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We discuss a generalization of the Krätzel transforms on certain spaces of ultradistributions. We have proved that the Krätzel
transform of an ultradifferentiable function is an ultradifferentiable function and satisfies its Parseval’s inequality. We also provide
a complete reading of the transform constructing two desired spaces of Boehmians. Some other properties of convergence and
continuity conditions and its inverse are also discussed in some detail.

1. Introduction

Krätzel, in [1, 2], introduced a generalization of the Meijer
transform by the integral:

(𝐾𝑝V 𝑓) (𝑥) = ∫
R
+

Z
V
𝑝
(𝑥𝑦) 𝑓 (𝑦) 𝑑𝑦, 𝑥 > 0, (1)

where

Z
V
𝑝
(𝑥𝑦) = ∫

R
+

𝑡V−1𝑒−𝑡
𝑝
−𝑥𝑦/𝑡𝑑𝑡, (2)

𝑝 > 0(∈ N), V ∈ C. Then this generalization is known as
Krätzel transform.

Let 𝑥 be in R+. Denote by S+, or S(R+), the space of all
complex-valued smooth functions 𝜙(𝑡) on R+ such that

sup
𝑥∈K

D
𝑘𝜙 (𝑥)

 < ∞, (3)

𝑥 ∈ R+, whereK runs through compact subsets ofR+; see [3].
The strong dualS

+
ofS+ consists of distributions of compact

supports.
Later, the authors in [4] have studied the𝐾𝑝V transforma-

tion in a space of distributions of compact support inspired by
knownkernelmethod.They, also, have obtained its properties

of analyticity and boundedness and have established its
inversion theorem. In the sense of classical theory, the Meijer
transformation and the Laplace transformation in [5] are
presented as special forms of the cited transform for 𝑝 = 1
and 𝑝 = 1, V = ±1/2, respectively.

It is worth mentioning in this note that a suitable moti-
vation of the cited transform has thoroughly been discussed
in [6] by the aid of a Fréchet space of constituted functions of
infinitely differentiable functions over (0,∞).

This paper is a continuation of the work obtained in [4].
We are concernedwith a general study of the transform in the
space of ultradistributions and further discuss its extension
to Boehmian spaces in some detail. We are employing the
adjoint method and method of kernels for our purpose
to extend the classical integral transform to generalized
functions and hence ultradistributions.

2. Ultradistributions

The theory of ultradistributions is one of generalizations of
the theory of Schwartz distributions; see [3, 7]. Since then, in
the recent past and even earlier, it was extensively studied by
many authors such as Roumieu [8, 9], Komatsu [10], Beurling
[11], Carmichael et al. [12], Pathak [13, 14], and Al-Omari [15,
16].
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By an ultradifferentiable function we mean an infinitely
smooth function whose derivatives satisfy certain growth
conditions as the order of the derivatives increases. Unlike
sequences presented in [15, 16], 𝑎𝑖, 𝑖 = 0, 1, . . ., wherever it
appears, denotes a sequence of positive real numbers. Such
omission of constraints may ease the analysis.

Let 𝛼 be a real number but fixed and L𝑟 be the
space of Lebesgue integrable functions on R+. Denote by
S+(L

𝑟, 𝛼, (𝑎𝑖), 𝑎) (resp., S+(L
𝑟, 𝛼, {𝑎𝑖}, 𝑎)), 1 ≤ 𝑟 ≤ ∞,

the subsets of S+ of all complex valued infinitely smooth
functions on R+ such that, for some constant𝑚1(> 0),

sup
𝛼,𝑥∈K

D
𝑘𝜑 (𝑥)

L𝑟 ≤ 𝑚1𝑎
𝛼𝑎𝛼 (4)

for all 𝑎 > 0 (for some 𝑎 > 0), where K is a compact set trav-
erses R+.

The elements of the dual spaces,
S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) (S



+
(L𝑟, 𝛼, {𝑎𝑖}, 𝑎)), are the Beurling-

type (Roumieu-type) ultradistributions. It may be noted that
S+(L

𝑟, 𝛼, (𝑎𝑖), 𝑎) ⊂ S+(L
𝑟, 𝛼, {𝑎𝑖}, 𝑎) ⊂ S+. Thus, every

distribution of compact support is an ultradistribution of
Roumieu type and further, and an ultradistribution of
Roumieu type is of Beurling-type. Natural topologies on
S+(L

𝑟, 𝛼, (𝑎𝑖), 𝑎) (resp., S+(L
𝑟, 𝛼, {𝑎𝑖}, 𝑎)) can be generated

by the collection of seminorms:

𝜑
𝑟,𝑎 = sup

𝛼,𝑥∈K

D
𝑘𝜑 (𝑥)

L𝑟

𝑎𝛼𝑎𝛼
, 𝑎 > 0. (5)

A sequence (𝜑𝑛) → 𝜑 ∈ S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎) (resp.,

S+(L
𝑟, 𝛼, {𝑎𝑖}, 𝑎)) if

lim
𝑛→∞

sup
𝛼,𝑥∈K

D
𝑘 (𝜑𝑛 (𝑥) − 𝜑 (𝑥))

L𝑟 = 0, (6)

and there is a constant𝑚1 > 0 independent of 𝑛 such that

lim
𝑛→∞

sup
𝛼,𝑥∈K

D
𝑘 (𝜑𝑛 (𝑥) − 𝜑 (𝑥))

L𝑟 ≤ 𝑚1𝑎
𝛼𝑎𝛼 (7)

for all 𝑎 > 0. S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎) (S+(L

𝑟, 𝛼, {𝑎𝑖}, 𝑎)) is dense
in S+, convergence in S+(L

𝑟, 𝛼, (𝑎𝑖), 𝑎) (S+(L
𝑟, 𝛼, {𝑎𝑖}, 𝑎))

implies convergence in S+, and consequently a restriction
of any 𝑓 ∈ S

+
to S+(L

𝑟, 𝛼, (𝑎𝑖), 𝑎) (S+(L
𝑟, 𝛼, {𝑎𝑖}, 𝑎)) is in

S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) (S



+
(L𝑟, 𝛼, {𝑎𝑖}, 𝑎)).

3. The Krätzel Transform of
Tempered Ultradistributions

In this section of this paper we define the Krätzel transform
of tempered ultradistributions by using both of kernel and
adjoint methods. We restrict our investigation to the case of
Beurling type since the other investigation for the Roumieu-
type tempered ultradistributions is almost similar.

Lemma 1. Let 𝜙 ∈ S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎) and then 𝐾𝑝V 𝜙 ∈

S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎).

Proof. Let 𝜙 ∈ S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎) and 𝑥 be fixed, and then

𝐾𝑝V 𝜙 certainly exists. By differentiation with respect to 𝑥 we
get

D𝑥 (𝐾
𝑝

V 𝜙) (𝑥) = ∬
R
+

D𝑥𝑡
V−1𝑒−𝑡

𝑝
−𝑥𝑦/𝑡𝑑𝑡𝜙 (𝑦) 𝑑𝑦

= ∬
R
+

−𝑦

𝑡
𝑡V−1𝑒−𝑡

𝑝
−𝑥𝑦/𝑡𝑑𝑡𝜙 (𝑦) 𝑑𝑦

= ∫
R
+

−𝑦∫
R
+

𝑡(V−1)−1𝑒−𝑡
𝑝
−𝑥𝑦/𝑡𝑑𝑡𝜙 (𝑦) 𝑑𝑦

= ∫
R
+

−𝑦ZV−1
𝑝

(𝑥𝑦) 𝜙 (𝑦) 𝑑𝑦.

(8)

Hence the principle of mathematical induction on the 𝑘th
derivative gives

D
𝑘

𝑥
(𝐾𝑝V 𝜙) (𝑥) = (−1)𝑘 ∫

R
+

Z
V−𝑘
𝑝

(𝑥𝑦) 𝑦𝑘𝜙 (𝑦) 𝑑𝑦. (9)

From [4], we deduce that
D
𝑘

𝑥
(𝐾𝑝V 𝜙) (𝑥)



≤ 𝛼1 ∫
R
+


(𝑦)
(2V−𝑝)/(2𝑝+2)

𝑒−(𝑥𝑦)
𝑝
/(𝑝+1)


𝑦𝑘𝜙 (𝑦) 𝑑𝑦

(10)

for some constant 𝛼1. The assumption that 𝜙 ∈
S+(L

𝑟, 𝛼, (𝑎𝑖), 𝑎) implies that the products under the integral
sign, Ψ = 𝑦𝑘𝜙(𝑦) and (𝑥𝑦)(2V−𝑝)/(2𝑝+2)𝑒−(𝑥𝑦)

𝑝
/(𝑝+1)Ψ, are

also in S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎). Moreover, 𝜙 ∈ S+(L

𝑟, 𝛼, (𝑎𝑖), 𝑎)
ensures that the integral:

ϝ (𝑥) = 𝛼1 ∫
R
+


(𝑥𝑦)
(2V−𝑝)/(2𝑝+2)

𝑒−(𝑥𝑦)
𝑝
/(𝑝+1)


𝑦𝑘𝜙 (𝑦) 𝑑𝑦 (11)

belongs to S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎). Hence
D
𝑘

𝑥
ϝ (𝑥)

L𝑟 ≤ 𝑚1𝑎
𝛼𝑎𝛼 (12)

for some constant 𝑚1. Therefore, from the above inequality
we get

D
𝑘

𝑥
(𝐾𝑝V 𝜙) (𝑥)

L𝑟 ≤
D
𝑘

𝑥
ϝ (𝑥)

L𝑟 ≤ 𝑚1𝑎
𝛼𝑎𝛼, (13)

for certain positive constant𝑚1. This proves the lemma.

From Lemma 1 we deduce that the Krätzel transform is
bounded and closed from S+(L

𝑟, 𝛼, (𝑎𝑖), 𝑎) into itself. Next,
we establish the Parseval’s relation for the Krätzel transform.

Theorem2. Let𝑓 and𝑔 be absolutely integrable functions over
R+ and then

∫
R
+

𝑓 (𝑥) (𝐾𝑝V 𝑔) (𝑥) 𝑑𝑥 = ∫
R
+

(𝐾𝑝V 𝑓) (𝑥) 𝑔 (𝑥) 𝑑𝑥, (14)

where 𝐾𝑝V 𝑓 and 𝐾𝑝V 𝑔 are the Krätzel transforms of 𝑓 and 𝑔,
respectively.
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Proof. It is clear that 𝐾𝑝V 𝑓 and 𝐾𝑝V 𝑔 are continuous and
bounded on R+. Moreover, the Fubini’s theorem allows us to
interchange the order of integration:

∫
R
+

𝑓 (𝑥) (𝐾𝑝V 𝑔) (𝑥) 𝑑𝑥

= ∫
R
+

(∫
R
+

𝑓 (𝑥) ZV
𝑝
(𝑥𝑦) 𝑑𝑥)𝑔 (𝑦) 𝑑𝑦.

(15)

Equation (15) follows since the Krätzel kernel ZV
𝑝
(𝑥𝑦) applies

for the functions 𝑓 and 𝑔, when the order of integration is
interchanged. This completes the proof of the theorem.

Now, in consideration of Theorem 2, the adjoint method
of extending the Krätzel transform can be read as

⟨𝐾𝑝V 𝑓, 𝜙⟩ = ⟨𝑓,𝐾𝑝V 𝜙⟩ , (16)

where 𝑓 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) and 𝜙 ∈ S+(L

𝑟, 𝛼, (𝑎𝑖), 𝑎).

Theorem 3. Given that 𝑓 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) then 𝐾𝑝V 𝑓 ∈

S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎).

Proof. Consider a zero convergent sequence (𝜙𝑛) in
S+(L

𝑟, 𝛼, (𝑎𝑖), 𝑎) then certainly (𝐾𝑝V 𝜙𝑛) is a zero-convergent
sequence in the same space. It follows from (16) that

⟨𝐾𝑝V 𝑓, 𝜙𝑛⟩ = ⟨𝑓,𝐾𝑝V 𝜙𝑛⟩ → 0 as 𝑛 → ∞. (17)

Linearity is obvious. This completes the proof.

From the above theorem we deduce that the Krätzel
transformof a tempered ultradistribution is a tempered ultra-
distribution. Moreover, the boundedness property of 𝐾𝑝V 𝑓,
𝑓 ∈ S

+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) follows from the following theorem.

Theorem 4. Let 𝑓 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) and then 𝐾𝑝V 𝑓 is

bounded.

Proof. See [4, Proposition 2.3].

It is interesting to know that the Krätzel transform can be
defined in an alternative way, namely, by the kernel method.
Let 𝑓 ∈ S

+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎), and then

(𝐾𝑝V 𝑓) (𝑥) = ⟨𝑓 (𝑦) , ZV
𝑝
(𝑥𝑦)⟩ . (18)

In fact, (18) is a straightforward consequence of Lemma 1.

Theorem 5. Let 𝑓 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) then 𝐾𝑝V 𝑓 is infinitely

differentiable and

D
𝑘

𝑥
(𝐾𝑝V 𝑓) (𝑥) = ⟨𝑓 (𝑡) ,D𝑘

𝑥
Z
V
𝑝
(𝑥𝑡)⟩ (19)

for every 𝑘 ∈ N and 𝑥 ∈ R+.

Proof. See [4, Proposition 2.2].

4. Boehmian Spaces

Boehmians were first constructed as a generalization of
regular Mikusinski operators [17]. The minimal structure
necessary for the construction of Boehmians consists of the
following elements:

(i) a nonempty set 𝐴,
(ii) a commutative semigroup (B, ∗),
(iii) an aperation ⊙ : A × B → A such that for each 𝑥 ∈ A

and 𝑠1, 𝑠2 ∈ B, 𝑥 ⊙ (𝑠1 ∗ 𝑠2) = (𝑥 ⊙ 𝑠1) ⊙ 𝑠2,
(iv) a collection Δ ⊂ B𝑁 such that

(a) if 𝑥, 𝑦 ∈ A, (𝑠𝑛) ∈ Δ, 𝑥 ⊙ 𝑠𝑛 = 𝑦 ⊙ 𝑠𝑛 for all 𝑛,
then 𝑥 = 𝑦,

(b) if (𝑠𝑛), (𝑡𝑛) ∈ Δ, then (𝑠𝑛 ∗ 𝑡𝑛) ∈ Δ.

Elements of Δ are called delta sequences. Consider

g = {(𝑥𝑛, 𝑠𝑛) : 𝑥𝑛 ∈A, (𝑠𝑛)∈Δ, 𝑥𝑛⊙𝑠𝑚 = 𝑥𝑚⊙𝑠𝑛, ∀𝑚, 𝑛 ∈ N} .
(20)

If (𝑥𝑛, 𝑠𝑛), (𝑦𝑛, 𝑡𝑛) ∈ g, 𝑥𝑛 ⊙ 𝑡𝑚 = 𝑦𝑚 ⊙ 𝑠𝑛, for all 𝑚, 𝑛 ∈ N,
thenwe say (𝑥𝑛, 𝑠𝑛) ∼ (𝑦𝑛, 𝑡𝑛).The relation∼ is an equivalence
relation in g. The space of equivalence classes in g is denoted
by 𝛽. Elements of 𝛽 are called Boehmians. Between A and 𝛽
there is a canonical embedding expressed as

𝑥 →
𝑥 ⊙ 𝑠𝑛
𝑠𝑛

. (21)

The operation ⊙ can be extended to 𝛽 × A by

𝑥𝑛
𝑠𝑛

⊙ 𝑡 =
𝑥𝑛 ⊙ 𝑡

𝑠𝑛
. (22)

In 𝛽, there are two types of convergence:

(𝛿 convergence) a sequence (ℎ𝑛) in 𝛽 is said to be
𝛿 convergent to ℎ in 𝛽, denoted by ℎ𝑛

𝛿
→ ℎ, if there

exists a delta sequence (𝑠𝑛) such that (ℎ𝑛⊙𝑠𝑛), (ℎ⊙𝑠𝑛) ∈
A, for all 𝑘, 𝑛 ∈ N, and (ℎ𝑛⊙𝑠𝑘) → (ℎ⊙𝑠𝑘) as 𝑛 → ∞,
in A, for every 𝑘 ∈ N,
(Δ convergence) a sequence (ℎ𝑛) in 𝛽 is said to be
Δ convergent to ℎ in 𝛽, denoted by ℎ𝑛

Δ
→ ℎ, if there

exists a (𝑠𝑛) ∈ Δ such that (ℎ𝑛 − ℎ) ⊙ 𝑠𝑛 ∈ A, for all
𝑛 ∈ N, and (ℎ𝑛 − ℎ) ⊙ 𝑠𝑛 → 0 as 𝑛 → ∞ in A. For
further discussion see [17–21].

5. The Ultra-Boehmian Space 𝛽𝑠+

Denote by D+, or D (R+), the Schwartz space of C∞ functions
of bounded support. Let Δ+ be the family of sequences (𝑠𝑛) ∈
D (R+) such that the following holds:

(Δ 1) ∫R
+

𝑠𝑛(𝑥)𝑑𝑥 = 1, for all 𝑛 ∈ N,

(Δ 2) 𝑠𝑛(𝑥) ≥ 0, for all 𝑛 ∈ N,
(Δ 3) supp 𝑠𝑛 ⊂ (0, 𝜀𝑛), 𝜀𝑛 → 0 as 𝑛 → ∞.

It is easy to see that each (𝑠𝑛) in Δ+ forms a delta sequence.
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Let 𝑓 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) and 𝜎 ∈ D (R+) be related by

the expression:

(𝑓 ⋅ 𝜎) 𝜐 = 𝑓 (𝜎 ⊛ 𝜐) , (23)

where

(𝜎 ⊛ 𝜐) (𝑥) = ∫
R
+

𝜎 (𝑡) 𝜐 (𝑥𝑡) 𝑑𝑡 (24)

for every 𝜐 ∈ S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎).

Lemma 6. Let 𝑓 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) and 𝜎 ∈ D+ and then

𝑓 ⋅ 𝜎 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎).

Proof. Using theweak topology ofS
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎), wewrite

(𝑓 ⋅ 𝜎) 𝜐 =
𝑓 (𝜎 ⊛ 𝜐)

 ≤ 𝐶‖𝜎 ⊛ 𝜐‖𝑟,𝑎, (25)

where 𝜐 ∈ S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎). Hence, to complete the proof,

we aremerely required to show that 𝜎⊛𝜐 ∈ S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎).

First, if 𝜎 ∈ D+ and 𝜐 ∈ S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎), then choosing

a compact set K containing the support of 𝜎 yields

(𝜎 ⊛ 𝜐) (𝑥 + Δ𝑥) − (𝜎 ⊛ 𝜐) (𝑥)

Δ𝑥

= ∫
R
+

𝜎 (𝑡)
𝜐 ((𝑥 + Δ𝑥) 𝑡) − 𝜐 (𝑥𝑡)

Δ𝑥
𝑑𝑡

(26)

which is dominated by 𝜎(𝑡)|D𝑥𝜐(𝑥)|. The dominated conver-
gence theorem and the principle of mathematical induction
implies

D
𝑘

𝑥
(𝜎 ⊛ 𝜐) = 𝜎 ⊛D

𝑘

𝑥
𝜐. (27)

Finally

∫
R
+

D
𝑘 (𝜎 ⊛ 𝜐) (𝑥)


𝑟

𝑑𝑥 = ∫
R
+

(𝜎 ⊛D
𝑘𝜐) (𝑥)


𝑟

𝑑𝑥

≤ ∫
R
+

∫
K

𝜎 (𝑡) 𝑑𝑡D
𝑘𝜐 (𝑥𝑡)


𝑟

𝑑𝑥

≤ 𝑀∫
R
+

D
𝑘𝜐 (𝑥𝑡)


𝑟

𝑑𝑥.

(28)

Therefore

‖𝜎 ⊛ 𝜐‖𝑟,𝑎 ≤ 𝑑‖𝜐‖𝑟,𝑎 < 𝑑𝑎𝛼𝑎𝛼 for some constant 𝑑. (29)

Thus 𝜎 ⊛ 𝜐 ∈ S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎). This completes the proof of

the lemma.

Lemma 7. Let 𝑓1, 𝑓2 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) and 𝜎 ∈ D+ and

then

(i) 𝛼𝑓 ⋅ 𝜎 = 𝛼(𝑓 ⋅ 𝜎), 𝛼 ∈ C,
(ii) (𝑓1 + 𝑓2) ⋅ 𝜎 = 𝑓1 ⋅ 𝜎1 + 𝑓2 ⋅ 𝜎2.

Proof of the above Lemma is obvious.

Lemma 8. Let 𝑓𝑛, 𝑓 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) and 𝜎 ∈ D+ and then

𝑓𝑛 ⋅ 𝜎 → 𝑓 ⋅ 𝜎. (30)

Proof. Let 𝜐 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) and then 𝜎 ⊛ 𝜐 ∈

S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎). Therefore

(𝑓𝑛 ⋅ 𝜎 − 𝑓 ⋅ 𝜎) 𝜐 = ((𝑓𝑛 − 𝑓) ⋅ 𝜎) 𝜐 = (𝑓𝑛 − 𝑓) (𝜎 ⊛ 𝜐) .
(31)

Hence 𝑓𝑛 ⋅ 𝜎 → 𝑓 ⋅ 𝜎 as 𝑛 → ∞.

Lemma 9. Let 𝑓 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) and (𝑠𝑛) ∈ Δ+ then

𝑓 ⋅ 𝑠𝑛 → 𝑓 inS
+
(L𝑟, 𝛼, (𝑎𝑖) , 𝑎) as 𝑛 → ∞. (32)

Proof. Let 𝜐 ∈ S+(L
𝑟, 𝛼, (𝑎𝑖), 𝑎) and supp 𝑠𝑛 ⊂ (0, 𝜀𝑛), 𝑛 ∈ N

and then

(𝑓 ⋅ 𝑠𝑛) 𝜐 = 𝑓 (𝑠𝑛 ⊛ 𝜎) . (33)

It is sufficient to establish that 𝑠𝑛 ⊛ 𝜐 → 𝜐 as 𝑛 → ∞. By
using (27) and Δ 1 imply that

∫
R
+

D
𝑘

𝑥
(𝑠𝑛 ⊛ 𝜐 − 𝜐) (𝑥)


𝑟

𝑑𝑥

= ∫
R
+

(𝑠𝑛 ⊛D
𝑘

𝑥
𝜐 −D

𝑘

𝑥
𝜐) (𝑥)


𝑟

𝑑𝑥

= ∫
R
+


∫
𝜀
𝑛

0

𝑠𝑛 (𝑡) (D
𝑘

𝑥
𝜐 (𝑥𝑡) −D

𝑘

𝑥
𝜐 (𝑥)) 𝑑𝑡



𝑟

𝑑𝑥.

(34)

Hence, the mean value theorem implies

∫
R
+

D
𝑘

𝑥
(𝑠𝑛 ⊛ 𝜐 − 𝜐) (𝑥)


𝑟

𝑑𝑥

≤ ∫
R
+


∫
𝜀
𝑛

0

𝜉𝑠𝑛 (𝑡)D
𝑘+1

𝑥
𝜐 (𝑥𝜉) 𝑑𝑡



𝑟

𝑑𝑥,

(35)

𝜉 ∈ (0, 𝑡). Let 𝐴1 = sup
𝑠∈K|D

𝑘+1

𝑥
𝜓(𝑠)|, where K is certain

compact set. The calculations show that
𝑠𝑛 ⊛ 𝜐 − 𝜐

𝑟,𝑎 ≤ 𝐹𝜀𝑛 → 0 as 𝑛 → ∞, (36)

where 𝐹 is certain constant. Hence Lemma 9. The Boehmian
space 𝛽𝑠

+

is therefore constructed.

6. 𝛽Z+ and the Krätzel Transform of
Ultra-Boehmians

Denote by Z(R+), or Z+, the space of functions which are
Krätzel transforms of ultradistributions in S

+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎),

and then convergence on Z+ can be defined in such away that
𝐸𝑛 → 𝐸∗ in Z+ if 𝑓𝑛 → 𝑓 ∈ S

+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) as 𝑛 → ∞,

where 𝐸𝑛 = 𝐾𝑝V 𝑓𝑛 and 𝐸∗ = 𝐾𝑝V 𝑓. Let 𝐸 ∈ Z+ and 𝜎 ∈ D+ and
then it is proper to define

(𝐸 ⊚ 𝜎) (𝑢) = ∫
R
+

𝐸 (𝑢𝑡) 𝜎 (𝑡) 𝑑𝑡 (37)

for each 𝑢 ∈ R+.
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Lemma 10. Let 𝑓 ∈ S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) and 𝜎 ∈ D+ and then

𝐾𝑝V (𝑓 ⋅ 𝜎) = 𝐾𝑝V 𝑓 ⊚ 𝜎.

Proof. Let K be a compact set containing the support of 𝜎,
and then from (18) it follows that

𝐾𝑝V (𝑓 ⋅ 𝜎) (𝑢) = ⟨(𝑓 ⋅ 𝜎) (𝑦) , ZV
𝑝
(𝑢𝑦)⟩

= ⟨𝑓 (𝑦) , ⟨𝜎 (𝑡) , ZV
𝑝
((𝑢𝑡) 𝑦)⟩⟩

= ∫
R
+

⟨𝑓 (𝑦) , ZV
𝑝
((𝑢𝑡) 𝑦)⟩ 𝜎 (𝑡) 𝑑𝑡=𝐾𝑝V 𝑓⊚𝜎.

(38)

Hence the lemma follows.

Lemma 11. Let 𝐸 ∈ Z+ and 𝜎 ∈ D+ and then 𝐸 ⊚ 𝜎 ∈ Z+.

Proof. 𝐸 ∈ Z+ implies 𝐾𝑝V 𝑓 = 𝐸, for some 𝑓 ∈
S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎). Hence 𝐸 ⊚ 𝜎 = 𝐾𝑝V 𝑓 ⊚ 𝜎 = 𝐾𝑝V (𝑓 ⋅ 𝜎) ∈

Z+.

The following are lemmas which can be easily proved
by the aid of the corresponding lemmas from the previous

section. Detailed proof is avoided. First, if 𝐾
−1
𝑝

V is the inverse
Krätzel transform of𝐾𝑝V , and then

Lemma 12. Let 𝐸 ∈ Z+ and 𝜎 ∈ D+ and then

𝐾
−1
𝑝

V (𝐸 ⊚ 𝜎) = 𝐾
−1
𝑝

V 𝐸 ⋅ 𝜎. (39)

Lemma 13. Let 𝐸1, 𝐸2 ∈ Z+ and then for all 𝜎1, 𝜎2 ∈ D+ we
have

(1) (𝐸1 + 𝐸2) ⊚ 𝜎1 = 𝐸1 ⊚ 𝜎1 + 𝐸2 ⊚ 𝜎1,
(2) (𝑎𝐸) ⊚ 𝜎1 = 𝑎(𝐸 ⊚ 𝜎1).

Lemma 14. Let 𝐸𝑛 → 𝐸 and (𝑠𝑛) ∈ Δ+ and then 𝐸𝑛 ⊚ 𝑠𝑛 →
𝐸.

Lemma 15. Let𝐸𝑛 → 𝐸 and𝜎 ∈ D+ and then𝐸𝑛⊚𝜎 → 𝐸⊚𝜎.

With the previous analysis, the Boehmian space 𝛽Z
+

is
constructed. The sum of two Boehmians and multiplication
by a scalar in 𝛽Z

+

is defined in a natural way [𝑓𝑛/𝜙𝑛] +
[𝑔𝑛/𝜓𝑛] = [((𝑓𝑛 ⊚ 𝜓𝑛) + (𝑔𝑛 ⊚ 𝜙𝑛))/(𝜙𝑛 ⊚ 𝜓𝑛)] and 𝛼[𝑓𝑛/𝜙𝑛] =
[𝛼(𝑓𝑛/𝜙𝑛)], 𝛼 ∈ C.

The operation ⊚ and the differentiation are defined by

[
𝑓𝑛
𝜙𝑛
] ⊚ [

𝑔𝑛
𝜓𝑛
] = [

𝑓𝑛 ⊚ 𝑔𝑛
𝜙𝑛 ⊚ 𝜓𝑛

] , D
𝑘 [

𝑓𝑛
𝜙𝑛
] = [

D𝑘𝑓𝑛
𝜙𝑛

] .

(40)

With the aid of Lemma 10 we define the extended Krätzel
transform of a Boehmian [𝑓𝑛/𝑠𝑛] ∈ 𝛽𝑠

+

to be a Boehmian in
𝛽z
+

expressed by the relation:

K⃗𝑝V [
𝑓𝑛
𝑠𝑛
] = [

𝐾𝑝V 𝑓𝑛
𝑠𝑛

] . (41)

Lemma 16. K⃗𝑝V : 𝛽𝑠
+

→ 𝛽Z
+

is well defined and linear
mapping.

Proof is a straightforward conclusion of definitions.

Definition 17. Let [𝐸𝑛/𝑠𝑛] ∈ 𝛽Z
+

and then the inverse of K⃗ is
defined as follows:

K⃗
−1
𝑝

V [
𝐸𝑛
𝑠𝑛
] = [

[

𝐾
−1
𝑝

V 𝐸𝑛
𝑠𝑛

]

]

, (42)

for each (𝑠𝑛) ∈ Δ+.

Lemma 18. K⃗𝑝V is an isomorphism from 𝛽𝑠
+

into 𝛽Z
+

.

Proof. Assume K⃗𝑝V [𝑓𝑛/𝑠𝑛] = K⃗𝑝V [𝑔𝑛/𝑡𝑛], then it follows from
(41) and the concept of quotients of two sequences 𝐾𝑝V 𝑓𝑛 ⊚
𝑡𝑚 = 𝐾𝑝V 𝑔𝑚 ⊚ 𝑠𝑛. Therefore, Lemma 10 implies 𝐾𝑝V (𝑓𝑛 ⋅ 𝑡𝑚) =
𝐾𝑝V (𝑔𝑚 ⋅ 𝜙𝑛). Employing properties of 𝐾𝑝V implies 𝑓𝑛 ⋅ 𝑡𝑚 =
𝑔𝑚 ⋅ 𝑠𝑛. Thus, [𝑓𝑛/𝑠𝑛] = [𝑔𝑛/𝑡𝑛]. Next we establish that K⃗𝑝V
is onto. Let [𝐾𝑝V 𝑓𝑛/𝑠𝑛] ∈ 𝛽Z

+

be arbitrary and then 𝐾𝑝V 𝑓𝑛 ⊚
𝑠𝑚 = 𝐾𝑝V 𝑓𝑚 ⊚ 𝑠𝑛 for every 𝑚, 𝑛 ∈ N. Hence 𝑓𝑛, 𝑓𝑚 ∈
S
+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) are such that 𝐾𝑝V (𝑓𝑛 ⋅ 𝑠𝑚) = 𝐾𝑝V (𝑓𝑚 ⋅ 𝑠𝑛).

Hence the Boehmian [𝑓𝑛/𝑠𝑛] ∈ 𝛽𝑠
+

satisfies the equation
K⃗𝑝V [𝑓𝑛/𝑠𝑛] = [𝐾𝑝V 𝑓𝑛/𝑠𝑛].

This completes the proof of the lemma.

Lemma 19. Let [𝐸𝑛/𝑠𝑛] ∈ 𝛽Z
+

, 𝐸𝑛 = 𝐾𝑝V 𝑓𝑛, and 𝜙 ∈ D+ and
then

K⃗
−1
𝑝

V ([
𝐸𝑛
𝑠𝑛
] ⊚ 𝜙) = [

𝐸−1
𝑛

𝑠𝑛
] ⋅ 𝜙,

K⃗𝑝V ([
𝑓𝑛
𝑠𝑛
] ∙ 𝜙) = [

𝐸𝑛
𝑠𝑛
] ⊚ 𝜙.

(43)

Proof. It follows from (42) that

K⃗
−1
𝑝

V ([
𝐸𝑛
𝑠𝑛
] ⊚ 𝜙) = K⃗

−1
𝑝

V ([
𝐸𝑛 ⊚ 𝜙

𝑠𝑛
]) = [

[

𝐾
−1
𝑝

V (𝐸𝑛 ⊚ 𝜙)

𝑠𝑛
]

]

.

(44)

Applying Lemma 12 leads to

K⃗
−1
𝑝

V ([
𝐸𝑛
𝑠𝑛
] ⊚ 𝜙) = [

[

𝐾
−1
𝑝

V 𝐸𝑛
𝑠𝑛

]

]

⋅ 𝜙 = [
𝐸−1
𝑛

𝑠𝑛
] ⋅ 𝜙. (45)

Proof of the second part is similar. This completes the proof
of the lemma.

Theorem 20. K⃗𝑝V : 𝛽𝑠
+

→ 𝛽Z
+

and K⃗
−1
𝑝

V : 𝛽Z
+

→ 𝛽𝑠
+

are
continuous with respect to 𝛿 and Δ convergences.

Proof. First of all, we show that K⃗𝑝V : 𝛽𝑠
+

→ 𝛽Z
+

and K⃗
−1
𝑝

V :
𝛽Z
+

→ 𝛽𝑠
+

are continuous with respect to 𝛿 convergence.

Let 𝛽𝑛
𝛿
→ 𝛽 in 𝛽𝑠

+

as 𝑛 → ∞ and then we establish that
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K⃗𝑝V𝛽𝑛 → K⃗𝑝V𝛽 as 𝑛 → ∞. In view of [10], there are 𝑓𝑛,𝑘 and
𝑓𝑘 in S

+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎) such that

𝛽𝑛 = [
𝑓𝑛,𝑘
𝑠𝑘

] , 𝛽 = [
𝑓𝑘
𝑠𝑘
] (46)

such that 𝑓𝑛,𝑘 → 𝑓𝑘 as 𝑛 → ∞ for every 𝑘 ∈ N. The
continuity condition of the Krätzel transform implies 𝐸𝑛,𝑘 →
𝐸𝑘 as 𝑛 → ∞, 𝐸𝑛,𝑘 = 𝐾𝑝V 𝑓𝑛,𝑘, and 𝐸𝑘 = 𝐾𝑝V 𝑓𝑘 in the space Z+.
Thus, [𝐸𝑛,𝑘/𝑠𝑘] → [𝐸𝑘/𝑠𝑘] as 𝑛 → ∞ in 𝛽Z

+

.

To prove the second part of the lemma, let 𝑔𝑛
𝛿
→ 𝑔 ∈

𝛽Z
+

as 𝑛 → ∞. From [10], we have 𝑔𝑛 = [𝐸𝑛,𝑘/𝑠𝑘] and
𝑔 = [𝐸𝑘/𝑠𝑘] for some 𝐸𝑛,𝑘, 𝐸𝑘 ∈ Z+ where 𝐸𝑛,𝑘 → 𝐸𝑘 as

𝑛 → ∞. Hence 𝐾
−1
𝑝

V 𝐸𝑛,𝑘 → 𝐾
−1
𝑝

V 𝐸𝑘 in 𝛽𝑠
+

as 𝑛 → ∞.
That is, [𝐸−1

𝑛,𝑘
/𝑠𝑘] → [𝐸−1

𝑘
/𝑠𝑘] as 𝑛 → ∞. Using (42) we

get K⃗
−1
𝑝

V [𝐸𝑛,𝑘/𝑠𝑘] → K⃗
−1
𝑝

V [𝐸𝑘/𝑠𝑘] as 𝑛 → ∞.

Now, we establish continuity of K⃗𝑝V and K⃗
−1
𝑝

V with respect
to Δ+ convergence. Let 𝛽𝑛

Δ
→ 𝛽 in 𝛽𝑠

+

as 𝑛 → ∞. Then, we
find 𝑓𝑛 ∈ S

+
(L𝑟, 𝛼, (𝑎𝑖), 𝑎), and (𝑠𝑛) ∈ Δ+ such that (𝛽𝑛 −𝛽) ⋅

𝑠𝑛 = [(𝑓𝑛 ⋅ 𝑠𝑘)/𝑠𝑘] and 𝑓𝑛 → 0 as 𝑛 → ∞. Employing (41)
we get

K⃗𝑝V ((𝛽𝑛 − 𝛽) ⋅ 𝑠𝑛) = [
𝐾𝑝V (𝑓𝑛 ⋅ 𝑠𝑘)

𝑠𝑘
] . (47)

Hence, from (41) and Lemma 19 we have K⃗𝑝V ((𝛽𝑛 − 𝛽) ⋅ 𝑠𝑛) =
[(𝐸𝑛 ⊚ 𝑠𝑘)/𝑠𝑘] = 𝐸𝑘 → 0 as 𝑛 → ∞ in Z+. Therefore

K⃗𝑝V ((𝛽𝑛 − 𝛽) ⋅ 𝑠𝑛)

= (K⃗𝑝V𝛽𝑛 − K⃗𝑝V𝛽) ⊚ 𝑠𝑛 → 0 as 𝑛 → ∞.
(48)

Hence, K⃗𝑝V𝛽𝑛
Δ
→ K⃗𝑝V𝛽 as 𝑛 → ∞. Finally, let 𝑔𝑛

Δ
→ 𝑔 in 𝛽Z

+

as 𝑛 → ∞ and then we find 𝐸𝑘 ∈ Z+ such that (𝑔𝑛 −𝑔)⊚ 𝑠𝑛 =
[(𝐸𝑘 ⊚ 𝑠𝑘)/𝑠𝑘] and 𝐸𝑘 → 0 as 𝑛 → ∞ for some (𝑠𝑛) ∈ Δ+
and 𝐸𝑘 = 𝐾𝑝V 𝑓𝑛.

Next, using (42), we obtain K⃗
−1
𝑝

V ((𝑔𝑛−𝑔)⊚𝑠𝑛) = [𝐾
−1
𝑝

V (𝐸𝑘⊚
𝑠𝑘)/𝑠𝑘]. Lemma 19 implies that

K⃗
−1
𝑝

V ((𝑔𝑛 − 𝑔) ⊚ 𝑠𝑛)

= [
𝑓𝑛 ⋅ 𝑠𝑘
𝑠𝑘

]=𝑓𝑛→0 as 𝑛→∞ in S


+
(L𝑟, 𝛼, (𝑎𝑖) , 𝑎) .

(49)

Thus K⃗
−1
𝑝

V ((𝑔𝑛−𝑔)⊚𝑠𝑛) = (K⃗
−1
𝑝

V 𝑔𝑛−K⃗
−1
𝑝

V 𝑔)⋅𝑠𝑛 → 0 as 𝑛 → ∞.

Hence, we have K⃗
−1
𝑝

V 𝑔𝑛
Δ
→ K⃗
−1
𝑝

V 𝑔 as 𝑛 → ∞ in 𝛽𝑠
+

.
This completes the proof of the theorem.
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tions of theAmericanMathematical Society, vol. 176, pp. 319–334,
1973.



Abstract and Applied Analysis 7

[18] S. K. Q. Al-Omari, D. Loonker, P. K. Banerji, and S. L. Kalla,
“Fourier sine (cosine) transform for ultradistributions and their
extensions to tempered and ultraBoehmian spaces,” Integral
Transforms and Special Functions, vol. 19, no. 5-6, pp. 453–462,
2008.
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