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We investigate the global 𝜇-stability in the mean square of impulsive stochastic neural networks with unbounded time-varying
delays and continuous distributed delays. By choosing an appropriate Lyapunov-Krasovskii functional, a novel robust stability
condition, in the form of linear matrix inequalities, is derived. These sufficient conditions can be tested by MATLAB LMI software
packages.The results extend and improve the earlier publication. Twonumerical examples are provided to illustrate the effectiveness
of the obtained theoretical results.

1. Introduction

Since 1982 when American California Engineering insti-
tute physicist Hopfield proposed Hopfield neural networks
models [1, 2], artificial neural networks theory and applied
research have attracted more and more attentions. The
application of artificial neural networks is very extensive.
It can process a variety of information, such as artificial
intelligence, secure communications, network optimization,
military information, pattern recognition, and so forth.
Information processing of neural networks greatly depends
on the system’s dynamic characteristics.The stability is one of
very important dynamic characteristics of neural network.

External perturbations can affect the stability of a real sys-
tem, so it is necessary to consider the stochastic effects for the
stability property of neural networks. Recently, some results
to guarantee the global asymptotic stability or exponential
stability for stochastic neural networks are obtained, see [3–
8]. For example, in [4], Blythe et al. investigated stochastic
stability of neural networks with constant delay. In [6], Wang
et al. analysed the stability in the mean square for stochastic
Cohen-Grossberg neural networks with time-varying delays
and continuous distributed delays.

As we known, artificial neural networks are often subject
to impulsive perturbations which can affect systems’ stability,
see [9–11]. Impulsive perturbations oftenmake stable systems

unstable. Therefore, we should consider systems’ stability in
impulsive effects. Very recently, some results on stability of
stochastic neural networkswith impulses have been proposed
and studied, see [12, 13].

The neural network may be disturbed by environmental
noises, which cause the uncertainty of the connectionweights
of the neurons and affect the dynamical behaviors of system.
Therefore, parameter uncertainties should be taken into
account in system model. There are some global stability
results of neural networks under the influence of parameter
uncertainties [14–20]. In [14], the authors kept a watchful eye
on robust exponential stability for uncertain stochastic neural
networks with discrete interval and distributed time-varying
delays by Lyapunov-Krasovski functional method and the
random analysis theory.

The time delays happen frequently in the neurotrans-
mission. Many researchers have a large amount interest
in time delay neural networks. There are many sufficient
conditions have been proposed to guarantee the stability
of neural networks with various type of time delays [21–
26]. For example, in [22], Lou and Cui investigated the
global asymptotic stability of the Hopfield neural networks
with bounded time delay by constructing suitable Lyapunov-
krasovski functional and employing LMI method. In [24],
Raja et al. further obtained some results of stochastic neural
networks with mixed time delays by using Lyapunov stability
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theory and LMI technology. However, most of the results
have only focused on bounded delays. As we know, in many
engineering time delays depend on the histories heavily and
may be unbounded [27, 28]. In this case, the conditions on
delays of those existing results are too restrictive.

Recently, Chen and Wang [29], Liu and Chen [30]
proposed a new concept of 𝜇-stability, which can be applied
to neural networks with unbounded time-varying delay.
Moreover, few results have been reported in the litera-
ture concerning the problem of 𝜇-stability for parameter
impulsive stochastic neural networks with unbounded time-
varying delays and continuously distributed delays, which
inspire our interests.

This paper is concerned with the global stability analysis
in the mean square for impulsive stochastic neural networks
with unbounded time-varying delays and continuously
distributed delays. By choosing an appropriate Lyapunov-
Krasovskii functional, a novel robust stability condition,
in the form of linear matrix inequalities, is derived. These
sufficient conditions can be tested by Matlab LMI software
packages. Our results extend and improve the some results
[29, 30].

The paper is organized as following. In Section 2, the
basic definitions and assumptions are given together with
the statement of the problem. In Section 3, the sufficient
conditions of 𝜇-stability in the mean square of impulsive
stochastic neural networks with unbounded time-varying
delays and continuously distributed delays are obtained. In
Section 4, global robust𝜇-stability criteria in themean square
are derived for uncertain neural networks model. Then, two
numerical examples are provided to demonstrate the
effectiveness of our results in Section 5. Finally, concluding
remarks are given in Section 6.

Notations. Throughout this paper, 𝑅 and 𝑅
𝑛 denote, respec-

tively, the set of real numbers and 𝑛-dimensional real spaces
equipped with the Euclidean norm | ⋅ |; 𝑍

+
denotes the set

of positive integers; 𝑅𝑛×𝑚 denotes the set of all 𝑛 × 𝑚. Let
𝐴 ≥ 0 (𝐴 ≤ 0) denote that the matrix 𝐴 is a symmetric
and positive semidefinite (negative semidefinite) matrix; 𝐴𝑇
denotes the transpose of the matrix𝐴; 𝜆max(⋅) (𝜆min) denotes
themaximumeigenvalue (minimumeigenvalue) ofmatrix𝐴.
L
2
[0,∞) is the space of square integrable vector. Moreover,

let (Ω,F, (F
𝑡
)
𝑡≥0

,P) be a probability space with a filtration
(F
𝑡
)
𝑡≥0

satisfying the usual conditions (It is right continuous
andF

0
contains allP-null sets). 𝐿2F0(−∞, 0]; 𝑅

𝑛 denotes the
family of allF

0
-measurable.𝐸(⋅) stands for themathematical

expectation operator with respect to the given probability
measureP.

2. Model Description and Some Assumptions

Consider the following neural network model:

�̇� (𝑡) = − 𝐴
0
𝑥 (𝑡) + 𝐴

1
𝑓 (𝑥 (𝑡)) + 𝐴

2
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐴
3
∫

∞

0

ℎ (𝑠) 𝑓 (𝑥 (𝑡 − 𝑠)) 𝑑𝑠 + 𝐽, 𝑡 ̸= 𝑡
𝑘
, 𝑡 > 0,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

𝑘
) − 𝑥 (𝑡

−

𝑘
) = 𝐽
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
,

(1)

where 𝑥 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 is the neuron state vector

of the neural network; 𝐴
0
= diag(𝑎(0)

1
, 𝑎
(0)

2
, . . . , 𝑎

(0)

𝑛
), 𝑎
(0)

𝑖
>

0, 𝑖 = 1, 2, . . . , 𝑛, is decay rate; 𝐴
1
= (𝑎
(1)

𝑖𝑗
)
𝑛×𝑛

, 𝐴
2
= (𝑎
(2)

𝑖𝑗
)
𝑛×𝑛

and 𝐴
3

= (𝑎
(3)

𝑖𝑗
)
𝑛×𝑛

are connection weight matrix; 𝑓(⋅) =

(𝑓
1
(⋅), 𝑓
2
(⋅), . . . , 𝑓

𝑛
(⋅))
𝑇 is the neuron activation function; 𝜏(𝑡)

represents the transmission delay of neural networks; ℎ(⋅) =
diag(ℎ

1
(⋅), ℎ
2
(⋅), . . . , ℎ

𝑛
(⋅)) is the delay kernel function; 𝐽 is an

input constant matrix, and 𝐽
𝑘
is the impulsive function.

Throughout the paper, we make the following assump-
tions.

Assumption 1. The neuron activation functions 𝑓
𝑗
(⋅), 𝑗 =

1, 2, . . . , 𝑛, are bounded, continuous differentiable, and satisfy

0 ≤
𝑓
𝑗
(𝑢) − 𝑓

𝑗
(𝑣)

𝑢 − 𝑣
≤ 𝑙
𝑗
, 𝑢 ̸= 𝑣, 𝑢, 𝑣 ∈ 𝑅, (2)

where 𝑙
𝑗
, 𝑗 = 1, 2, . . . , 𝑛 are some positive constants.

Assumption 2. 𝜏(𝑡) is a nonnegative and continuous differen-
tiable time-varying delay and satisfies ̇𝜏(𝑡) ≤ 𝜌 < 1, 𝜌 is a
positive constant.

Assumption 3. The delay kernels ℎ
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are some

real nonnegative continuous functions defined in [0,∞) and
satisfy

∫

∞

0

ℎ
𝑖
(𝑠) 𝑑𝑠 = 1, 𝑖 = 1, 2, . . . , 𝑛. (3)

Assumption 4. The impulse times 𝑡
𝑘
satisfy 0 = 𝑡

0
< 𝑡
1
<

⋅ ⋅ ⋅ < 𝑡
𝑘
< ⋅ ⋅ ⋅ , lim

𝑡→∞
𝑡
𝑘
= +∞.

If the functions 𝑓
𝑗
(⋅), 𝑗 = 1, 2, . . . , 𝑛 satisfy Assumption 1,

the system (1) exists an equilibrium point, see [14]. Assume
that 𝑥∗ = (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇 is an equilibrium point of system

(1), and the impulsive function of system (1) characterized
by 𝐽
𝑘
(𝑥(𝑡
−

𝑘
)) = −𝑀

𝑘
(𝑥(𝑡
−

𝑘
) − 𝑥

∗

), where 𝐽
𝑘
(𝑥(𝑡
−

𝑘
)) =

(𝐽
1𝑘
(𝑥(𝑡
−

𝑘
)), 𝐽
2𝑘
(𝑥(𝑡
−

𝑘
)), . . . , 𝐽

𝑛𝑘
(𝑥(𝑡
−

𝑘
)))
𝑇,𝑀
𝑘
is a real matrix.

Letting 𝑦
𝑖
= 𝑥
𝑖
−𝑥
∗, one can switch the equilibrium point

of system (1) to the origin and have

̇𝑦 (𝑡) = − 𝐴
0
𝑦 (𝑡) + 𝐴

1
𝑔 (𝑦 (𝑡)) + 𝐴

2
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝐴
3
∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠, 𝑡 ̸= 𝑡
𝑘
, 𝑡 > 0,

Δ𝑦 (𝑡
𝑘
) = 𝑦 (𝑡

𝑘
) − 𝑦 (𝑡

−

𝑘
) = −𝑀

𝑘
(𝑦 (𝑡
−

𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
,

(4)

where 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇, 𝑔(𝑦(𝑠)) = (𝑔

1
(𝑦
1
(𝑠)),

𝑔
2
(𝑦
2
(𝑠)), . . . , 𝑔

𝑛
(𝑦
𝑛
(𝑠)))
𝑇, and 𝑔

𝑖
(𝑦
𝑖
(𝑠)) = 𝑓

𝑖
(𝑥
𝑖
(𝑠) + 𝑥

∗

𝑖
) −

𝑓
𝑖
(𝑥
∗

𝑖
). By the definition of g

𝑖
(⋅), 𝑖 = 1, 2, . . . , 𝑛 and

Assumption 1, 𝑔
𝑖
satisfies the sector condition

0 ≤
𝑔
𝑖
(𝑢)

𝑢
≤ 𝑙
𝑖
, 𝑢 ∈ 𝑅 (5)

and 𝑔
𝑖
(0) = 0, 𝑖 = 1, 2, . . . , 𝑛, where 𝑙

𝑗
, 𝑗 = 1, 2, . . . , 𝑛 are

some positive constants.
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In the practical application, a neural system is affected by
external perturbations. It is necessary to consider the effect
of randomness to neural networks. We obtain stochastic
impulsive neural networks with delays:

𝑑𝑦 (𝑡) = [ − 𝐴
0
𝑦 (𝑡) + 𝐴

1
𝑔 (𝑦 (𝑡)) + 𝐴

2
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝐴
3
∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝜎 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) , 𝑡 ̸= 𝑡
𝑘
, 𝑡 > 0,

Δ𝑦 (𝑡
𝑘
) = 𝑦 (𝑡

𝑘
) − 𝑦 (𝑡

−

𝑘
) = −𝑀

𝑘
(𝑦 (𝑡
−

𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
,

(6)

where 𝜔(𝑡) = (𝜔
1
(𝑡), 𝜔
2
(𝑡), . . . , 𝜔

𝑛
(𝑡))
𝑇 is 𝑛 dimensional

Brownian motions defined on a complete probability space
(Ω,F, (F

𝑡
)
𝑡≥0

,P).

Assumption 5. Assume that 𝜎 : 𝑅
+
× 𝑅
𝑛

× 𝑅
𝑛

→ 𝑅
𝑛×𝑛

is local Lipschitz continuous and satisfies the linear growth
condition, that is, 𝜎(𝑡, 0, 0) = 0 for all 𝑡 ∈ 𝑅

+. Moreover, there
exist 𝑛 × 𝑛 dimension matrices Γ

0
> 0, Γ

1
> 0, such that

trace [𝜎(𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡)))
𝑇

𝜎 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡)))]

≤ 𝑦
𝑇

(𝑡) Γ
0
𝑦 (𝑡) + 𝑦

𝑇

(𝑡 − 𝜏 (𝑡)) Γ
1
𝑦 (𝑡 − 𝜏 (𝑡)) .

(7)

The initial conditions for system (6) are 𝑦(𝑠) = 𝜑(𝑠), 𝑠 ∈

(−∞, 0], 𝜑 ∈ 𝐶
2

F0
((−∞, 0], 𝑅

𝑛

), where 𝐶
2

F0
denotes the

family of all boundedF
0
-measurable,𝐶((−∞, 0], 𝑅

𝑛

)-valued
variables, satisfying ‖𝜑‖ = sup

𝑠≤0
𝐸|𝜑(𝑠)|

2

< ∞.
For completeness, we first give the following definition

and lemmas.

Definition 1 (see [29]). Suppose that 𝜇(𝑡) is a nonnegative
continuous function and satisfies lim

𝑡→∞
𝜇(𝑡) = ∞. If there

exists a scalar𝑀 > 0 such that

𝐸
𝑦 (𝑡)

 ≤
𝑀

𝜇 (𝑡)
, 𝑡 ≥ 0, (8)

then the system (6) is said to be globally stochastically 𝜇-
stable in the mean square.

Obviously, the definition of global stochastic𝜇-stability in
the mean square includes the globally stochastically asymp-
totical stability and exponential stability in the mean square.

Lemma 2 (see [31]). Let𝑊
1
,𝑊
2
, 𝑄 = 𝑄

𝑇

> 0 be real matrices
of appropriate dimensions, and 𝜀 > 0 be a scalar, then one has

𝑊
𝑇

1
𝑊
2
+𝑊
𝑇

2
𝑊
1
≤ 𝜀𝑊

𝑇

1
Q𝑊
1
+ 𝜀
−1

𝑊
𝑇

2
𝑄
−1

𝑊
2
. (9)

Lemma 3 (see [32]). Let𝑈,𝑉,𝑊 and 𝐹(𝑡) be the real matrices
of appropriate dimensions with𝑊 satisfying𝑊𝑇 = 𝑊, then

𝑊+𝑈𝐹 (𝑡) 𝑉 + 𝑉
𝑇

𝐹
𝑇

(𝑡) 𝑈 < 0, ∀𝐹
𝑇

(𝑡) 𝐹 (𝑡) ≤ 𝐼, (10)

if and only if there exists a scalar 𝜀 > 0, such that

𝑊+ 𝜀𝑈𝑈
𝑇

+ 𝜀
−1

𝑉
𝑇

𝑉 < 0. (11)

Lemma 4 (see [32]). For a given matrix

𝑆 = (
𝑆
11

𝑆
12

𝑆
21

𝑆
22

) > 0, (12)

where 𝑆𝑇
11

= 𝑆
11
, 𝑆𝑇
22

= 𝑆
22

is equivalent to any one of the
following conditions:

(1) 𝑆
22
> 0, 𝑆
11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
> 0;

(2) S
11
> 0, 𝑆
22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
> 0.

3. Stochastic Stability Analysis of
Neural Networks

Let 𝐶2,1(𝑅𝑛 ×𝑅+ → 𝑅
+

) denote the family of all nonnegative
functions 𝑉(𝑦, 𝑡) on 𝑅

𝑛

× 𝑅
+, which are continuous one

differentiable in 𝑡 and twice differentiable in 𝑥. For every such
𝑉, we define an operator 𝐿𝑉 associated with system (6),

𝐿𝑉 = 𝑉
𝑡
(𝑦, 𝑡) + 𝑉

𝑦
(𝑦, 𝑡) [ − 𝐴

0
𝑦 (𝑡) + 𝐴

1
𝑔 (𝑦 (𝑡))

+ 𝐴
2
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝐴
3
∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠]

+
1

2
trace [𝜎𝑇𝑉

𝑦𝑦
(𝑦, 𝑡) 𝜎] ,

(13)

where

𝑉
𝑡
(𝑦, 𝑡) =

𝜕𝑉 (𝑦, 𝑡)

𝜕𝑡
,

𝑉
𝑦
(𝑦, 𝑡) = (

𝜕𝑉(𝑦, 𝑡)

𝜕𝑦
1

, . . . ,
𝜕𝑉(𝑦, 𝑡)

𝜕𝑦
𝑛

)

𝑇

,

𝑉
𝑦𝑦
(𝑦, 𝑡) = (

𝜕𝑉(𝑦, 𝑡)

𝜕𝑦
𝑖
𝑦
𝑗

)

𝑛×𝑛

, 𝑗 = 1, 2, . . . , 𝑛.

(14)

Theorem5. Assume that Assumptions 1–5 hold.Then, the zero
solution of system (6) is globally stochastically 𝜇-stable in the
mean sense if there exist diagonal matrices 𝑃 > 0, 𝑄

𝑖
> 0, 𝑖 =

1, 2 and 𝑄
3
= diag(𝑞(3)

1
, . . . , 𝑞

(3)

𝑛
), some constants 𝛼

1
≥ 0, 𝛼

2
>

0, 𝛼
3
> 0, 𝛿

𝑗
> 0, 𝑗 = 0, 1, 2, 𝑚

𝑖𝑘
∈ [0, 2], 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈

𝑍
+
, a nonnegative continuous differential function 𝜇(𝑡) defined

on [0,∞), and a constant 𝑇 > 0 such that, for 𝑡 ≥ 𝑇,
�̇� (𝑡)

𝜇 (𝑡)
≤ 𝛼
1
,

𝜇 (𝑡 − 𝜏 (𝑡))

𝜇 (𝑡)
≥ 𝛼
2
,

∫
∞

0

ℎ
𝑖
(𝑠) 𝜇 (𝑡 + 𝑠) 𝑑𝑠

𝜇 (𝑡)
≤ 𝛼
3
, 𝑖 = 1, 2, . . . , 𝑛,

(15)

and the following LMI hold:

Ξ
∗

=

[
[
[
[
[
[

[

Π
0
√𝛿
0
𝑃𝐴
1
√

𝛿
1

1 − 𝜌
𝑃𝐴
2
√𝛿
2
𝑃𝐴
3

∗ −𝑄
1

0 0

∗ ∗ −𝑄
2

0

∗ ∗ ∗ −𝑄
3

]
]
]
]
]
]

]

< 0, (16)
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where Π
0
= 𝛼
1
𝑃 − 𝑃𝐴

0
− 𝐴
𝑇

0
𝑃 + 𝜆Γ

0
+ (1/(1 − 𝜌))𝛼

−1

2
𝜆Γ
1
+

𝐿[𝛿
−1

0
𝑄
1
+ 𝛿
−1

1
𝛼
−1

2
𝑄
2
+ 𝛿
−1

2
𝛼
3
𝑄
3
]𝐿𝐿 = diag(𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
), 𝜆 =

𝜆max(𝑃), and impulsive operator𝑀
𝑘
= diag(𝑚

1𝑘
, . . . , 𝑚

𝑛𝑘
).

Proof. By Lemma 4, (16) is equal to the following inequality:

𝛼
1
𝑃 − 𝑃𝐴

0
− 𝐴
𝑇

0
𝑃 + 𝛿
0
𝑃𝐴
1
𝑄
−1

1
𝐴
𝑇

1
𝑃

+ 𝛿
1

1

1 − 𝜌
𝑃𝐴
2
𝑄
−1

2
𝐴
𝑇

2
𝑃 + 𝛿
2
𝑃𝐴
3
𝑄
−1

3
𝐴
𝑇

3
𝑃

+𝜆Γ
0
+

1

1 − 𝜌
𝛼
−1

2
𝜆Γ
1

+ 𝐿 [𝛿
−1

0
𝑄
1
+ 𝛿
−1

1
𝛼
−1

2
𝑄
2
+ 𝛿
−1

2
𝛼
3
𝑄
3
] 𝐿 < 0.

(17)

Based on the system (6), we construct the following
Lyapunov-Krasovski functional:

𝑉 (𝑦 (𝑡) , 𝑡) = 𝑉
1
(𝑦 (𝑡) , 𝑡) + 𝑉

2
(𝑦 (𝑡) , 𝑡) + 𝑉

3
(𝑦 (𝑡) , 𝑡) ,

(18)
where

𝑉
1
(𝑦 (𝑡) , 𝑡) = 𝜇 (𝑡) 𝑦

𝑇

(𝑡) 𝑃𝑦 (𝑡) ,

𝑉
2
(𝑦 (𝑡) , 𝑡)

=
1

1 − 𝜌
𝛼
−1

2
𝜆∫

𝑡

𝑡−𝜏(𝑡)

𝜇 (𝑠) 𝑦
𝑇

(𝑠) Γ
1
𝑦 (𝑠) 𝑑𝑠

+ 𝛿
−1

1
𝛼
−1

2
∫

𝑡

𝑡−𝜏(𝑡)

𝜇 (𝑠) 𝑔
𝑇

(𝑦 (𝑠)) 𝑄
2
𝑔 (𝑦 (𝑠)) 𝑑𝑠,

𝑉
3
(𝑦 (𝑡) , 𝑡) =

𝑛

∑

𝑖=1

𝑞
(3)

𝑖
𝛿
−1

2
∫

∞

0

ℎ
𝑖
(𝜎) ∫

𝑡

𝑡−𝜎

𝜇 (𝑠 + 𝜎) 𝑔
2

𝑖

× (𝑦
𝑖
(𝑠)) 𝑑𝑠 𝑑𝜎.

(19)
By Itô’s formula, we can obtain the following stochastic
differential:

𝑑𝑉 (𝑦 (𝑡) , 𝑡) = 𝐿𝑉 (𝑦 (𝑡) , 𝑡) 𝑑𝑡

+ 𝑉
𝑦
(𝑦, 𝑡) 𝜎 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) ,

(20)
where
𝐿𝑉 (𝑦 (𝑡) , 𝑡) = 𝐿𝑉

1
(𝑦 (𝑡) , 𝑡) + 𝐿𝑉

2
(𝑦 (𝑡) , 𝑡) + 𝐿𝑉

3
(𝑦 (𝑡) , 𝑡) .

(21)
Along the trajectories of system (6), we have that

𝐿𝑉
1
(𝑦 (𝑡) , 𝑡) = �̇�𝑦

𝑇

(𝑡) 𝑃𝑦 (𝑡) + 2𝜇 (𝑡) 𝑦
𝑇

(𝑡) 𝑃

× [ − 𝐴
0
𝑦 (𝑡) + 𝐴

1
𝑔 (𝑦 (𝑡))

+ 𝐴
2
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝐴
3
∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠]

+
1

2
trace [𝜎𝑇𝑉

𝑦𝑦
(𝑦, 𝑡) 𝜎] .

(22)

By Lemma 2, we get that

2𝑦
𝑇

(𝑡) 𝑃𝐴
1
𝑔 (𝑦 (𝑡))

≤ 𝛿
0
𝑦
𝑇

(𝑡) 𝑃𝐴
1
𝑄
−1

1
𝐴
𝑇

1
𝑃𝑦 (𝑡)

+ 𝛿
−1

0
𝑔
𝑇

(𝑦 (𝑡)) 𝑄
1
𝑔 (𝑦 (𝑡)) ,

2𝑦
𝑇

(𝑡) 𝑃𝐴
2
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

≤ 𝛿
1
(1 − 𝜌)

−1

𝑦
𝑇

(𝑡) 𝑃𝐴
2
𝑄
−1

2
𝐴
𝑇

2
𝑃𝑦 (𝑡)

+ 𝛿
−1

1
(1 − 𝜌) 𝑔

𝑇

(𝑦 (𝑡 − 𝜏 (𝑡))) 𝑄
2
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡))) ,

2𝑦
𝑇

(𝑡) 𝑃𝐴
3
∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠

≤ 𝛿
2
𝑦
𝑇

(𝑡) 𝑃𝐴
3
𝑄
−1

3
𝐴
𝑇

3
𝑃𝑦 (𝑡)

+ 𝛿
−1

2
∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠𝑄
3

× ∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠.

(23)

From Assumption 5, we obtain that

1

2
trace [𝜎𝑇𝑉

𝑦𝑦
(𝑦, 𝑡) 𝜎]

= 𝜇 (𝑡) trace [𝜎𝑇𝑃𝜎]

≤ 𝜇 (𝑡) 𝜆max (𝑃) trace [𝜎
𝑇

𝜎]

≤ 𝜇 (𝑡) 𝜆 [𝑦
𝑇

(𝑡) Γ
0
𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) Γ
1
𝑦 (𝑡 − 𝜏 (𝑡))] .

(24)

Therefore,

𝐿𝑉
1
(𝑦 (𝑡) , 𝑡) ≤ 𝜇 (𝑡) 𝑦

𝑇

(𝑡) [𝛼
1
𝑃 − 𝑃𝐴

0
− 𝐴
𝑇

0
𝑃

+ 𝛿
0
𝑃𝐴
1
𝑄
−1

1
𝐴
𝑇

1
𝑃

+ 𝛿
1
(1 − 𝜌)

−1

𝑃𝐴
2
𝑄
−1

2
𝐴
𝑇

2
𝑃

+𝛿
2
𝑃𝐴
3
𝑄
−1

3
𝐴
𝑇

3
𝑃 + 𝜆Γ

0
] 𝑦 (𝑡)

+ 𝜇 (𝑡) 𝛿
−1

0
𝑔
𝑇

(𝑦 (𝑡)) 𝑄
1
𝑔 (𝑦 (𝑡))

+ 𝜇 (𝑡) 𝜆𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) Γ
1
𝑦 (𝑡 − 𝜏 (𝑡))

+ 𝜇 (𝑡) 𝛿
−1

1
(1 − 𝜌) 𝑔

𝑇

𝑦

× (𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝜇 (𝑡) 𝛿
−1

2
∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠𝑄
3

× ∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠,
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𝐿𝑉
2
(𝑦 (𝑡) , 𝑡) ≤

1

1 − 𝜌
𝛼
−1

2
𝜆 [𝜇 (𝑡) 𝑦

𝑇

(𝑡) Γ
1
𝑦 (𝑡)

− 𝜇 (𝑡 − 𝜏 (𝑡)) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡))

× Γ
1
𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 1 − ̇𝜏 (𝑡)]

+ 𝛿
−1

1
𝛼
−1

2
[𝜇 (𝑡) 𝑔

𝑇

(𝑦 (𝑡)) 𝑄
2
𝑔 (𝑦 (𝑡))

− 𝜇 (𝑡 − 𝜏 (𝑡)) 𝑔
𝑇

(𝑦 (𝑡 − 𝜏 (𝑡)))

× 𝑄
2
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡))) 1 − ̇𝜏 (𝑡)]

≤
1

1 − 𝜌
𝛼
−1

2
𝜆𝜇 (𝑡) 𝑦

𝑇

(𝑡) Γ
1
𝑦 (𝑡)

− 𝛼
−1

2
𝜆𝜇 (𝑡 − 𝜏 (𝑡)) 𝑦

𝑇

(𝑡 − 𝜏 (𝑡))

× Γ
1
𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) + 𝛿
−1

1
𝛼
−1

2

× [𝜇 (𝑡) 𝑔
𝑇

(𝑦 (𝑡)) 𝑄
2
𝑔 (𝑦 (𝑡))

− 𝜇 (𝑡 − 𝜏 (𝑡)) 𝑔
𝑇

× (𝑦 (𝑡 − 𝜏 (𝑡))) 𝑄
2
𝑔

× (𝑦 (𝑡 − 𝜏 (𝑡))) (1 − 𝜌) ] .

(25)

From (15), we have

𝐿𝑉
2
(𝑦 (𝑡) , 𝑡)

≤
1

1 − 𝜌
𝛼
−1

2
𝜆𝜇 (𝑡) 𝑦

𝑇

(𝑡) Γ
1
𝑦 (𝑡)

− 𝜆𝜇 (𝑡) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) Γ
1
𝑦
𝑇

(𝑡 − 𝜏 (𝑡))

+ 𝛿
−1

1
𝛼
−1

2
𝜇 (𝑡) 𝑔

𝑇

(𝑦 (𝑡)) 𝑄
2
𝑔 (𝑦 (𝑡))

− 𝛿
−1

1
𝛼
−1

2
𝜇 (𝑡 − 𝜏 (𝑡)) 𝑔

𝑇

(𝑦 (𝑡 − 𝜏 (𝑡)))

× 𝑄
2
𝑔 (𝑦 (𝑡 − 𝜏 (𝑡))) (1 − 𝜌) ,

𝐿𝑉
3
(𝑦 (𝑡) , 𝑡)

= 𝛿
−1

2

𝑛

∑

𝑖=1

𝑞
(3)

𝑖
𝑔
2

𝑖
(𝑦
𝑖
(𝑡)) ∫

∞

0

ℎ
𝑖
(𝜎) 𝜇 (𝑡 + 𝜎) 𝑑𝜎

− 𝜇 (𝑡)

𝑛

∑

𝑖=1

𝑞
(3)

𝑖
𝛿
−1

2
∫

∞

0

ℎ
𝑖
(𝜎) 𝑔
2

𝑖
(𝑦
𝑖
(𝑡 − 𝜎)) 𝑑𝜎

≤ 𝛿
−1

2
𝜇 (𝑡)

∫
∞

0

ℎ
𝑖
(𝜎) 𝜇 (𝑡 + 𝜎) 𝑑𝜎

𝜇 (𝑡)

𝑛

∑

𝑖=1

𝑞
(3)

𝑖
𝑔
2

𝑖
(𝑦
𝑖
(𝑡))

− 𝜇 (𝑡)

𝑛

∑

𝑖=1

𝑞
(3)

𝑖
𝛿
−1

2
∫

∞

0

ℎ
𝑖
(𝜎) 𝑔
2

𝑖
(𝑦
𝑖
(𝑡 − 𝜎)) 𝑑𝜎

≤ 𝛿
−1

2
𝜇 (𝑡) 𝛼

3

𝑛

∑

𝑖=1

𝑞
(3)

𝑖
𝑔
2

𝑖
(𝑦
𝑖
(𝑡))

− 𝜇 (𝑡)

𝑛

∑

𝑖=1

𝑞
(3)

𝑖
𝛿
−1

2
∫

∞

0

ℎ
𝑖
(𝜎) 𝑔
2

𝑖
(𝑦
𝑖
(𝑡 − 𝜎)) 𝑑𝜎.

(26)

We use Cauchy’s inequality (∫ 𝑝(𝑠)𝑞(𝑠))
2

≤ (∫ 𝑝
2

(𝑠)𝑑𝑠)

(∫ 𝑞
2

(𝑠)𝑑𝑠) and get

𝜇 (𝑡)

𝑛

∑

𝑖=1

𝑞
(3)

𝑖
𝛿
−1

2
∫

∞

0

ℎ
𝑖
(𝜎) 𝑑𝜎∫

∞

0

ℎ
𝑖
(𝜎) 𝑔
2

𝑖
(𝑦
𝑖
(𝑡 − 𝜎)) 𝑑𝜎

≥ 𝜇 (𝑡) 𝛿
−1

2
[∫

∞

0

ℎ (𝜎) 𝑔 (𝑦 (𝑡 − 𝜎)) 𝑑𝜎]

𝑇

× 𝑄
3
[∫

∞

0

ℎ (𝜎) 𝑔 (𝑦 (𝑡 − 𝜎)) 𝑑𝜎] .

(27)

Thus,

𝐿𝑉
3
(𝑦 (𝑡) , 𝑡) ≤ 𝛿

−1

2
𝜇 (𝑡) 𝛼

3
𝑔
𝑇

(𝑦 (𝑡)) 𝑄
3
𝑔 (𝑦 (𝑡))

− 𝜇 (𝑡) 𝛿
−1

2
[∫

∞

0

ℎ (𝜎) 𝑔 (𝑦 (𝑡 − 𝜎)) 𝑑𝜎]

𝑇

,

𝑄
3
[∫

∞

0

ℎ (𝜎) 𝑔 (𝑦 (𝑡 − 𝜎)) 𝑑𝜎] .

(28)

Substituting (25), (26), and (28) to (21), we get

𝐿𝑉 (𝑦 (𝑡) , 𝑡)

≤ 𝜇 (𝑡) 𝑦
𝑇

(𝑡) [𝛼
1
𝑃 − 𝑃𝐴

0
− 𝐴
𝑇

0
𝑃 + 𝛿
0
𝑃𝐴
1
𝑄
−1

1
𝐴
𝑇

1
𝑃

+ 𝛿
1
(1 − 𝜌)

−1

𝑃𝐴
2
𝑄
−1

2
𝐴
𝑇

2
𝑃

+ 𝛿
2
𝑃𝐴
3
𝑄
−1

3
𝐴
𝑇

3
𝑃

+ 𝜆Γ
0
+ (1 − 𝜌)

−1

𝛼
−1

2
𝜆Γ
1
] 𝑦 (𝑡)

+ 𝜇 (𝑡) 𝑔
𝑇

(𝑦 (𝑡))

× [𝛿
−1

0
𝑄
1
+ 𝛿
−1

1
𝛼
−1

2
𝑄
2
+ 𝛿
−1

2
𝛼
3
𝑄
3
] 𝑔 (𝑦 (𝑡))

≤ 𝜇 (𝑡) 𝑦
𝑇

(𝑡) [𝛼
1
𝑃 − 𝑃𝐴

0
− 𝐴
𝑇

0
𝑃

+ 𝛿
0
𝑃𝐴
1
𝑄
−1

1
𝐴
𝑇

1
𝑃

+ 𝛿
1
(1 − 𝜌)

−1

𝑃𝐴
2
𝑄
−1

2
𝐴
𝑇

2
𝑃

+ 𝛿
2
𝑃𝐴
3
𝑄
−1

3
𝐴
𝑇

3
𝑃 + 𝜆Γ

0

+ (1 − 𝜌)
−1

𝛼
−1

2
𝜆Γ
1

+ 𝐿 [𝛿
−1

0
𝑄
1
+ 𝛿
−1

1
𝛼
−1

2
𝑄
2

+ 𝛿
−1

2
𝛼
3
𝑄
3
] 𝐿] 𝑦 (𝑡)

= 𝜇 (𝑡) 𝑦
𝑇

(𝑡) Ξ𝑦 (𝑡) ,

(29)
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where

Ξ = 𝛼
1
𝑃 − 𝑃𝐴

0
− 𝐴
𝑇

0
𝑃 + 𝛿
0
𝑃𝐴
1
𝑄
−1

1
𝐴
𝑇

1
𝑃

+ 𝛿
1
(1 − 𝜌)

−1

𝑃𝐴
2
𝑄
−1

2
𝐴
𝑇

2
𝑃 + 𝛿
2
𝑃𝐴
3
𝑄
−1

3
𝐴
𝑇

3
𝑃

+ 𝜆Γ
0
+ (1 − 𝜌)

−1

𝛼
−1

2
𝜆Γ
1

+ 𝐿 [𝛿
−1

0
𝑄
1
+ 𝛿
−1

1
𝛼
−1

2
𝑄
2
+ 𝛿
−1

2
𝛼
3
𝑄
3
] 𝐿.

(30)

So, we have

𝑑𝑉 (𝑦 (𝑡) , 𝑡) ≤ 𝜇 (𝑡) 𝑦
𝑇

(𝑡) Ξ𝑦 (𝑡)

+ 𝑉
𝑦
(𝑦 (𝑡) , 𝑡) 𝜎 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) .

(31)

Taking the mathematical expectation, we get

dEV (𝑦 (𝑡) , 𝑡)

𝑑𝑡
≤ 𝜇 (𝑡) 𝑦

𝑇

(𝑡) Ξ𝑦 (𝑡) . (32)

By Ξ < 0, we get

dEV (𝑦 (𝑡) , 𝑡)

𝑑𝑡
≤ 0, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) ∩ [𝑇, +∞) , 𝑘 ∈ 𝑍

+
.

(33)

In addition,

𝑉
1
(𝑡
𝑘
)

= 𝜇 (𝑡
𝑘
) 𝑦
𝑇

(𝑡
𝑘
) 𝑃𝑦 (𝑡

𝑘
)

= 𝜇 (𝑡
−

𝑘
) [𝑦 (𝑡

−

𝑘
) − 𝑀

𝑘
𝑦 (𝑡
−

𝑘
)]
𝑇

× 𝑃 [𝑦
𝑇

(𝑡
−

𝑘
) − 𝑀

𝑘
𝑦
𝑇

(𝑡
−

𝑘
)]

= 𝜇 (𝑡
−

𝑘
) [(𝐼 − 𝑀

𝑘
) 𝑦 (𝑡
−

𝑘
)]
𝑇

𝑃 [(𝐼 −𝑀
𝑘
) 𝑦 (𝑡
−

𝑘
)]

= 𝜇 (𝑡
−

𝑘
) 𝑦
𝑇

(𝑡
−

𝑘
) (𝐼 − 𝑀

𝑘
)
𝑇

𝑃 (𝐼 −𝑀
𝑘
) 𝑦 (𝑡
−

𝑘
) .

(34)

Noting 𝑀
𝑘
= diag(𝑚

1𝑘
, 𝑚
2𝑘
, . . . , 𝑚

𝑛𝑘
), 𝑚
𝑖𝑘

∈ [0, 2], 𝑖 = 1,

2, . . . , 𝑛, 𝑘 ∈ 𝑍
+
, we have

𝑉
1
(𝑡
𝑘
) ≤ 𝜇 (𝑡

−

𝑘
) 𝑦
𝑇

(𝑡
−

𝑘
) 𝑃𝑦 (𝑡

−

𝑘
) = 𝑉
1
(𝑡
−

𝑘
) . (35)

It is obvious that 𝑉
2
(𝑡
𝑘
) = 𝑉
2
(𝑡
−

𝑘
), 𝑉
3
(𝑡
𝑘
) = 𝑉
3
(𝑡
−

𝑘
), therefore

𝑉 (𝑡
𝑘
) ≤ 𝑉 (𝑡

−

𝑘
) , 𝑘 ∈ 𝑍

+
. (36)

By (33) and (36), we know that 𝑉 is monotonically nonin-
creasing for 𝑡 ∈ [𝑇,∞), which implies that

𝐸𝑉 (𝑦 (𝑡) , 𝑡) ≤ 𝐸𝑉 (𝑦 (𝑇) , 𝑇) , 𝑡 ≥ 𝑇. (37)

From the definition of 𝑉, we can deduce that

𝜇 (𝑡) 𝜆min (𝑃) 𝐸
𝑦 (𝑡)


2

≤ 𝜇 (𝑡) 𝐸𝑦
𝑇

(𝑡) 𝑃𝐸𝑦 (𝑡)

≤ 𝐸𝑉 (𝑦 (𝑡) , 𝑡) ≤ 𝑀 < ∞, 𝑡 ≥ 0,

(38)

where𝑀 = max
0≤𝑠≤𝑇

𝐸𝑉(𝑦, 𝑠). It implies that

𝐸
𝑦(𝑡)


2

≤
𝑀

𝜇 (𝑡) 𝜆min (𝑃)
, 𝑡 ≥ 0. (39)

This completes the proof of Theorem 5.

Remark 6. Theorem 5 provides a global stochastic 𝜇-stability
in the mean sense for a impulsive stochastic differential
system (6). It should be noted that our results depend on
the upper bound of the derivative of time-varying delay, the
influence of randomness, the delay kernels of continuous
distribution, and have nothing to do with the range of time-
varying delay. Therefore, our results can be applied to the
impulsive stochastic neural networks with unbounded time-
varying delay and continuous distributed delay.

Remark 7. In [29, 30], different approacheswere used to study
𝜇-stability of neural networks with unbounded time-varying.
However, the impulsive effect and unbounded continuous
distributed delay are not considered in their models. It is
known that neural networks with unbounded continuous
distributed delays in impulsive effect are of great importance
inmany practically problems. Hence, our results in this paper
are more general than those reported in [29, 30],

If the diffusion coefficient 𝜎(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏(𝑡))) = 0, the
model (6) becomes the model (4), then the following result
can be obtained.

Corollary 8. Assume that Assumptions 1–4 hold. Then, the
zero solution of system (4) is globally 𝜇-stable if there exist
diagonal matrices 𝑃 > 0, 𝑄

𝑖
> 0, 𝑖 = 1, 2 and 𝑄

3
=

diag(𝑞(3)
1
, . . . , 𝑞

(3)

𝑛
), some constants 𝛼

1
≥ 0, 𝛼

2
> 0, 𝛼

3
> 0,

𝛿
𝑗
> 0, 𝑗 = 0, 1, 2, 𝑚

𝑖𝑘
∈ [0, 2], 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ 𝑍

+
,

a nonnegative continuous differential function 𝜇(𝑡) defined on
[0,∞), and a constant 𝑇 > 0 such that, for 𝑡 ≥ 𝑇,

�̇� (𝑡)

𝜇 (𝑡)
≤ 𝛼
1
,

𝜇 (𝑡 − 𝜏 (𝑡))

𝜇 (𝑡)
≥ 𝛼
2
,

∫
∞

0

ℎ
𝑖
(𝑠) 𝜇 (𝑡 + 𝑠) 𝑑𝑠

𝜇 (𝑡)
≤ 𝛼
3
, 𝑖 = 1, 2, . . . , 𝑛,

(40)

and the following LMI hold:

Ξ
∗

=

[
[
[
[
[
[

[

Π
0
√𝛿
0
𝑃𝐴
1
√

𝛿
1

1 − 𝜌
𝑃𝐴
2
√𝛿
2
𝑃𝐴
3

∗ −𝑄
1

0 0

∗ ∗ −𝑄
2

0

∗ ∗ ∗ −𝑄
3

]
]
]
]
]
]

]

< 0, (41)

where Π
0

= 𝛼
1
𝑃 − 𝑃𝐴

0
− 𝐴
𝑇

0
𝑃 + 𝐿[𝛿

−1

0
𝑄
1
+ 𝛿
−1

1
𝛼
−1

2
𝑄
2
+

𝛿
−1

2
𝛼
3
𝑄
3
]𝐿,𝐿 = diag(𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
),𝜆 = 𝜆max(𝑃), and impulsive

operator𝑀
𝑘
= diag(𝑚

1𝑘
, . . . , 𝑚

𝑛𝑘
).

If we take 𝑃 = 𝑄
1
= 𝑄
2
= 𝑄
3
= 𝐼 in Theorem 5, then we

obtain the following testable condition.
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Corollary 9. Assume that Assumptions 1–5 hold. Then, the
zero solution of system (6) is globally stochastically 𝜇-stable in
the mean square if there exist some constants 𝛼

1
≥ 0, 𝛼

2
>

0, 𝛼
3
> 0, 𝛿

𝑗
> 0, 𝑗 = 0, 1, 2, 𝑚

𝑖𝑘
∈ [0, 2], 𝑖 = 1, 2, . . . , 𝑛,

𝑘 ∈ 𝑍
+
, a nonnegative continuous differential function 𝜇(𝑡)

defined on [0,∞), and a constant 𝑇 > 0 such that, for 𝑡 ≥ 𝑇,

�̇� (𝑡)

𝜇 (𝑡)
≤ 𝛼
1
,

𝜇 (𝑡 − 𝜏 (𝑡))

𝜇 (𝑡)
≥ 𝛼
2
,

∫
∞

0

ℎ
𝑖
(𝑠) 𝜇 (𝑡 + 𝑠) 𝑑𝑠

𝜇 (𝑡)
≤ 𝛼
3
, 𝑖 = 1, 2, . . . , 𝑛,

(42)

and the following LMI hold:

Ξ
∗

=

[
[
[
[
[
[

[

Π
0
√𝛿
0
𝐴
1
√

𝛿
1

1 − 𝜌
𝐴
2
√𝛿
2
𝐴
3

∗ −𝐼 0 0

∗ ∗ −𝐼 0

∗ ∗ ∗ −𝐼

]
]
]
]
]
]

]

< 0, (43)

whereΠ
0
= 𝛼
1
−𝐴
0
−𝐴
𝑇

0
+ 𝜆Γ
0
+ (1/(1 − 𝜌))𝛼

−1

2
𝜆Γ
1
+ 𝐿[𝛿
−1

0
+

𝛿
−1

1
𝛼
−1

2
+ 𝛿
−1

2
𝛼
3
]𝐿, 𝐿 = diag(𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
), 𝜆 = 𝜆max(𝑃), and

impulsive operator𝑀
𝑘
= diag(𝑚

1𝑘
, . . . , 𝑚

𝑛𝑘
).

4. Robust Stochastic Stability Analysis of
Neural Networks

Consider the following uncertain stochastic neural networks:

̇𝑦 (𝑡) = − 𝐴
0
(𝑡) 𝑦 (𝑡) + 𝐴

1
(𝑡) 𝑔 (𝑦 (𝑡))

+ 𝐴
2
(𝑡) 𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝐴
3
(𝑡) ∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠

+ 𝜎 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) , 𝑡 ̸= 𝑡
𝑘
, 𝑡 > 0,

Δ𝑦 (𝑡
𝑘
) = 𝑦 (𝑡

𝑘
) − 𝑦 (𝑡

−

𝑘
) = −𝑀

𝑘
(𝑦 (𝑡
−

𝑘
)) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
,

(44)

where some parameters and variables are introduced in
Section 2, the uncertainties are described as follows:

𝐴
𝑖
(𝑡) = 𝐴

𝑖
+ Δ𝐴
𝑖
(𝑡) , 𝑖 = 1, 2, 3, (45)

where Δ𝐴
𝑖
(𝑡), 𝑖 = 1, 2, 3 are perturbed matrices satisfying

[Δ𝐴
0
(𝑡) , Δ𝐴

1
(𝑡) , Δ𝐴

2
(𝑡) , Δ𝐴

3
(𝑡)]

= 𝐻𝐹 (𝑡) [𝑇
0
, 𝑇
1
, 𝑇
2
, 𝑇
3
] ,

(46)

where 𝐻,𝑇
𝑖
, 𝑖 = 1, 2, 3 are some appropriate dimensions

constant matrices, 𝐹(𝑡) is an unknown real time-varying
function with appropriate dimensions and satisfies

𝐹
𝑇

(𝑡) 𝐹 (𝑡) ≤ 𝐼, (47)

where 𝐼 is appropriate dimensions unit matrix.
Theorem 10. Assume that Assumptions 1–5 hold. Then, the
zero solution of system (44) is globally robustly stochastically
𝜇-stable in the mean square if there exist diagonal matrices
𝑃 > 0,𝑄

𝑖
> 0, 𝑖 = 1, 2 and 𝑄

3
= diag(𝑞(3)

1
, . . . , 𝑞

(3)

𝑛
), some

constants 𝛼
1
≥ 0, 𝛼

2
> 0, 𝛼

3
> 0, 𝛿

𝑗
> 0, 𝑗 = 0, 1, 2, 𝜀

𝑗
> 0,

𝑗 = 0, 1, 2, 3, 𝑚
𝑖𝑘

∈ [0, 2], 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ 𝑍
+
, a

nonnegative continuous differential function 𝜇(𝑡) defined on
[0,∞), and a constant 𝑇 > 0 such that, for 𝑡 ≥ 𝑇,

�̇� (𝑡)

𝜇 (𝑡)
≤ 𝛼
1
,

𝜇 (𝑡 − 𝜏 (𝑡))

𝜇 (𝑡)
≥ 𝛼
2
,

∫
∞

0

ℎ
𝑖
(𝑠) 𝜇 (𝑡 + 𝑠) 𝑑𝑠

𝜇 (𝑡)
≤ 𝛼
3
, 𝑖 = 1, 2, . . . 𝑛,

(48)

and the following LMI hold:

Ξ
∗∗

=

[
[
[
[
[
[

[

Π
1
√𝛿
0
𝑃𝐴
1
√

𝛿
1

1 − 𝜌
𝑃𝐴
2
√𝛿
2
𝑃𝐴
3

∗ 𝑅
1

0 0

∗ ∗ 𝑅
2

0

∗ ∗ ∗ 𝑅
3

]
]
]
]
]
]

]

< 0, (49)

where Π
1

= 𝛼
1
𝑃 − 𝑃𝐴

0
− 𝐴
𝑇

0
𝑃 + 𝜆Γ

0
+ (1/(1 −

𝜌))𝛼
−1

2
𝜆Γ
1
+𝐿[𝛿
−1

0
𝑄
1
+𝛿
−1

1
𝛼
−1

2
𝑄
2
+𝛿
−1

2
𝛼
3
𝑄
3
]𝐿+𝜀
−1

0
𝑃𝐻𝐻
𝑇

𝑃+

𝜀
0
𝑇
𝑇

0
𝑇
0
+ 𝜀
1
𝛿
0
𝑇
𝑇

1
𝑇
1
+ 𝜀
2
(𝛿
1
/(1 − 𝜌))𝑇

𝑇

2
𝑇
2
+ 𝜀
3
𝛿
2
𝑇
𝑇

3
𝑇
3
, 𝐿 =

diag(𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
), 𝜆 = 𝜆max(𝑃), 𝑅1 = −𝑄

1
+ 𝜀
−1

1
𝑃𝐻𝐻
𝑇

𝑃,
𝑅
2
= −𝑄
2
+𝜀
−1

2
𝑃𝐻𝐻
𝑇

𝑃,𝑅
3
= −𝑄
3
+𝜀
−1

3
𝑃𝐻𝐻
𝑇

𝑃, and impulsive
operator𝑀

𝑘
= diag(𝑚

1𝑘
, . . . , 𝑚

𝑛𝑘
).

Proof. Let the Lyapunov-Krasovskii functional as defined in
Theorem 5, then by Itô’s formula, we have

Ξ
∗∗

= Ξ
∗

+(

−𝑃Δ𝐴
0
(𝑡) − Δ𝐴

𝑇

0
(𝑡) 𝑃 √𝛿

0
𝑃Δ𝐴
1
(𝑡) √

𝛿
1

1 − 𝜌
𝑃Δ𝐴
2
(𝑡) √𝛿

2
𝑃Δ𝐴
3
(𝑡)

∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

)
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= Ξ
∗

+(

−𝑃𝐻𝐹 (𝑡) 𝑇
0
− 𝑇
𝑇

0
𝐹
𝑇

(𝑡)𝐻
𝑇

𝑃 √𝛿
0
𝑃𝐻𝐹 (𝑡) 𝑇

1
√

𝛿
1

1 − 𝜌
𝑃𝐻𝐹 (𝑡) 𝑇

2
√𝛿
2
𝑃𝐻𝐹 (𝑡) 𝑇

3

∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

)

= Ξ
∗

+(

−𝑇
𝑇

0

0

0

0

)𝐹
𝑇

(𝑡) (𝐻
𝑇

𝑃 0 0 0) + (𝐻
𝑇

𝑃 0 0 0)
𝑇

𝐹 (𝑡)(

−𝑇
𝑇

0

0

0

0

)

𝑇

+(

√𝛿
0
𝑇
𝑇

1

0

0

0

)𝐹
𝑇

(𝑡) (0 𝐻
𝑇

𝑃 0 0) + (0 𝐻
𝑇

𝑃 0 0)
𝑇

𝐹 (𝑡)(

√𝛿
0
𝑇
𝑇

1

0

0

0

)

𝑇

+(

√
𝛿
1

1 − 𝜌
𝑇
𝑇

2

0

0

0

)𝐹
𝑇

(𝑡) (0 0 𝐻
𝑇

𝑃 0) + (0 0 𝐻
𝑇

𝑃 0)
𝑇

𝐹 (𝑡)(

√
𝛿
1

1 − 𝜌
𝑇
𝑇

2

0

0

0

)

𝑇

+(

√𝛿
2
𝑇
𝑇

3

0

0

0

)𝐹
𝑇

(𝑡) (0 0 0 𝐻
𝑇

𝑃) + (0 0 0 𝐻
𝑇

𝑃)
𝑇

𝐹 (𝑡)(

√𝛿
2
𝑇
𝑇

3

0

0

0

)

𝑇

.

(50)

By Lemma 3, we get

Ξ
∗∗

≤ Ξ
∗

+ 𝜀
−1

0
(

𝑃𝐻

0

0

0

)(𝐻
𝑇

𝑃 0 0 0)

+ 𝜀
0
(

−𝑇
𝑇

0

0

0

0

)(−𝑇
0
0 0 0)

+ 𝜀
−1

1
(

0

𝑃𝐻

0

0

)(0 𝐻
𝑇

𝑃 0 0)

+ 𝜀
1
(

√𝛿
0
𝑇
𝑇

1

0

0

0

)(√𝛿
0
𝑇
1
0 0 0)

+ 𝜀
−1

2
(

0

0

𝑃𝐻

0

)(0 0 𝐻
𝑇

𝑃 0)

+ 𝜀
2
(

√
𝛿
1

1 − 𝜌
𝑇
𝑇

2

0

0

0

)(√
𝛿
1

1 − 𝜌
𝑇
2
0 0 0)

+ 𝜀
−1

3
(

0

0

0

𝑃𝐻

)(0 0 0 𝐻
𝑇

𝑃)

+ 𝜀
3
(

√𝛿
2
𝑇
𝑇

3

0

0

0

)(√𝛿
2
𝑇
3
0 0 0)

= Ξ
∗

+(

Π
2

0 0 0

∗ 𝜀
−1

1
𝑃𝐻𝐻
𝑇

𝑃 0 0

∗ ∗ 𝜀
−1

2
𝑃𝐻𝐻
𝑇

𝑃 0

∗ ∗ ∗ 𝜀
−1

3
𝑃𝐻𝐻
𝑇

𝑃

) ,

(51)

where Π
2
= 𝜀
−1

0
𝑃𝐻𝐻
𝑇

𝑃 + 𝜀
0
𝑇
𝑇

0
𝑇
0
+ 𝜀
1
𝛿
0
𝑇
𝑇

1
𝑇
1
+ 𝜀
2
(𝛿
1
/(1 −

𝜌))𝑇
𝑇

2
𝑇
2
+ 𝜀
3
𝛿
2
𝑇
𝑇

3
𝑇
3
.

This completes the proof of Theorem 10.
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Remark 11. The neural network can be disturbed by environ-
mental noises, which cause system parameters’ uncertainty.
It can lead to system instability. As far as we know, there is no
literature that is published on robust 𝜇-stability on uncertain
neural networks with unbounded continuous distributed
delays in impulsive perturbations.

There exist only parameter uncertainties and no stochas-
tic perturbations. So the uncertain neural networks can be
described as

̇𝑦 (𝑡) = − 𝐴
0
(𝑡) 𝑦 (𝑡) + 𝐴

1
(𝑡) 𝑔 (𝑦 (𝑡))

+ 𝐴
2
(𝑡) 𝑔 (𝑦 (𝑡 − 𝜏 (𝑡)))

+ 𝐴
3
(𝑡) ∫

∞

0

ℎ (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠,

𝑡 ̸= 𝑡
𝑘
, 𝑡 > 0,

Δ𝑦 (𝑡
𝑘
) = 𝑦 (𝑡

𝑘
) − 𝑦 (𝑡

−

𝑘
) = −𝑀

𝑘
(𝑦 (𝑡
−

𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
.

(52)

Corollary 12. Assume that Assumptions 1–5 hold. Then, the
zero solution of system (52) is globally robustly 𝜇-stable if there
exist diagonal matrices 𝑃 > 0, 𝑄

𝑖
> 0, 𝑖 = 1, 2 and 𝑄

3
=

diag(𝑞(3)
1
, . . . , 𝑞

(3)

𝑛
), some constants 𝛼

1
≥ 0, 𝛼

2
> 0, 𝛼

3
> 0,

𝛿
𝑗
> 0, 𝑗 = 0, 1, 2, 𝜀

𝑗
> 0, 𝑗 = 0, 1, 2, 3, 𝑚

𝑖𝑘
∈ [0, 2], 𝑖 =

1, 2, . . . , 𝑛, 𝑘 ∈ 𝑍
+
, a nonnegative continuous differential

function 𝜇(𝑡) defined on [0,∞], and a constant 𝑇 > 0 such
that, for 𝑡 ≥ 𝑇,

�̇� (𝑡)

𝜇 (𝑡)
≤ 𝛼
1
,

𝜇 (𝑡 − 𝜏 (𝑡))

𝜇 (𝑡)
≥ 𝛼
2
,

∫
∞

0

ℎ
𝑖
(𝑠) 𝜇 (𝑡 + 𝑠) 𝑑𝑠

𝜇 (𝑡)
≤ 𝛼
3
, 𝑖 = 1, 2, . . . 𝑛,

(53)

and the following LMI hold:

Ξ
∗∗

=

[
[
[
[
[
[

[

Π
1
√𝛿
0
𝑃𝐴
1
√

𝛿
1

1 − 𝜌
𝑃𝐴
2
√𝛿
2
𝑃𝐴
3

∗ 𝑅
1

0 0

∗ ∗ 𝑅
2

0

∗ ∗ ∗ 𝑅
3

]
]
]
]
]
]

]

< 0, (54)

where Π
1

= 𝛼
1
𝑃 − 𝑃𝐴

0
− 𝐴
𝑇

0
𝑃 + 𝐿[𝛿

−1

0
𝑄
1
+ 𝛿
−1

1
𝛼
−1

2
𝑄
2
+

𝛿
−1

2
𝛼
3
𝑄
3
]𝐿 + 𝜀

−1

0
𝑃𝐻𝐻
𝑇

𝑃 + 𝜀
0
𝑇
𝑇

0
𝑇
0
+ 𝜀
1
𝛿
0
𝑇
𝑇

1
𝑇
1
+ 𝜀
2
(𝛿
1
/(1 −

𝜌))𝑇
𝑇

2
𝑇
2
+ 𝜀
3
𝛿
2
𝑇
𝑇

3
𝑇
3
, 𝐿 = diag(𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
), 𝜆 = 𝜆max(𝑃),

𝑅
1
= −𝑄
1
+ 𝜀
−1

1
𝑃𝐻𝐻
𝑇

𝑃, 𝑅
2
= −𝑄
2
+ 𝜀
−1

2
𝑃𝐻𝐻
𝑇

𝑃, 𝑅
3
= −𝑄
3
+

𝜀
−1

3
𝑃𝐻𝐻
𝑇

𝑃, and impulsive operator𝑀
𝑘
= diag(𝑚

1𝑘
, . . . , 𝑚

𝑛𝑘
).

5. Illustrative Examples

In this section, we will give two examples to show the validity
of the results obtained.

Example 13. Consider the stochastic impulsive neural net-
work with two neurons:

𝑑𝑥 (𝑡) = [ − 𝐴
0
𝑥 (𝑡) + 𝐴

1
𝑔 (𝑥 (𝑡))

+ 𝐴
2
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐴
3
∫

∞

0

ℎ (𝑠) 𝑔 (𝑥 (𝑡 − 𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) , 𝑡 ̸= 𝑡
𝑘
, 𝑡 > 0,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

𝑘
) − 𝑥 (𝑡

−

𝑘
)

= −𝑀
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
,

(55)

where the activation function is described by 𝑔
𝑖
(𝑠) = tanh(𝑠),

𝑖 = 1, 2, . . . , 𝑛, 𝜏(𝑡) = 0.4𝑡, ℎ
𝑖
(𝑠) = 𝑒

−𝑠. It is obvious that (0, 0)𝑇
is an equilibriumpoint of system (55). Let𝜇(𝑡) = 𝑡 and choose
𝛼
1
= 0.1, 𝛼

2
= 0.6, 𝛼

3
= 1.2, 𝑀

𝑘
= diag(0.5, 0.5), and the

parameter matrices are, respectively, given by

𝐴
0
= (

2.8 0

0 3.2
) , 𝐴

1
= (

0.2 −0.1

0.1 0.1
) ,

𝐴
2
= (

0.06 0.07

−0.07 0.03
) , 𝐴

3
= (

0.02 −0.03

0.01 0.01
) ,

Γ
0
= Γ
1
= (

1.1 0

0 1.1
) .

(56)

In this case, we get 𝐿 = diag(1, 1), 𝜌 = 0.4. Let 𝑄
1
=

𝑄
2
= 𝑄
3
= 𝐼, 𝛿

0
= 𝛿
1
= 𝛿
2
= 1, and 𝑃 = diag(10, 9). We

can get 𝜆max(Ξ) = −0.9590 < 0 via MATLAB LMI toolbox.
By Theorem 5, the equilibrium point of model (55) with
unbounded time-varying delay and continuously distributed
delay is globally stochastically 𝜇-stable in the mean square.
The numerical simulation is shown in Figure 1.

Example 14. Consider the uncertain stochastic impulsive
neural network with two neurons:

𝑑𝑥 (𝑡) = [−𝐴
0
(𝑡) 𝑥 (𝑡) + 𝐴

1
𝑔 (𝑥 (𝑡))

+ 𝐴
2
(𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐴
3
(𝑡) ∫

∞

0

ℎ (𝑠) 𝑔 (𝑥 (𝑡 − 𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝜔 (𝑡) , 𝑡 ̸= 𝑡
𝑘
, 𝑡 > 0,

Δ𝑥 (𝑡
𝑘
) = 𝑥 (𝑡

𝑘
) − 𝑥 (𝑡

−

𝑘
)

= −𝑀
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
,

(57)

where the activation function is described by 𝑔
𝑖
(𝑠) =

tanh(𝑠), 𝑖 = 1, 2, . . . , 𝑛, 𝜏(𝑡) = 0.5𝑡, ℎ
𝑖
(𝑠) = 𝑒

−𝑠. It is obvious
that (0, 0)𝑇 is an equilibrium point of system (57). Let 𝜇(𝑡) = 𝑡
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Figure 1: (a) Time-series of the 𝐸(𝑥
1
)
2 of model (55) without impulsive effects for 𝑡 ∈ [0, 5]. (b) Time-series of the 𝐸(𝑥

2
)
2 of model (55)

without impulsive effects for 𝑡 ∈ [0, 5]. (c) Time-series of the 𝐸(𝑥
1
)
2 of model (55) with impulsive effects for 𝑡 ∈ [0, 5]. (d) Time-series of the

𝐸(𝑥
2
)
2 of model (55) with impulsive effects for 𝑡 ∈ [0, 5].

and choose 𝛼
1
= 0.1, 𝛼

2
= 0.5, 𝛼

3
= 1.2,𝑀

𝑘
= diag(1.5, 1.5),

and the parameter matrices are, respectively, given by

𝐴
0
= (

9.8 0

0 11.2
) , 𝐴

1
= (

0.2 −0.2

0.4 0.3
) ,

𝐴
2
= (

0.6 0.7

−0.1 0.3
) , 𝐴

3
= (

0.12 0

0 0.21
) ,

Γ
0
= Γ
1
= (

0.5 0

0 0.5
) .

(58)

In this case, we get 𝐿 = diag(1, 1), 𝜌 = 0.5. Let𝐻 = 𝑇
0
= 𝑇
1
=

𝑇
2
= 𝑇
3
= 0.2𝐼, 𝛿

0
= 𝛿
1
= 𝛿
2
= 𝜀
0
= 𝜀
1
= 𝜀
2
= 𝜀
3
= 1, we can

get the following feasible solution viaMATLAB LMI toolbox:

𝑃 = (
0.0863 0

0 0.0863
) , 𝑄

1
= (

0.1416 0

0 0.1416
) ,

𝑄
2
= (

0.0527 0

0 0.0527
) , 𝑄

3
= (

0.1461 0

0 0.1461
) ,

(59)

and obtain 𝜆max(Ξ
∗∗

) = −1.0865 < 0. By Theorem 10,
the equilibrium point of model (24) is globally robustly
stochastically 𝜇-stable in the mean square.

6. Concluding Remarks

This paper firstly investigated the global stochastic 𝜇-
stability in the mean square of a class of impulsive stochas-
tic neural network with unbounded mixed delays. We
obtained some sufficient conditions by using Lyapunov-
Krasovskii functional method, the random analysis the-
ory, and the linear matrix inequality (LMI) technique.
Secondly, we researched global robust 𝜇-stability in the
mean square for a class of uncertain impulsive neural net-
work with unbounded mixed delays. Our results improve
and generalize some earlier works reported in the liter-
ature. Finally, two examples and their numerical simula-
tions are given to illustrate the effectiveness of obtained
results.
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[28] V. B. Kolmanovskĭı and V. R. Nosov, Stability of Functional-
Differential Equations, vol. 180 of Mathematics in Science and
Engineering, Academic Press, London, UK, 1986.

[29] T. Chen and L. Wang, “Global 𝜇-stability of delayed neural net-
works with unbounded time-varying delays,” IEEE Transactions
on Neural Networks, vol. 18, no. 6, pp. 1836–1840, 2007.

[30] X. Liu and T. Chen, “Robust 𝜇-stability for uncertain stochastic
neural networks with unbounded time-varying delays,” Physica
A, vol. 387, no. 12, pp. 2952–2962, 2008.

[31] J. Cao, K. Yuan, and H. X. Li, “Global asymptotical stability
of recurrent neural networks with multiple discrete delays and
distributed delays,” IEEE Transactions on Neural Networks, vol.
17, no. 6, pp. 1646–1651, 2006.



12 Abstract and Applied Analysis

[32] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear
Matrix Inequalities in SystemandControlTheory, vol. 15 of SIAM
Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA,
1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


