2 Abstract and Applied Analysis

First we will summon up the following useful definitions
and theorems for this integral transform operator. Note that
these theorems and definitions will be used in the rest of the
paper.

2.1. Definitions and Theorems

Definition 1. The Sumudu transform of a function 𝑓(𝑡),
defined for all real numbers 𝑡 ≥ 0, is the function 𝐹

𝑠
(𝑢),

defined by

𝑆 (𝑓 (𝑡)) = 𝐹
𝑠
(𝑢) = ∫

∞

0

1

𝑢
exp [−

𝑡

𝑢
] 𝑓 (𝑡) 𝑑𝑡. (1)

Definition 2. The double Sumudu transform of a function
𝑓(𝑥, 𝑡), defined for all real numbers (𝑥 ≥ 0, 𝑡 ≥ 0), is defined
by

𝐹 (𝑢, V) = 𝑆
2

[𝑓 (𝑥, 𝑡) , (𝑢, V)]

=
1

V𝑢
∬
∞

0

exp [− (
𝑡

V
+

𝑥

𝑢
)] 𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡.

(2)

In the same line of ideas, the double Sumudu transform of
second partial derivative with respect to 𝑥 is of form [24]

𝑆
2

[
𝜕2𝑓 (𝑥, 𝑡)

𝜕𝑥2
; (𝑢, V)]

=
1

𝑢2
𝐹 (𝑢, V) −

1

𝑢2
𝐹 (0, V) −

1

𝑢

𝜕𝐹 (0, V)

𝜕𝑥
.

(3)

Similarly, the double Sumudu transform of second partial
derivative with respect to 𝑡 is of form [24]

𝑆
2

[
𝜕2𝑓 (𝑥, 𝑡)

𝜕𝑡2
; (𝑢, V)]

=
1

V2
𝐹 (𝑢, V) −

1

V2
𝐹 (𝑢, 0) −

1

𝑢

𝜕𝐹 (𝑢, 0)

𝜕𝑡
.

(4)

Theorem 3. Let 𝐺(𝑢) be the Sumudu transform of 𝑓(𝑡) such
that

(i) 𝐺(1/𝑠)/𝑠 is a meromorphic function, with singularities
having Re[𝑠] ≤ 𝛾 and

(ii) there exist a circular region Γwith radius𝑅 and positive
constants 𝑀 and 𝐾with |𝐺(1/𝑠)/𝑠| < 𝑀𝑅−𝐾; then the
function 𝑓(𝑡) is given by

𝑆−1 (𝐺 (𝑠)) =
1

2𝜋𝑖
∫
𝛾+𝑖∞

𝛾−𝑖∞

exp [𝑠𝑡] 𝐺 (
1

𝑠
)

𝑑𝑠

𝑠

= ∑ residual [exp [𝑠𝑡]
𝐺 (1/𝑠)

𝑠
] .

(5)

For the proof see [23].

2.2. Properties of Sumudu Transform [25–28]

(i) The transform of a Heaviside unit step function is
a Heaviside unit step function in the transformed
domain [26, 27].

(ii) The transform of a Heaviside unit ramp function is
a Heaviside unit ramp function in the transformed
domain [26, 27].

(iii) The transform of a monomial 𝑡𝑛 is the scaled mono-
mial 𝑆(𝑡𝑛) = 𝑛!𝑢𝑛 [26, 27].

(iv) If 𝑓(𝑡) is a monotonically increasing function, so is
𝐹(𝑢), and the converse is true for decreasing functions
[26, 27].

(v) The Sumudu transform can be defined for functions
which are discontinuous at the origin. In that case the
two branches of the function should be transformed
separately. If 𝑓(𝑡) is 𝐶𝑛 continuous at the origin, so is
the transformation 𝐹(𝑢) [26, 27].

(vi) The limit of 𝑓(𝑡) as 𝑡 tends to zero is equal to the limit
of 𝐹(𝑢) as 𝑢 tends to zero provided both limits exist
[26, 27].

(vii) The limit of 𝑓(𝑡) as 𝑡 tends to infinity is equal to the
limit of𝐹(𝑢) as 𝑢 tends to infinity provided both limits
exist [26, 27].

(viii) Scaling of the function by a factor 𝑐 > 0 to form the
function 𝑓(𝑐𝑡) gives a transform 𝐹(𝑐𝑢) which is the
result of scaling by the same factor [26, 27].

2.3. Basic Definition of Fractional Calculus

Definition 4. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space ∁

𝜇
, 𝜇 ∈ R if there exists a real number 𝑝 > 𝜇, such that

𝑓(𝑥) = 𝑥𝑝ℎ(𝑥), where ℎ(𝑥) ∈ 𝐶[0, ∞), and it is said to be in
space 𝐶𝑚

𝜇
if 𝑓(𝑚) ∈ 𝐶

𝜇
, 𝑚 ∈ N.

Definition 5. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0 of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is defined

as

𝐽𝛼𝑓 (𝑥) =
1

Γ (𝛼)
∫
𝑥

0

(𝑥 − 𝑡)
𝛼−1𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0, 𝑥 > 0,

𝐽0𝑓 (𝑥) = 𝑓 (𝑥) .

(6)

Properties of the operator can be found in [30–33] one
mentions only the following.

For 𝑓 ∈ 𝐶
𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, and 𝛾 > −1

𝐽𝛼𝐽𝛽𝑓 (𝑥) = 𝐽𝛼+𝛽𝑓 (𝑥) ,

𝐽𝛼𝐽𝛽𝑓 (𝑥) = 𝐽𝛽𝐽𝛼𝑓 (𝑥) ,

𝐽𝛼𝑥
𝛾

=
Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥𝛼+𝛾.

(7)
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Lemma 6. If𝑚−1 < 𝛼 ≤ 𝑚,𝑚 ∈ N and𝑓 ∈ 𝐶𝑚
𝜇
, and 𝜇 ≥ −1,

then
𝐷𝛼𝐽𝛼𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽𝛼𝐷𝛼
0
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑
𝑘=0

𝑓(𝑘) (0+)
𝑥𝑘

𝑘!
, 𝑥 > 0.

(8)

Definition 7 (partial derivatives of fractional order). Assume
now that 𝑓(x) is a function of 𝑛 variables 𝑥

𝑖
𝑖 = 1, . . . , 𝑛 also

of class 𝐶 on 𝐷 ∈ R
𝑛

𝑎𝜕𝛼x𝑓 =
1

Γ (𝑚 − 𝛼)
∫
𝑥𝑖

𝑎

(𝑥
𝑖
− 𝑡)
𝑚−𝛼−1

𝜕𝑚
𝑥𝑖

𝑓 (𝑥
𝑗
)
𝑥𝑗=𝑡

𝑑𝑡, (9)

where 𝜕𝑚
𝑥𝑖

is the usual partial derivative of integer order 𝑚.

Definition 8. TheSumudu transform of the Caputo fractional
derivative is defined as follows [28]:

𝑆 [𝐷𝛼
𝑡
𝑓 (𝑡)] = 𝑢−𝛼𝑆 [𝑓 (𝑡)] −

𝑚−1

∑
𝑘=0

𝑢−𝛼+𝑘𝑓(𝑘) (0+)

(𝑚 − 1 < 𝛼 ≤ 𝑚) .

(10)

3. Solution by HPSTM

3.1. Basic Idea of HPSTM. We illustrate the basic idea of this
method, by considering a general fractional nonlinear non-
homogeneous partial differential equation with the initial
condition of the form of general form

𝐷𝛼
𝑡
𝑈 (𝑥, 𝑡) = 𝐿 (𝑈 (𝑥, 𝑡)) + 𝑁 (𝑈 (𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) , 𝛼 > 0

(11)

subject to the initial condition

𝐷𝑘
0
𝑈 (𝑥, 0) = 𝑔

𝑘
, (𝑘 = 0, . . . , 𝑛 − 1) ,

𝐷𝑛
0
𝑈 (𝑥, 0) = 0, 𝑛 = [𝛼] ,

(12)

where, 𝐷𝛼
𝑡
denotes without loss of generality the Caputo

fraction derivative operator, 𝑓 is a known function, 𝑁 is
the general nonlinear fractional differential operator, and 𝐿
represents a linear fractional differential operator.

Applying the Sumudu Transform on both sides of (11), we
obtain

𝑆 [𝐷𝛼
𝑡
𝑈 (𝑥, 𝑡]) = 𝑆 [𝐿 (𝑈 (𝑥, 𝑡))]

+ 𝑆 [𝑁 (𝑈 (𝑥, 𝑡))] + 𝑆 [𝑓 (𝑥, 𝑡)] .
(13)

Using the property of the Sumudu transform, we have

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑢𝛼𝑆 [𝐿 (𝑈 (𝑥, 𝑡))] + 𝑢𝛼𝑆 [𝑁 (𝑈 (𝑥, 𝑡))]

+ 𝑢𝛼𝑆 [𝑓 (𝑥, 𝑡)] + 𝑔 (𝑥, 𝑡) .
(14)

Now applying the Sumudu inverse on both sides of (24) we
obtain
𝑈 (𝑥, 𝑡)

= 𝑆−1 [𝑢𝛼𝑆 [𝐿 (𝑈 (𝑥, 𝑡))] + 𝑢𝛼𝑆 [𝑁 (𝑈 (𝑥, 𝑡))]] + 𝐺 (𝑥, 𝑡) ,

(15)

where 𝐺(𝑥, 𝑡) represents the term arising from the known
function 𝑓(𝑥, 𝑡) and the initial conditions [1].

Now we apply the HPM

𝑈 (𝑥, 𝑡) =
∞

∑
𝑛=0

𝑝𝑛𝑈
𝑛

(𝑥, 𝑡) . (16)

The nonlinear term can be decomposed into

𝑁𝑈 (𝑥, 𝑡) =
∞

∑
𝑛=0

𝑝𝑛H
𝑛

(𝑈) (17)

using the He’s polynomialH
𝑛
(𝑈) [17, 18] given as

H
𝑛

(𝑈
0
, . . . , 𝑈

𝑛
) =

1

𝑛!

𝜕𝑛

𝜕𝑝𝑛
[

[

𝑁 (
∞

∑
𝑗=0

𝑝𝑗𝑈
𝑗
(𝑥, 𝑡))]

]

,

𝑛 = 0, 1, 2, . . . .

(18)

Substituting (16) and (17)

∞

∑
𝑛=0

𝑝𝑛𝑈
𝑛

(𝑥, 𝑡)

= 𝐺 (𝑥, 𝑡) + 𝑝 [𝑆−1 [𝑢𝛼𝑆 [𝐿 (
∞

∑
𝑛=0

𝑝𝑛𝑈
𝑛

(𝑥, 𝑡))]

+𝑢𝛼𝑆 [𝑁 (
∞

∑
𝑛=0

𝑝𝑛𝑈
𝑛

(𝑥, 𝑡))]]]

(19)

which is the coupling of the Sumudu transform and the HPM
using He’s polynomials [1]. Comparing the coefficients of like
powers of 𝑝, the following approximations are obtained:

𝑝0 : 𝑈
0

(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) ,

𝑝1 : 𝑈
1

(𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 [𝐿 (𝑈
0

(𝑥, 𝑡)) + 𝐻
0

(𝑈)]] ,

𝑝2 : 𝑈
2

(𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 [𝐿 (𝑈
1

(𝑥, 𝑡)) + 𝐻
1

(𝑈)]] ,

𝑝3 : 𝑈
3

(𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 [𝐿 (𝑈
2

(𝑥, 𝑡)) + 𝐻
2

(𝑈)]] ,

𝑝𝑛 : 𝑈
𝑛

(𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 [𝐿 (𝑈
𝑛−1

(𝑥, 𝑡)) + 𝐻
𝑛−1

(𝑈)]] .

(20)
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Finally, we approximate the analytical solution 𝑈(𝑥, 𝑡) by
truncated series [1]

𝑈 (𝑥, 𝑡) = lim
𝑁→∞

𝑁

∑
𝑛=0

𝑈
𝑛

(𝑥, 𝑡) . (21)

The above series solutions generally converge very rapidly [1,
34–37].

4. Application

In this section we apply this method for solving fractional
differential equation in form of (11) together with (12).

Example 9. Consider the following three-dimensional frac-
tional heat-like equation:

𝜕𝛼
𝑡
𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑥4𝑦4𝑧4 +

1

36
(𝑥2𝑢
𝑥𝑥

+ 𝑦2𝑢
𝑦𝑦

+ 𝑧2𝑢
𝑧𝑧

) ,

0 < 𝑥, 𝑦, 𝑧 < 1, 0 < 𝛼 ≤ 1

(22)

subject to the initial condition

𝑢 (𝑥, 𝑦, 𝑧, 0) = 0. (23)

Following carefully the steps involved in the HDM, we arrive
at the following equation:

∞

∑
𝑛=0

𝑝𝑛𝑢
𝑛

(𝑥, 𝑦, 𝑧, 𝑡)

=
𝑝

Γ (𝛼)
𝑆−1

× (𝑢−𝛼 × [ ∫
𝑡

0

(𝑡 − 𝜏)
𝛼−1

× (𝑥4𝑦4𝑧4 +
1

36

× (𝑥2(
∞

∑
𝑛=0

𝑝𝑛𝑢
𝑛

(𝑥, 𝑦, 𝑧, 𝑡))
𝑥𝑥

+ 𝑦2(
∞

∑
𝑛=0

𝑝𝑛𝑢
𝑛

(𝑥, 𝑦, 𝑧, 𝑡))
𝑦𝑦

+ 𝑧2(
∞

∑
𝑛=0

𝑝𝑛𝑢
𝑛

(𝑥, 𝑦, 𝑧, 𝑡))
𝑧𝑧

)) 𝑑𝜏]) .

(24)

Now comparing the terms of the same power of 𝑝 yields

𝑝0 : 𝑢
0

(𝑥, 𝑦, 𝑧, 𝑡) ,

𝑝1 : 𝑢
1

(𝑥, 𝑦, 𝑧, 𝑡) =
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝜏)
𝛼−1𝑥4𝑦4𝑧4 𝑑𝜏,

...

𝑝𝑛 : 𝑢
𝑛

(𝑥, 𝑦, 𝑧, 𝑡)

=
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝜏)
𝛼−1

× (
1

36
(𝑥2(𝑢

𝑛−1
)
𝑥𝑥

+ 𝑦2(𝑢
𝑛−1

)
𝑦𝑦

+ 𝑧2(𝑢
𝑛−1

)
𝑧𝑧

) ) 𝑑𝜏,

𝑢
𝑛

(𝑥, 𝑦, 𝑧, 0) = 0, 𝑛 ≥ 2.

(25)

Thus the following components are obtained as results of the
above integrals:

𝑢
0

(𝑥, 𝑦, 𝑧, 𝑡) = 0,

𝑢
1

(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡𝛼𝑥4𝑦4𝑧4

Γ (𝛼 + 1)
,

𝑢
2

(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡2𝛼𝑥4𝑦4𝑧4

Γ (2𝛼 + 1)
,

𝑢
3

(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡3𝛼𝑥4𝑦4𝑧4

Γ (3𝛼 + 1)
,

...

𝑢
𝑛

(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡𝑛𝛼𝑥4𝑦4𝑧4

Γ (𝑛𝛼 + 1)
.

(26)

Therefore the approximate solution of equation for the
first 𝑛 is given as

𝑢
𝑁

(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁

∑
𝑛=1

𝑡𝑛𝛼𝑥4𝑦4𝑧4

Γ (𝑛𝛼 + 1)
. (27)

Now when 𝑁 → ∞, we obtained the following solution:

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) =
∞

∑
𝑛=0

𝑡𝑛𝛼𝑥4𝑦4𝑧4

Γ (𝑛𝛼 + 1)
− 𝑥4𝑦4𝑧4

= 𝑥4𝑦4𝑧4 (𝐸
𝛼

(𝑡𝛼) − 1) ,

(28)
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where 𝐸
𝛼
(𝑡𝛼) is the generalized Mittag-Leffler function. Note

that in the case 𝛼 = 1

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑥4𝑦4𝑧4 (exp (𝑡) − 1) . (29)

This is the exact solution for this case.

Example 10. We consider the three-dimensional fractional
wave-like equation

𝜕𝛼
𝑡
𝑢 (𝑥, 𝑦, 𝑧, 𝑡)

= 𝑥2+𝑦2 + 𝑧2 +
1

2
(𝑥2𝑢
𝑥𝑥

+ 𝑦2𝑢
𝑦𝑦

+ 𝑧2𝑢
𝑧𝑧

) ,

0 < 𝑥, 𝑦, 𝑧 < 1, 1 < 𝛼 ≤ 2

(30)

subject to the initial condition

𝑢 (𝑥, 𝑦, 𝑧, 0) = 0, 𝑢
𝑡
(𝑥, 𝑦, 𝑧, 0) = 𝑥2+𝑦2 − 𝑧2. (31)

Following carefully the steps involved in the HPSTM, we
arrive at the following series solutions:

𝑢
0

(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥2+𝑦2 − 𝑧2) 𝑡,

𝑢
1

(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡𝛼

Γ (1 + 𝛼)
(𝑥2+𝑦2 − 𝑧2) ,

𝑢
2

(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡2𝛼

Γ (1 + 2𝛼)
(𝑥2+𝑦2 + 𝑧2) ,

𝑢
3

(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡3𝛼

Γ (1 + 3𝛼)
(𝑥2+𝑦2 − 𝑧2) ,

...

𝑢
𝑛

(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡𝑛𝛼

Γ (1 + 𝑛𝛼)
(𝑥2+𝑦2 + (−1)

𝑛𝑧2) .

(32)

Therefore the approximate solution of equation for the first 𝑛
is given as

𝑢
𝑁

(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁

∑
𝑛=1

𝑡𝑛𝛼

Γ (𝑛𝛼 + 1)
(𝑥2+𝑦2 + (−1)

𝑛𝑧2) . (33)

Now when 𝑁 → ∞, we obtained the following solution:

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) =
∞

∑
𝑛=1

𝑡𝑛𝛼

Γ (𝑛𝛼 + 1)
(𝑥2+𝑦2 + (−1)

𝑛𝑧2) . (34)

In the case of 𝛼 = 2 we obtain

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = (𝑥2+𝑦2) exp (𝑡)

+ 𝑧2 exp (−𝑡) − (𝑥2+𝑦2 + 𝑧2) .
(35)

This is the exact solution for this case.

Example 11. We consider the one-dimensional fractional
wave-like equation

𝜕𝛼
𝑡
𝑢 (𝑥, 𝑡) =

1

2
𝑥2𝑢
𝑥𝑥

, 0 < 𝑥 < 1, 1 < 𝛼 ≤ 2, 𝑡 > 0 (36)

with the initial conditions as

𝑢 (𝑥, 0) = 𝑥2. (37)

Following carefully the steps involved in the HPSTM, we
arrive at the following series solutions:

𝑢
0

(𝑥, 𝑡) = 𝑥2,

𝑢
1

(𝑥, 𝑡) =
𝑡𝛼𝑥2

Γ (𝛼 + 1)
,

𝑢
2

(𝑥, 𝑡) =
𝑡2𝛼𝑥2

Γ (2𝛼 + 1)
,

𝑢
3

(𝑥, 𝑡) =
𝑡3𝛼𝑥2

Γ (3𝛼 + 1)
,

...

𝑢
𝑛

(𝑥, 𝑡) =
𝑡𝑛𝛼𝑥2

Γ (𝑛𝛼 + 1)
.

(38)

Therefore the approximate solution of equation for the first 𝑛
is given as

𝑢
𝑁

(𝑥, 𝑡) =
𝑁

∑
𝑛=1

𝑡𝑛𝛼𝑥2

Γ (𝑛𝛼 + 1)
. (39)

Now when 𝑁 → ∞, we obtained the following solution:

𝑢 (𝑥, 𝑡) =
∞

∑
𝑛=0

𝑡𝑛𝛼𝑥2

Γ (𝑛𝛼 + 1)
= 𝑥2𝐸

𝛼
(𝑡𝛼) , (40)

where 𝐸
𝛼
(𝑡𝛼) is the generalized Mittag-Leffler function. Note

that in the case 𝛼 = 1

𝑢 (𝑥, 𝑡) = 𝑥2 exp (𝑡) . (41)

This is the exact solution for this case.

Example 12. In this example we consider the two-
dimensional fractional heat-like equation (Figures 1 and
2)

𝜕𝛼
𝑡
𝑢 (𝑥, 𝑡) = 𝑢

𝑥𝑥
+ 𝑢
𝑦𝑦

,

0 < 𝑥, 𝑦 < 2𝜋, 𝑡 > 0, 0 < 𝛼 ≤ 1.
(42)
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subject to the initial condition

𝑢 (𝑥, 𝑦, 0) = sin (𝑥) sin (𝑦) . (43)

Following carefully the steps involved in the HPSTM, we
arrive at the following series solutions:

𝑢
0

(𝑥, 𝑦, 𝑡) = sin (𝑥) sin (𝑦) ,

𝑢
1

(𝑥, 𝑦, 𝑡) = −2
𝑡𝛼 sin (𝑥) sin (𝑦)

Γ (𝛼 + 1)
,

𝑢
2

(𝑥, 𝑦, 𝑡) = 4
𝑡2𝛼 sin (𝑥) sin (𝑦)

Γ (2𝛼 + 1)
,

𝑢
3

(𝑥, 𝑦, 𝑡) = −8
𝑡3𝛼 sin (𝑥) sin (𝑦)

Γ (3𝛼 + 1)
,

...

𝑢
𝑛

(𝑥, 𝑦, 𝑧, 𝑡) = (−2)
𝑛
𝑡𝑛𝛼 sin (𝑥) sin (𝑦)

Γ (𝑛𝛼 + 1)
.

(44)

Therefore the approximate solution of equation for the first 𝑛
is given as

𝑢
𝑁

(𝑥, 𝑦, 𝑡) =
𝑁

∑
𝑛=1

(−2)
𝑛
𝑡𝑛𝛼 sin (𝑥) sin (𝑦)

Γ (𝑛𝛼 + 1)
. (45)

Now when 𝑁 → ∞, we obtained the following solution:

𝑢 (𝑥, 𝑦, 𝑡) =
∞

∑
𝑛=0

(−2)𝑛𝑡
𝑛𝛼 sin (𝑥) sin (𝑦)

Γ (𝑛𝛼 + 1)
. (46)

Note that in the case 𝛼 = 1

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = sin (𝑥) sin (𝑦) exp (−2𝑡) . (47)

This is the exact solution for this case.

Example 13. Consider the following time-fractional deriva-
tive in 𝑥, 𝑦-plane as

𝐷𝛼
𝑡
𝑢 (𝑥, 𝑦, 𝑡) =

1

2
∇2𝑢 (𝑥, 𝑦, 𝑡) , 1 < 𝛼 ≤ 2, 𝑥, 𝑦 ∈ R, 𝑡 > 0

(48)

subject to the initial conditions

𝑢 (𝑥, 𝑦, 0) = sin (𝑥 + 𝑦) , 𝑢
𝑡
(𝑥, 𝑦, 0) = − cos (𝑥 + 𝑦) .

(49)

Applying the steps involved in HPSTM as presented in
Section 3.1 to (49) we obtain

𝑝0 : 𝑢
0

(𝑥, 𝑦, 𝑡) = sin (𝑥 + 𝑦) − cos (𝑥 + 𝑦) 𝑡,

𝑝1 : 𝑢
1

(𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 (
1

2
𝑥2 [(𝑢

0
)
𝑥𝑥

+ (𝑢
0
)
𝑦𝑦

])]

= − sin (𝑥 + 𝑦)
𝑡2

2
+ cos (𝑥 + 𝑦)

𝑡3

3!
,

𝑝2 : 𝑢
2

(𝑥, 𝑡) = 𝑆−1 [𝑢𝛼𝑆 (
1

2
𝑥2 [(𝑢

1
)
𝑥𝑥

+ (𝑢
1
)
𝑦𝑦

])]

= sin (𝑥 + 𝑦) [−
𝑡2

2!
+

𝑡4

4!
+

𝑡4−𝛼

Γ (5 − 𝛼)
]

+ cos (𝑥 + 𝑦) [−
𝑡3

3!
+

𝑡5

5!
+

𝑡5−𝛼

Γ (6 − 𝛼)
] ,

𝑝3 : 𝑢
3

(𝑥, 𝑡)

= 𝑆−1 [𝑢𝛼𝑆 (
1

2
𝑥2 [(𝑢

2
)
𝑥𝑥

+ (𝑢
2
)
𝑦𝑦

])]

= sin (𝑥 + 𝑦) [−
𝑡2

2!
+

𝑡4

4!
+

𝑡6

6!
+

2𝑡4−𝛼

Γ (5 − 𝛼)
−

2𝑡6−𝛼

Γ (7 − 𝛼)

−
4𝛼−2√𝜋𝑡6−2𝛼

(6 − 2𝛼) (5 − 2𝛼) Γ (3 − 𝛼) Γ (2.5 − 𝛼)
]

+ cos (𝑥 + 𝑦)

× [
𝑡3

3!
−

𝑡5

5!
+

𝑡7

7!
+

2𝑡7−𝛼

Γ (7 − 𝛼)
+

2𝑡7−2𝛼

Γ (8 − 2𝛼)
] .

(50)

Therefore the series solution is given as

𝑢 (𝑥, 𝑦, 𝑡)

= sin (𝑥 + 𝑦)

× [1 −
3𝑡2

2!
+

𝑡4

8
+

𝑡6

6!
+

3𝑡4−𝛼

Γ (5 − 𝛼)
−

2𝑡6−𝛼

Γ (7 − 𝛼)

−
4𝛼−2√𝜋𝑡6−2𝛼

(6 − 2𝛼) (5 − 2𝛼) Γ (3 − 𝛼) Γ (2.5 − 𝛼)
]

+ cos (𝑥 + 𝑦)

× [−𝑡 +
𝑡3

3!
−

𝑡5

5!
+

𝑡7

7!
+

3𝑡7−𝛼

Γ (7 − 𝛼)
+

𝑡7−2𝛼

Γ (8 − 2𝛼)
] + ⋅ ⋅ ⋅ .

(51)
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It is important to point out that, if 𝛼 = 2, the above solution
takes the form

𝑢
𝑁=4

(𝑥, 𝑦, 𝑡) = sin (𝑥 + 𝑦) [1 −
𝑡2

2!
+

𝑡4

4!
−

𝑡6

6!
]

− cos (𝑥 + 𝑦) [𝑡 −
𝑡3

3!
+

𝑡5

5!
−

𝑡7

7!
]

(52)

which is the first four terms of the series expansion of the
exact solution 𝑢(𝑥, 𝑦, 𝑡) = sin(𝑥 + 𝑦 − 𝑡).

Example 14. Consider the following two-dimensional heat-
like equation:

𝐷𝛼
𝑡𝑡

𝑢 =
1

12
(𝑥2𝑢
𝑥𝑥

+ 𝑦2𝑢
𝑦𝑦

) ,

0 < 𝑥, 𝑦 < 1, 1 < 𝛼 ≤ 2, 𝑡 > 0

(53)

subject to the initial conditions

𝑢 (𝑥, 𝑦, 0) = 𝑥2, 𝑢
𝑡
(𝑥, 𝑦, 0) = 𝑦2. (54)

The exact solution is given as

𝑢 (𝑥, 𝑦, 𝑡) = 𝑥2 cosh (𝑡) + 𝑦2 sinh (𝑡) . (55)

Applying the Sumudu transform on both sides of (53), we
obtain the following:

𝑆 [𝑢 (𝑥, 𝑦, 𝑡)] = 𝑥2𝑡2 + 𝑦2 + 𝑢𝛼 [
1

12
𝑆 (𝑥2𝑢

𝑥𝑥
+ 𝑦2𝑢

𝑦𝑦
)]

(56)

Applying the inverse Sumudu transform on both sides of
(56), we obtain the following:

𝑢 (𝑥, 𝑦, 𝑡) = 𝑥2𝑡2 + 𝑦2 + 𝑆−1

× [𝑢𝛼 [
1

12
𝑆 (𝑥2𝑢

𝑥𝑥
+ 𝑦2𝑢

𝑦𝑦
)]] .

(57)

Now applying the homotopy perturbation technique on the
above equation we obtain the following:

∞

∑
𝑛=0

𝑝𝑛𝑢
𝑛

(𝑥, 𝑦, 𝑡)

= 𝑥2𝑡2 + 𝑦2 + 𝑆−1

× [𝑢𝛼 [
1

12
𝑆 (𝑥2[

∞

∑
𝑛=0

𝑝𝑛𝑢
𝑛

(𝑥, 𝑦, 𝑡)]
𝑥𝑥

+𝑦2[
∞

∑
𝑛=0

𝑝𝑛𝑢
𝑛

(𝑥, 𝑦, 𝑡)]
𝑦𝑦

)]

]

]

]

.

(58)

By comparing the coefficients of like powers of 𝑝, we have

𝑝0 : 𝑢
0

(𝑥, 𝑦, 𝑡) = 𝑥2𝑡2 + 𝑦2,

𝑝1 : 𝑢
1

(𝑥, 𝑦, 𝑡)

= 𝑆−1 [𝑢𝛼 [
1

12
𝑆 (𝑥2(𝑢

0
)
𝑥𝑥

+ 𝑦2(𝑢
0
)
𝑦𝑦

)]]

= 𝑥2𝑡2 + 𝑦2 +
1

6
𝑦4𝑡3 +

1

2
𝑥4𝑡2,

𝑝2 : 𝑢
2

(𝑥, 𝑦, 𝑡)

= 𝑆−1 [𝑢𝛼 [
1

12
𝑆 (𝑥2(𝑢

1
)
𝑥𝑥

+ 𝑦2(𝑢
1
)
𝑦𝑦

)]]

=
1

3
𝑦4𝑡3 +

1

2
𝑥4𝑡2 +

(𝑦𝑡)
4

24
+

(𝑦𝑡)
5

120

+
𝑥4𝑡5−𝛼

Γ (3 − 𝛼) (4 − 𝛼)
+

𝑦4𝑡5−𝛼

Γ (5 − 𝛼) (5 − 𝛼)

−
𝑥4𝑡4−𝛼

Γ (3 − 𝛼) (3 − 𝛼)
−

𝑦4𝑡5−𝛼

Γ (4 − 𝛼) (4 − 𝛼)

...

(59)

Example 15. Consider the following one-dimensional frac-
tional heat-like equation:

𝐷𝛼
𝑡𝑡

𝑢 = 𝑥2
𝜕 [𝑢
𝑥
𝑢
𝑥𝑥

]

𝜕𝑥
− 𝑥2(𝑢

𝑥𝑥
)
2

− 𝑢,

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡, 1 < 𝛼 ≤ 2

(60)

Subject to the initial conditions

𝑢 (𝑥, 0) = 0, 𝑢
𝑡
(𝑥, 0) = 𝑥2. (61)
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Figure 1: Numerical simulations of the approximate solution of (42) for a fixed 𝑦.

The exact solution is given as

𝑢 (𝑥, 𝑡) = 𝑥2 sin [𝑡] . (62)

Applying the Sumudu transform on both sides of (60), we
obtain the following:

𝑆 [𝑢 (𝑥, 𝑡)] = 𝑥2 + 𝑢𝛼 [𝑥2
𝜕 [𝑢
𝑥
𝑢
𝑥𝑥

]

𝜕𝑥
− 𝑥2(𝑢

𝑥𝑥
)
2

− 𝑢] . (63)

Applying the inverse Sumudu transformonboth sides of (63),
we obtain the following:

𝑢 (𝑥, 𝑦, 𝑡) = 𝑥2 + 𝑆−1

× [𝑢𝛼 [𝑆 (𝑥2
𝜕 [𝑢
𝑥
𝑢
𝑥𝑥

]

𝜕𝑥
− 𝑥2(𝑢

𝑥𝑥
)
2

− 𝑢)]] .

(64)
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Figure 2: Numerical simulations of the approximate solution of (42) for a fixed 𝑡.

Now applying the homotopy perturbation technique on the
above equation we obtain the following:

∞

∑
𝑛=0

𝑝𝑛𝑢
𝑛

(𝑥, 𝑦, 𝑡)

= 𝑥2 + 𝑆−1

× [𝑢𝛼 [𝑆 (𝑥2
∞

∑
𝑛=0

𝑝𝑛𝐻
𝑛

− 𝑥2
∞

∑
𝑛=0

𝑝𝑛𝐻1
𝑛

−
∞

∑
𝑛=0

𝑝𝑛𝑢
𝑛

(𝑥, 𝑡))]] .

(65)
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Table 1: Numerical values for approximate solutions of (49) via ADM, VIM, and HPSTM.

𝑡 𝑥 𝑦 ADM [29] VIM [29] HPSTM Exact

0.25

0.5 0.5 0.68163209 0.68163219 0.681639 0.681639
0.5 1.0 0.94898215 0.94898245 0.948985 0.948985
1.0 0.5 0.94898215 0.94898245 0.948985 0.948985
1.0 1.0 0.98398623 0.98398643 0.983986 0.983986

0.5

0.5 0.5 0.47942925 0.47942985 0.479425 0.479426
0.5 1.0 0.84147331 0.84147361 0.841471 0.841471
1.0 0.5 0.84147331 0.84147361 0.841471 0.841471
1.0 1.0 0.99749205 0.99749235 0.997495 0.997495

0.75

0.5 0.5 0.2474231 0.2474232 0.247402 0.247404
1.0 1.0 0.68163452 0.68163456 0.681636 0.681639
0.5 0.5 0.68163453 0.68163456 0.681636 0.681639
1.0 1.0 0.94898533 0.94898532 0.948982 0.948985

1.0

0.5 0.5 −0.000001905 −0.000001925 −0.0000019 −0.00000018

1.0 1.0 0.4794205 0.4794215 0.479401 0.479426
0.5 0.5 0.4794205 0.4794215 0.479401 0.479426
1.0 1.0 0.8414352 0.8414582 0.841448 0.841448

By comparing the coefficients of like powers of 𝑝, we have

𝑝0 : 𝑢
0

(𝑥, 𝑦, 𝑡) = 𝑥2,

𝑝1 : 𝑢
1

(𝑥, 𝑦, 𝑡)

= 𝑆−1 [𝑢𝛼 [𝑆 [𝑥2𝐻
0

− 𝑥2𝐻
1

0
− 𝑢
0
]]] = −𝑥2𝑡,

𝑝2 : 𝑢
2

(𝑥, 𝑦, 𝑡)

= 𝑆−1 [𝑢𝛼 [𝑢𝛼 [𝑆 [𝑥2𝐻
1

− 𝑥2𝐻
1

1
− 𝑢
1
]]]]

= 𝑥2 [−
𝑡3

3!
+

𝑡5

5!
+

𝑡5−𝛼

Γ (6 − 𝛼)
] ,

𝑝3 : 𝑢
3

(𝑥, 𝑦, 𝑡)

= 𝑆−1 [𝑢𝛼 [[𝑆 [𝑥2𝐻
2

− 𝑥2𝐻
1

2
− 𝑢
2
]]]]

= 𝑥2 [
𝑡3

3!
−

𝑡5

5!
+

𝑡7

7!
+

2𝑡7−𝛼

Γ (7 − 𝛼)
+

2𝑡7−2𝛼

Γ (8 − 2𝛼)
] ,

𝑢 (𝑥, 𝑡)

= 𝑥2 [−𝑡 +
𝑡3

3!
−

𝑡5

5!
+

𝑡7

7!

+
3𝑡7−𝛼

Γ (7 − 𝛼)
+

𝑡7−2𝛼

Γ (8 − 2𝛼)
+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ] .

(66)

Now if we replace 𝛼 = 2, we recover the following series
approximation:

𝑢 (𝑥, 𝑡) = 𝑥2 [𝑡 −
𝑡3

3!
+

𝑡5

5!
−

𝑡7

7!
+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ] = 𝑥2 sin [𝑡]

(67)

which is the exact solution of this case.

5. Conclusion

The aim of this work was to make use of the properties of
the so-called Sumudu transform to solve nonlinear fractional
heat-like equations. The basic idea of the method combines
Sumudu transform and the HPM using He’s polynomi-
als. In addition the method is friendly user, and it does
not require anything like Adomian polynomial. From the
numerical comparison in Table 1, we can see that, these
three methods are very powerful, and efficient techniques
for solving different kinds of linear and nonlinear fractional
differential equations arising in different fields of science and
engineering. However, the HPSTM has an advantage over
the ADM and VIM which is that it solves the nonlinear
problems without anything like the Lagrangian multiplier as
in the case of VIM. We do not need to calculate anything
like Adomian polynomial as in the case of ADM. In addition
the calculations involved in HPSTM are very simple and
straightforward.
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method for fractional gas dynamics equation using sumudu
transform,” Abstract and Applied Analysis, vol. 2013, Article ID
934060, 8 pages, 2013.

[2] G. C. Wu, “New trends in the variational iteration method,”
Communications in Fractional Calculus, vol. 2, pp. 59–75, 2011.

[3] G. C. Wu and D. Baleanu, “Variational iteration method for
the Burgers’ flow with fractional derivatives—new Lagrange
multipliers,” Applied Mathematical Modelling, vol. 5, pp. 1012–
1018, 2012.

[4] G. C. Wu and D. Baleanu, “Variational iteration method for
fractional calculus—a universal approach by Laplace trans-
form,” Advances in Difference Equations, vol. 2013, article 18,
2013.

[5] J. H. He, “Asymptotic methods for solitary solutions and
compactons,” Abstract and Applied Analysis, vol. 2012, Article
ID 916793, 130 pages, 2012.

[6] J. H. He, “Homotopy perturbation technique,” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp.
257–262, 1999.

[7] D. D. Ganji, “The application of He’s homotopy perturbation
method to nonlinear equations arising in heat transfer,” Physics
Letters A, vol. 355, no. 4-5, pp. 337–341, 2006.

[8] A. Yıldırım, “An algorithm for solving the fractional nonlinear
Schrödinger equation by means of the homotopy perturba-
tion method,” International Journal of Nonlinear Sciences and
Numerical Simulation, vol. 10, no. 4, pp. 445–450, 2009.

[9] D. D. Ganji and M. Rafei, “Solitary wave solutions for a gen-
eralized Hirota-Satsuma coupled KdV equation by homotopy
perturbation method,” Physics Letters A, vol. 356, no. 2, pp. 131–
137, 2006.

[10] M.M. Rashidi, D. D. Ganji, and S. Dinarvand, “Explicit analyti-
cal solutions of the generalized Burger and Burger-Fisher equa-
tions by homotopy perturbation method,” Numerical Methods
for Partial Differential Equations, vol. 25, no. 2, pp. 409–417,
2009.

[11] J. Hristov, “A short-distance integral-balance solution to a
strong subdiffusion equation: a weak power-law profile,” Inter-
national Review of Chemical Engineering-Rapid Communica-
tions, vol. 2, no. 5, pp. 555–563, 2010.

[12] J. Wang, Y. Khan, L. X. Lu, and Z. W. Wang, “Inner resonance
of a coupled hyperbolic tangent nonlinear oscillator arising in a
packaging system,” Applied Mathematics and Computation, vol.
218, no. 15, pp. 7876–7879, 2012.

[13] J. Wang, Y. Khan, R. H. Yang, L. X. Lu, Z. W. Wang, and
N. Faraz, “A mathematical modelling of inner-resonance of
tangent nonlinear cushioning packaging system with critical
components,” Mathematical and Computer Modelling, vol. 54,
pp. 2573–2576, 2011.

[14] A. Abdon, “New class of boundary value problems,” Information
Sciences Letters, vol. 1, no. 2, pp. 67–76, 2012.

[15] V. Daftardar-Gejji and H. Jafari, “Adomian decomposition: a
tool for solving a system of fractional differential equations,”
Journal of Mathematical Analysis and Applications, vol. 301, no.
2, pp. 508–518, 2005.

[16] J. S. Duan, R. Rach, D. Bulean, and A. M. Wazwaz, “A review
of the Adomian decomposition method and its applications to
fractional differential equations,”Communications in Fractional
Calculus, vol. 3, pp. 73–99, 2012.

[17] D. Q. Zeng and Y. M. Qin, “The Laplace-Adomian-Pade
technique for the seepage flows with the Riemann-Liouville
derivatives,” Communications in Fractional Calculus, vol. 3, pp.
26–29, 2012.

[18] G. C. Wu, “Adomian decomposition method for non-smooth
initial value problems,”Mathematical and Computer Modelling,
vol. 54, no. 9-10, pp. 2104–2108, 2011.

[19] G. C. Wu, Y. G. Shi, and K. T. Wu, “Adomian decomposition
method and non-analytical solutions of fractional differential
equations,” Romanian Journal of Physics, vol. 56, no. 7-8, pp.
873–880, 2011.

[20] A. Atangana and A. Secer, “Time-fractional coupled-the
Korteweg-de Vries equations,” Abstract and Applied Analysis,
vol. 2013, Article ID 947986, 8 pages, 2013.

[21] A. Atangana and J. F. Botha, “Analytical solution of groundwater
flow equation via homotopy decompositionmethod,” Journal of
Earth Science & Climatic Change, vol. 3, article 115, 2012.

[22] J. Singh, D. Kumar, and Sushila, “Homotopy perturbation
Sumudu transform method for nonlinear equations,” Advances
in Applied Mathematics andMechanics, vol. 4, pp. 165–175, 2011.

[23] G. K. Watugala, “Sumudu transform: a new integral trans-
form to solve differential equations and control engineering
problems,” International Journal of Mathematical Education in
Science and Technology, vol. 24, no. 1, pp. 35–43, 1993.
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