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Themethod of spectral decimation is applied to an infinite collection of self-similar fractals.The sets considered are a generalization
of the Sierpinski Gasket to higher dimensions; they belong to the class of nested fractals and are thus very symmetric. An explicit
construction is given to obtain formulas for the eigenvalues of the Laplace operator acting on these fractals.

1. Introduction

In 1989, J. Kigami [1] gave an analytic definition of a Laplace
operator acting on the Sierpinski Gasket; a few years later, this
definition was extended to include the Laplacians on a large
class of self-similar fractal sets [2], known as postcritically
finite sets (PCF sets). The method of spectral decimation
introduced by Fukushima and Shima in the 1990s provides
a way to evaluate the eigenvalues of Kigami’s Laplacian. In
general terms, thismethod consists in finding the eigenvalues
of the self-similar fractal set by taking limits of eigenvalues of
discrete Laplacians that act on some graphs that approximate
the fractal. The spectral decimation method was applied in
[3] to the Sierpinski Gasket, in order to give an explicit
construction which allows one to obtain the set of eigen-
values. In [4], it was shown that it is possible to apply the
spectral decimation method to a large collection of p.c.f. sets,
including the family of fractals known as nested fractals that
was introduced by T. Lindstrøm in [5]. In addition to the
Sierpinski Gasket, the spectral decimation method has been
applied in several specific cases of p.c.f. fractals (e.g., [6–
10]); also, the method has been proved useful to study the
spectrum of particular fractals that are not p.c.f. (e.g., [11, 12])
and of fractafolds modeled on the Sierpinski Gasket [13].
The spectral decimation method has also shown to be a very
useful tool for the analysis of the structure of the spectra of
the Laplacians of some fractals (e.g., [14–16]).

In the present work, we develop in an explicit way the
spectral decimation method for an infinite collection of

self-similar sets that we will denote by P
𝑛
(𝑛 ≥ 2 a positive

integer). The definition of these sets is given in Definition 1.
For the cases 𝑛 = 2, 3, they correspond, respectively, to the
unit interval and the Sierpinski Gasket. For larger values of 𝑛
they give a quite natural extension of the Sierpinski Gasket to
higher dimensions. The spectral decimation method for the
cases 𝑛 = 2, 3 is presented with thorough detail in [17]. Our
presentation follows this reference to some extent. However,
some technical difficulties arise for 𝑛 ≥ 4. This is mainly
due to the fact that—even though the fractals considered are
very symmetric—the graphs approximating the fractal are
not as homogeneous as the ones approximating the Sierpinski
Gasket. For instance, if we consider the graph obtained by
taking away the boundary points from Γ

1
(see Definition 2

and Figures 1 and 2), then it will be a complete graph only
for 𝑛 ≤ 3. A consequence of this is the appearance of sets of
two types of vertices that have to be dealt with separately and
which we denote by 𝐹

𝑟,𝑠
and 𝐺

𝑟,𝑠
; for 𝑛 ≤ 3, the sets 𝐺

𝑟,𝑠
are

empty. We also make the observation that the approximating
graphs Γ

𝑘
are nonplanar when 𝑛 > 3.

In Section 2, we present general facts about self similar
sets, for the sake of completeness and in order to establish
notation. In Section 3, we introduce the sets P

𝑛
that are the

subject of study in this work; at the end of the section, we find
the Hausdorff dimension of these fractals when embedded in
the Euclidean space. In Section 4, we define the graphs that
approximate the self-similar sets P

𝑛
and fix more notations.

Our main result is presented in Section 5 (Theorem 3);
it is shown that the eigenvalues and eigenfunctions of the
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Figure 1: The first approximating graph Γ
1
for the fractal P

4
.

Figure 2:The graph Γ
1
for the fractalP

4
, minus the boundary points.

discrete Laplacians of the approximating graphs can be
obtained recursively. Finally, in Section 6, it is shown that the
eigenvalues of the Laplace operator in P

𝑛
can be recovered by

taking limits of the discrete Laplacians; in order to do this, we
solve the so-called renormalization problem for this case (see
Theorem 5).

2. Notation and Preliminaries

We denote by S
𝑛
the shift space with 𝑛 symbols. In this work,

we will always consider these 𝑛 symbols to be the numbers
0, 1, . . . , 𝑛 − 1. S

𝑛
is a compact space (see, e.g., [18]) when

equipped with the metric

𝛿 (𝑎
0
𝑎
1
𝑎
2
𝑎
3
. . . ; 𝑏
0
𝑏
1
𝑏
2
𝑏
3
. . .) = 𝑟

𝑘

, 0 < 𝑟 < 1, (1)

where

𝑘 = min {𝑗 ≥ 0 | 𝑎
𝑗
̸= 𝑏
𝑗
} . (2)

We will use the dot notation ̇𝑎, meaning that the symbol 𝑎
repeats to infinity.

Let x = 𝑥
0
𝑥
1
𝑥
2
. . . be an element of S

𝑛
and 𝑎 ∈ {0, . . . , 𝑛 −

1}. We denote by 𝑇
𝑎
the shift-operator given by

𝑇
𝑎
(x) = 𝑎𝑥

0
𝑥
1
𝑥
2
. . . . (3)

It is easy to see that

𝛿 (𝑇 (x) ; 𝑇 (y)) = 𝑟𝛿 (x; y) , (4)

so that 𝑇
𝑎
is a contraction (by factor 𝑟). The space S

𝑛
is

a self-similar set, equal to 𝑛 smaller copies of itself, with
{𝑇
0
, . . . , 𝑇

𝑛−1
} the corresponding contractions. Even more so,

it can be proved (Theorem 1.2.3. in [18]) that if 𝐾 is any self-
similar set, then it is homeomorphic to a quotient space of the
form S

𝑛
/ ∼ for a suitable equivalence relation.

For𝐾 = S
𝑛
/ ∼ and 𝑎 a word of length𝑚

a = (𝑎
0
𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑚−1
) , (5)

denote by 𝑇a the shift operator given by

𝑇a (x) = 𝑎0 ⋅ ⋅ ⋅ 𝑎𝑚−1𝑥0𝑥1𝑥2 . . . . (6)

The operator 𝑇a is called an𝑚-contraction, and the sets of the
form𝑇a(𝐾) are known as the cells of level𝑚 of the self-similar
set 𝐾. We note that, for each choice of 𝑚, 𝐾 is the union of
the 𝑛𝑚 cells of level𝑚.

3. The Self-Similar Fractals P
𝑛

Here we will introduce the self-similar fractals P
𝑛
that are the

subject of analysis in this work.

Definition 1. For 𝑛 ∈ N, define P
𝑛
as the quotient space S

𝑛
/ ∼,

with the equivalence relation given by

𝑎
0
𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑘
𝑏 ̇𝑐 ∼ 𝑎

0
𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑘
𝑐
̇
𝑏, (7)

for any choice of symbols 𝑎
𝑗
, 𝑏, and 𝑐.

P
1
is a trivial space with only one element, P

2
is homeo-

morphic to a compact interval inR, andP
3
is homeomorphic

to the well-known Sierpinski Gasket. For any value of 𝑛, P
𝑛

can be embedded in the Euclidean space; more precisely,
there exists a (quite natural) homeomorphism between P

𝑛

and a compact self-similar set 𝐾
𝑛
⊂ 𝑅
𝑛−1. Below, we define

the sets𝐾
𝑛
; for these representations of P

𝑛
, we will be able to

find their Hausdorff dimensions.
Take 𝑛 points 𝑥

0
, . . . , 𝑥

𝑛−1
∈ R𝑛−1 that do not lie in the

same (𝑛 − 2)-dimensional hyperplane; for 𝑛 = 3, those points
will be the “vertices” of the Sierpinski Gasket. For 𝑛 = 4, the
fractal 𝐾

4
will be some sort of a Sierpinski tetrahedron (see

Figure 3), while the four points 𝑥
𝑗
will be the vertices of the

tetrahedron.
Consider the contractions

𝑓
𝑖
(𝑥) =

𝑥 + 𝑥
𝑖

2

, 𝑖 = 1, . . . , 𝑛 − 1. (8)

We note that 𝑓
𝑖
maps each 𝑥 ∈ R𝑛−1 to the midpoint of 𝑥 and

𝑥
𝑖
(hence, leaving 𝑥

𝑖
fixed). Define𝐾

𝑛
as the unique compact

set such that

𝐾
𝑛
=

𝑛−1

⋃

𝑖=0

𝑓
𝑖
(𝐾
𝑛
) . (9)
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Figure 3: A representation of 𝐾
4
, generated with Matlab.

We note that, for 𝑖 ̸= 𝑗, the sets 𝑓
𝑖
(𝐾
𝑛
) and 𝑓

𝑗
(𝐾
𝑛
) intersect at

exactly one point: 𝑓
𝑖
(𝑥
𝑗
) = 𝑓

𝑗
(𝑥
𝑖
). From this, it follows that

the map 𝜋 : P
𝑛
→ 𝐾
𝑛
given by

𝜋 (𝜔
0
𝜔
1
𝜔
2
. . .) = ⋂

𝑚≥0

𝑓
𝜔0
∘ 𝑓
𝜔1
∘ ⋅ ⋅ ⋅ ∘ 𝑓

𝜔𝑚
(𝐾
𝑛
) (10)

is a well-defined homeomorphism; also, for every 𝑘 =
0, . . . , 𝑛 − 1, the following diagram commutes (cf. Theo-
rem 1.2.3 in [18]):

𝑇𝑘

𝜋𝜋

𝐾𝑛𝐾𝑛
𝑓𝑘

P𝑛 P𝑛

(11)

The sets 𝐾
𝑛
satisfy the Moran-Hutchinson open set

condition namely, there exists a bounded nonempty open set
𝑂 ⊂ P

𝑛
such that

𝑓
𝑖
(𝑂) ⊂ 𝑂, ∀𝑖 ∈ {0, . . . , 𝑛 − 1} ,

𝑓
𝑖
(𝑂) ∩ 𝑓

𝑗
(𝑂) , ∀𝑖 ̸= 𝑗.

(12)

Just take 𝑂 = 𝐾
𝑛
\ {𝑥
0
, . . . , 𝑥

𝑛−1
}. From this and the fact

that 𝐾
𝑛
is equal to 𝑛 contractions of itself (by factor 1/2), it

follows from Moran’s theorem (Corollary 1.5.9 in [18]) that
the Hausdorff dimension of𝐾

𝑛
, with respect to theEuclidean

metric, is equal to log 𝑛/ log 2.
We end this section with two relevant notes.

For some values of 𝑛, it might be possible to embed𝐾
𝑛

isometrically into the Euclidean space of a dimension
𝑚 smaller than 𝑛 − 1. Of course, the dimension of the
fractal gives a restriction to the minimal value of𝑚.
The representations 𝐾

𝑛
are somehow useful to visu-

alize the self-similar fractals P
𝑛
. However, this rep-

resentation and its metric do not play any role in

the analysis carried out in the next sections; we will
therefore focus on the more abstract definition of P

𝑛

given at the beginning of this section.

4. Graph Approximations of Self-Similar Sets

In this and the next sections, we consider the self-similar set
P
𝑛
defined above, for an arbitrary but fixed value of 𝑛 ≥ 2.
Let 𝑉
0
be the set of points in P

𝑛
that have the form ̇

𝑘 with
𝑘 = 1, . . . , 𝑛 − 1. We call 𝑉

0
the boundary of P

𝑛
. Likewise,

for 𝑚 ∈ N, let 𝑉
𝑚
be the subset of P

𝑛
of points of the form

𝑎
0
⋅ ⋅ ⋅ 𝑎
𝑚−1

̇
𝑘. In other words, 𝑥 ∈ 𝑉

𝑚
if and only if it belongs

to the image of 𝑉
0
under some𝑚-contraction.

Next, we define the graphs that will approximate P
𝑛
.

Definition 2. Denote by Γ
0
the complete graph of 𝑛 vertices,

with 𝑉
0
being its set of vertices. For 𝑚 ∈ N, let Γ

𝑚
be the

graphwith the set of vertices𝑉
𝑚
and edge relation established

by requiring 𝑥 to be connected with 𝑦 if and only if there
exists an𝑚-contraction 𝑇a such that both points 𝑥 and 𝑦 are
in 𝑇a(𝑉0).

We can see that an equivalent formulation is that two
vertices 𝑥 and 𝑦 share an edge in Γ

𝑚
only when their first 𝑚

symbols coincide. It is worth noting that even though 𝑉
0
⊂

𝑉
1
⊂ 𝑉
2
. . ., the edge relation is never preserved; this follows

from the fact that if 𝑥 ̸= 𝑦 are connected in Γ
𝑚
, then their

(𝑚 + 1)-th symbols cannot be equal, so that they will not be
connected in Γ

𝑚+1
.

For each𝑚 ∈ N, let Δ
𝑚
be the graph Laplacian on Γ

𝑚
. We

consider the Laplacian as acting on a space with boundary.
More precisely, for a real-valued function 𝑢 defined on 𝑉

𝑚

and 𝑥 in 𝑉
𝑚
\ 𝑉
0
,

Δ
𝑚
𝑢 (𝑥) = ∑

𝑦∼𝑥

(𝑢 (𝑥) − 𝑢 (𝑦)) , (13)

with the sum over all vertices 𝑦 that share an edge with
𝑥; the boundary values remain unchanged. Also, 𝑢 is an
eigenfunction of Δ

0
with eigenvalue 𝜆, if

Δ
𝑚
𝑢 (𝑥) = 𝜆𝑢 (𝑥) , ∀𝑥 ∈ 𝑉

𝑚
\ 𝑉
0
. (14)

We denote by 𝐸
𝑚
(⋅, ⋅) the associated quadratic form (known

as the energy product of the graph):

𝐸
𝑚
(𝑢, 𝑣) = (Δ

𝑚
𝑢, 𝑣) = ∑

𝑥∼𝑦

(𝑢 (𝑥) − 𝑢 (𝑦)) (𝑣 (𝑥) − 𝑣 (𝑦)) ,

(15)

for 𝑢 and 𝑣 real-valued functions defined on 𝑉
𝑚
and the sum

being taken over the pairs of vertices (𝑥, 𝑦) that are connected
to each other. Also, we use the abbreviation 𝐸(𝑢) = 𝐸(𝑢, 𝑢).

5. Spectral Decimation

Let 𝑚 > 1 and suppose 𝑢 is an eigenfunction of Δ
𝑚−1

,
with eigenvalue 𝜆

𝑚−1
. We will show that it is always possible

to extend this function to the domain 𝑉
𝑚

so that it will
be an eigenfunction of Δ

𝑚
(with not the same eigenvalue).
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𝑥0,0

𝑥0,1
𝑥0,2

𝑥0,3

𝑥1,1

𝑥1,2

𝑥1,3

𝑥3,3

𝑥2,3

𝑥2,2

Figure 4: A cell of level𝑚 − 1 of a graph Γ
𝑚
, approximating P

4
.

In order to do this, we will derive necessary conditions for
the extension to be an eigenfunction; in the process, it will
become clear that those conditions are also sufficient.

Suppose that 𝑢 is an eigenfunction of Δ
𝑚
with eigenvalue

𝜆
𝑚
; we aim to write the values of 𝑢

𝑚
in 𝑉
𝑚
\ 𝑉
𝑚−1

in terms of
its values in 𝑉

𝑚−1
. Without loss of generality, we can restrict

ourselves to the set𝑉
𝑚
∩𝑇a(P𝑛) for a fixed (𝑚−1)-contraction

𝑇a; this is because the vertices of Γ𝑚 that belong to the set (𝑉𝑚\
𝑉
𝑚−1
) ∩ 𝑇a(P𝑛) are not connected to any vertices outside the

cell 𝑇a(P𝑛). Denote the elements of this set by

𝑥
𝑏,𝑐
= a𝑏 ̇𝑐, 𝑏, 𝑐 = 0, . . . , 𝑛 − 1. (16)

It is clear that 𝑥
𝑏,𝑐
= 𝑥
𝑐,𝑏

and also that 𝑥
𝑏,𝑐
∈ 𝑉
𝑚−1

if and only
if 𝑏 = 𝑐. This is shown in Figure 4.

For each point 𝑥
𝑟,𝑠
∈ 𝑉
𝑚
∩ 𝑇a(P𝑛), define the sets of

vertices

𝐹
𝑟,𝑠
= {𝑥
𝑖,𝑗
| 𝑖 ̸= 𝑗, {𝑟, 𝑠} ∩ {𝑖, 𝑗} ̸= 0} ,

𝐺
𝑟,𝑠
= {𝑥
𝑖,𝑗
| 𝑖 ̸= 𝑗, {𝑟, 𝑠} ∩ {𝑖, 𝑗} = 0} .

(17)

In other words, 𝐹
𝑟,𝑠
is the set of vertices (not in Γ

𝑚−1
) that are

connected to the vertex 𝑥
𝑟,𝑠
in Γ
𝑚
, and𝐺

𝑟,𝑠
is the set of vertices

(not in Γ
𝑚−1

, either) that are not connected to it.
In the case 𝑛 = 4, the graph Γ

𝑚
\ Γ
𝑚−1

is an octahedron;
hence, for each pair {𝑟, 𝑠}, the subgraph determined by the
vertices in 𝐹

𝑟,𝑠
is a 4-cycle one, while 𝐺

𝑟,𝑠
consists of a

single vertex (the one opposite to 𝑥
𝑟,𝑠
in the octahedron). For

general P
𝑛
, we can see that the following.

The graph Γ
𝑚
\ Γ
𝑚−1

has 𝑛(𝑛 − 1) vertices, all of
them with degree 2(𝑛 − 2). Each of these vertices is
connected to another 2 vertices in Γ

𝑚−1
.

The subgraph determined by 𝐹
𝑟,𝑠

consists of two
complete graphs, each one with 𝑛−2 vertices.The two

𝑥0,4

𝑥0,2

𝑥0,3
𝑥1,4

𝑥1,2

𝑥1,3

Figure 5:Thegraphdetermined by𝐹
0,1

in a graphΓ
𝑚
, approximating

P
5
.

complete graphs are joined to each other pairwise,
thus forming a “prism,” (a true prism only in the case
𝑛 = 5, where the base is a 3-cycle one, as shown in
Figure 5).

The subgraph determined by 𝐺
𝑟,𝑠

has (𝑛 − 2)(𝑛 − 3)/2
vertices, each one of them with degree 2(𝑛 − 4).

In Γ
𝑚
, each vertex that belongs to 𝐺

𝑟,𝑠
is connected to

exactly four vertices in 𝐹
𝑟,𝑠
. On the other hand, each

vertex that belongs to𝐹
𝑟,𝑠
is connected to 𝑛−2 vertices

in 𝐺
𝑟,𝑠
.

Now, having noted all that, we proceed with the calcula-
tions. For every 𝑟 ̸= 𝑠 we have

(2 (𝑛 − 1) − 𝜆
𝑚
) 𝑢 (𝑥
𝑟,𝑠
) = 𝑢 (𝑥

𝑟,𝑟
) + 𝑢 (𝑥

𝑠,𝑠
)

+∑

𝐹𝑟,𝑠

𝑢 (𝑥
𝑖,𝑗
) .

(18)

Adding this up over all the possible values of 𝑟 and 𝑠 and
rearranging terms yields

(2 − 𝜆
𝑚
) ∑

𝑟 ̸= 𝑠

𝑢 (𝑥
𝑟,𝑠
) = (𝑛 − 1)

𝑛−1

∑

𝑗=0

𝑢 (𝑥
𝑗,𝑗
) , (19)

which for any fixed 𝑎 ̸= 𝑏 can also be written in the form

(2 − 𝜆
𝑚
)(𝑢 (𝑥

𝑎,𝑏
) + ∑

𝐹𝑎,𝑏

𝑢 (𝑥
𝑖,𝑗
) + ∑

𝐺𝑎,𝑏

𝑢 (𝑥
𝑖,𝑗
))

= (𝑛 − 1)

𝑛−1

∑

𝑗=0

𝑢 (𝑥
𝑗,𝑗
) .

(20)
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This, together with (18), allows us to express the sum of the
values in 𝐺

𝑎,𝑏
in terms of 𝑢(𝑥

𝑎,𝑏
) and the values at points in

𝑉
𝑚−1

; namely, provided 𝜆
𝑚
̸= 2, we have that

∑

𝐺𝑎,𝑏

𝑢 (𝑥
𝑖,𝑗
) = 𝑢 (𝑥

𝑎,𝑎
) + 𝑢 (𝑥

𝑏,𝑏
) − (2𝑛 − 1 − 𝜆

𝑚
) 𝑢 (𝑥
𝑎,𝑏
)

+

(𝑛 − 1)

2 − 𝜆
𝑚

𝑛−1

∑

𝑗=0

𝑢 (𝑥
𝑗,𝑗
) .

(21)

Next, we will take the sum of the same terms, but only
over the 𝑥

𝑖,𝑗
inside the set 𝐹

𝑎,𝑏
for fixed values 𝑎 ̸= 𝑏. Since 𝐹

𝑎,𝑏

contains two complete graphs with 𝑛 − 1 vertices and these
complete graphs are pairwise connected to each other, it is
clear that each 𝑥

𝑖,𝑗
∈ 𝐹
𝑎,𝑏

is connected to other 𝑛 − 1 vertices
in𝐹
𝑎,𝑏
. Also, recall that each 𝑥

𝑖,𝑗
∈ 𝐺
𝑎,𝑏

is connected to exactly
four vertices in 𝐹

𝑎,𝑏
. For the vertices in𝑉

𝑚−1
, we note that 𝑥

𝑗,𝑗

is connected to 𝑛 − 2 vertices in 𝑥
𝑖,𝑗
∈ 𝐹
𝑎,𝑏

if 𝑗 = 𝑎, 𝑏 and to
only two vertices otherwise.

From the preceding discussion, it follows the equality

(𝑛 − 𝜆
𝑚
)∑

𝐹𝑎,𝑏

𝑢 (𝑥
𝑖,𝑗
) = 4∑

𝐺𝑎,𝑏

𝑢 (𝑥
𝑖,𝑗
)

+ (𝑛 − 2) (𝑢 (𝑥
𝑎,𝑎
) + 𝑢 (𝑥

𝑏,𝑏
))

+ 2 (𝑛 − 2) 𝑢 (𝑥
𝑎,𝑏
) + 2 ∑

𝑗 ̸= 𝑎,𝑏

𝑢 (𝑥
𝑗,𝑗
) .

(22)

Consider the expression given by (18) for {𝑎, 𝑏} = {𝑟, 𝑠},
multiply it by 𝑛 − 𝜆

𝑚
, and substitute equality (22) into it; this

gives after arranging terms

(𝜆
2

𝑚
− (3𝑛 − 2) 𝜆

𝑚
+ 2 (𝑛

2

− 2𝑛 + 2)) 𝑢 (𝑥
𝑎,𝑏
) = 4∑

𝐺𝑎,𝑏

𝑢 (𝑥
𝑖,𝑗
)

+ 2 ∑

𝑗 ̸= 𝑎,𝑏

𝑢 (𝑥
𝑗,𝑗
) + (2 (𝑛 − 1) − 𝜆

𝑚
) (𝑢 (𝑥

𝑎,𝑎
) + 𝑢 (𝑥

𝑏,𝑏
)) .

(23)

We want to get rid of the terms corresponding to 𝐺
𝑎,𝑏
, so we

replace it by (21). After straightforward computations, we can
see that for 𝜆

𝑚
̸= 2

(𝜆
2

𝑚
− (3𝑛 + 2) 𝜆

𝑚
+ 2𝑛 (𝑛 + 2)) 𝑢 (𝑥

𝑎,𝑏
)

= (𝜆
2

𝑚
− 2 (𝑛 + 2) + 8𝑛) (𝑢 (𝑥

𝑎,𝑎
) + 𝑢 (𝑥

𝑏,𝑏
))

+ 2 (2𝑛 − 𝜆
𝑚
) ∑

𝑗 ̸= 𝑎,𝑏

𝑢 (𝑥
𝑗,𝑗
) (2 − 𝜆

𝑚
)
−1

.

(24)

The quadratic equation for 𝜆
𝑚
in the left-hand side has roots

𝑛 + 2 and 2𝑛. The one in the right-hand side has roots 4 and
2𝑛. This gives us the following expression for 𝑢(𝑥

𝑎,𝑏
) in terms

of the values of 𝑢 in 𝑉
𝑚−1

:

𝑢 (𝑥
𝑟,𝑠
) =

(4 − 𝜆
𝑚
) (𝑢 (𝑥

𝑟,𝑟
) + 𝑢 (𝑥

𝑠,𝑠
)) + 2∑

𝑗 ̸= 𝑟,𝑠
𝑢 (𝑥
𝑗,𝑗
)

(2 − 𝜆
𝑚
) ((𝑛 + 2) − 𝜆

𝑚
)

,

(25)

valid for any eigenvalue 𝜆
𝑚
̸= 2, 𝑛 + 2, 2𝑛.

For 𝜆
𝑚
= 0, this reduces to

𝑢 (𝑥
𝑟,𝑠
) =

2

𝑛 + 2

(𝑢 (𝑥
𝑟,𝑟
) + 𝑢 (𝑥

𝑠,𝑠
)) +

1

𝑛 + 2

∑

𝑗 ̸= 𝑟,𝑠

𝑢 (𝑥
𝑗,𝑗
) .

(26)

It is clear from the construction that if 𝑢(𝑥
𝑎,𝑏
) is defined

by (25) and 𝜆
𝑚
is given by (35), then we have that

Δ
𝑚
𝑢 (𝑥
𝑎,𝑏
) = 𝜆
𝑚
𝑢 (𝑥
𝑎,𝑏
) (𝑎 ̸= 𝑏) . (27)

It remains to verify that this is valid as well in 𝑉
𝑚−1

. Of
course, this cannot be true for arbitrary values of 𝜆

𝑚
but only

at most for specific values depending on 𝜆
𝑚−1

; we will find
those values in what follows.

Take a point in 𝑉
𝑚−1

, say

𝑥
𝑝,𝑝
= a�̇�, a = 𝑎

0
⋅ ⋅ ⋅ 𝑎
𝑚−1
. (28)

Suppose that 𝑎
𝑘
= 𝑞 is the last symbol in a that is

different from𝑝; we can assume that such symbol exists, since
otherwise 𝑥

𝑝,𝑝
would be in the boundary 𝑉

0
. With this, the

point 𝑥
𝑝,𝑝

can also be written in the form

𝑥
𝑝,𝑝
= a󸀠 ̇𝑞, a󸀠 = 𝑎

0
⋅ ⋅ ⋅ 𝑎
𝑘−1
𝑝𝑞 ⋅ ⋅ ⋅ 𝑞, (29)

with the necessary number of 𝑞’s to make a󸀠 a word of length
𝑚 − 1. Hence, 𝑥

𝑝,𝑝
is in exactly two different (𝑚 − 1)-cells:

𝑇a(P𝑛) and 𝑇a󸀠(P𝑛), corresponding to each one of its two
representations.

Denote by 𝑥󸀠
𝑟,𝑠

the points in 𝑇a󸀠(P𝑛) ∩ 𝑉𝑚, defined as in
(16) for the points in 𝑇a(P𝑛) ∩ 𝑉𝑚; in particular, 𝑥

𝑝,𝑝
= 𝑥
󸀠

𝑞,𝑞

(see Figure 6). The value of 𝑢 in the points 𝑥󸀠
𝑟,𝑠
is given by the

analogue of (25). The vertex 𝑥
𝑝,𝑝

is connected in Γ
𝑚
to the

2(𝑛−1) points of the form 𝑥
𝑝,𝑗

and 𝑥󸀠
𝑞,𝑗
, fromwhich it follows

that 𝑢 is an eigenfunction of Δ
𝑚
with eigenvalue 𝜆

𝑚
, if and

only if (25) holds for all 𝑥
𝑟,𝑠
∈ 𝑉
𝑚
\ 𝑉
𝑚−1

and the following
equality holds for all 𝑥

𝑝,𝑝
∈ 𝑉
𝑚−1

:

(2 (𝑛 − 1) − 𝜆
𝑚
) 𝑢 (𝑥

𝑝,𝑝
) = ∑

𝑖 ̸= 𝑝, 𝑗 ̸= 𝑞

(𝑢 (𝑥
𝑝,𝑗
) + 𝑢 (𝑥

󸀠

𝑞,𝑗
)) .

(30)

On the other hand, since we know that 𝑢 is an eigenfunc-
tion of Δ

𝑚−1
with eigenvalue 𝜆

𝑚−1
, we also have that

(2 (𝑛 − 1) − 𝜆
𝑚−1
) 𝑢 (𝑥

𝑝,𝑝
) = ∑

𝑖 ̸= 𝑝, 𝑗 ̸= 𝑞

(𝑢 (𝑥
𝑖,𝑖
) + 𝑢 (𝑥

󸀠

𝑗,𝑗
)) .

(31)

Replacing each term in the right-hand side of (30) by its
expression given by (25), we can see that

(2 (𝑛 − 1) − 𝜆
𝑚
) 𝑢 (𝑥

𝑝,𝑝
)

= 2 (𝑛 − 1) (4 − 𝜆
𝑚
) 𝑢 (𝑥

𝑝,𝑝
) + (2𝑛 − 𝜆

𝑚
) (2 − 𝜆

𝑚
)
−1

× ((𝑛 + 2) − 𝜆
𝑚
)
−1

,

(32)
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𝑥0,1

𝑥0,2

𝑥0,3

𝑥1,1

𝑥1,2

𝑥1,0

𝑥1,3

𝑥3,3

𝑥2,2

0,0𝑥′

0,1𝑥′

0,2𝑥′

0,3𝑥′

𝑥0,0 = 1,1𝑥′

1,2𝑥′

1,3𝑥′

3,3𝑥′

2,3𝑥′

2,2𝑥′

Figure 6: Two cells of level𝑚 − 1 intersecting in a vertex of Γ
𝑚
.

and, using (31), this gives

𝑢 (𝑥
𝑝,𝑝
)

= [2 (𝑛 − 1) (4 − 𝜆
𝑚
) + (2𝑛 − 𝜆

𝑚
) (2 (𝑛 − 1) − 𝜆

𝑚
)]

× 𝑢 (𝑥
𝑝,𝑝
) (2 (𝑛 − 1) − 𝜆

𝑚
)
−1

(2 − 𝜆
𝑚
)
−1

× ((𝑛 + 2) − 𝜆
𝑚
)
−1

.

(33)

Taking 𝑢(𝑥
𝑝,𝑝
) ̸= 0 and cancelling out, after computations,

the above equality reduces to the quadratic

𝜆
2

𝑚
− (𝑛 + 2) 𝜆

𝑚
+ 𝜆
𝑚−1
= 0, (34)

which in turn gives the following recursive characterization
of the eigenvalues:

𝜆
𝑚
=

(𝑛 + 2) ± √(𝑛 + 2)
2

− 4𝜆
𝑚−1

2

.
(35)

Since this procedure can be reversed, we have proved the
following result.

Theorem 3. Let 𝜆
𝑚
̸= 2, 𝑛 + 2, and 2𝑛, and let 𝜆

𝑚−1
be given

by (34). Suppose 𝑢 is an eigenfunction of Δ
𝑚−1

with eigenvalue
𝜆
𝑚−1

. Extend 𝑢 to 𝑉
𝑚
by (25). Then 𝑢 is an eigenfunction of

Δ
𝑚
with eigenvalue 𝜆

𝑚
. Conversely, if 𝑢 is an eigenfunction of

Δ
𝑚
with eigenvalue 𝜆

𝑚
̸= 2, 𝑛 + 2, and 2𝑛, then its restriction

to 𝑉
𝑚−1

is an eigenfunction of Δ
𝑚−1

with eigenvalue 𝜆
𝑚−1

.

6. The Laplacian on the Self-Similar Fractals

In order to define the Laplace operator of a p.c.f. fractal
by means of graph approximations, it is required to solve
the so-called renormalization problem for the fractal (e.g.,

[17], Chapter 4); roughly, this consists in normalizing the
graph energies in Γ

𝑚
in order to obtain a self-similar energy

in the fractal by taking the limit. This can be achieved if
the energies are such that they remain constant for each
harmonic extension from Γ

𝑚
to Γ
𝑚+1

. Below, we do this for
the P
𝑛
sets.

Definition 4. For a given function 𝑢 with domain 𝑉
𝑚−1

, we
call the extension of 𝑢 to 𝑉

𝑚
given by (26) its harmonic

extension.

The next result gives the explicit solution of the renormal-
ization problem for P

𝑛
.

Theorem 5. Let 𝑢 : 𝑉
𝑚−1
→ R be arbitrary, and let 𝑢󸀠 :

𝑉
𝑚
→ R be its harmonic extension. Then

𝐸
𝑚
(𝑢
󸀠

) =

𝑛

𝑛 + 2

𝐸
𝑚−1
(𝑢) . (36)

Proof. Note that the energy at level 𝑘 of a given function
equals the sum of the energies at all the 𝑘󸀠-cells for any 𝑘󸀠 ≤ 𝑘,
since different cells share no edges. This allows us to restrict
ourselves to one fixed 𝑚 − 1-cell both while considering
𝐸
𝑚
(𝑢
󸀠

) and 𝐸
𝑚−1
(𝑢). We use the notation of Section 4 for the

vertices of Γ
𝑚
in this cell and write 𝐸 for the energy restricted

to this cell. We can readily see that

𝐸
𝑚−1
(𝑢) = ∑

𝑖 ̸= 𝑗

(𝑢 (𝑥
𝑖,𝑖
) − 𝑢 (𝑥

𝑗,𝑗
))

2

.

= (𝑛 − 1)

𝑛−1

∑

𝑖=0

𝑢
2

(𝑥
𝑖,𝑖
) − 2∑

𝑖 ̸= 𝑗

𝑢 (𝑥
𝑖,𝑖
𝑢 (𝑥
𝑖
, 𝑗)) .

(37)

In order to evaluate the energy𝐸
𝑚
, we consider first the edges

joining vertices in 𝑉
𝑚−1

with vertices in 𝑉
𝑚
\ 𝑉
𝑚−1

: the edge
joining the vertex 𝑥

𝑎,𝑎
with the vertex 𝑥

𝑎,𝑘
contributes to the

energy by

(𝑢 (𝑥
𝑎,𝑎
) − 𝑢 (𝑥

𝑎,𝑘
))
2

=

1

(𝑛 + 2)
2
(𝑛𝑢 (𝑥

𝑎,𝑎
) − 2𝑢 (𝑥

𝑘,𝑘
) − ∑

𝑗 ̸= 𝑎,𝑘

𝑢 (𝑥
𝑗,𝑗
))

2

.

(38)

When adding up this over all possible pairs 𝑎 ̸= 𝑘, each 𝑥
𝑟,𝑟

will appear 𝑛 − 1 times as the 𝑥
𝑎,𝑎
, another 𝑛 − 1 times as the

𝑥
𝑘,𝑘
, and (𝑛 − 1)(𝑛 − 2) as one of the 𝑥

𝑗,𝑗
’s. Each pair double

product 2𝑥
𝑟,𝑟
𝑥
𝑠,𝑠
will appear twice for {𝑟, 𝑠} = {𝑎, 𝑘}, 2(𝑛 − 2)

times for {𝑟, 𝑠} = {𝑎, 𝑗} for some 𝑗, also 2(𝑛 − 2) times
for {𝑟, 𝑠} = {𝑘, 𝑗} for some 𝑗, and finally (𝑛 − 2)(𝑛 − 3)
times when both 𝑟 and 𝑠 are one of the 𝑗’s. All this implies
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that the contribution to the energy from these edges is, after
simplification,

∑

𝑎 ̸= 𝑘

(𝑢 (𝑥
𝑎,𝑎
) − 𝑢 (𝑥

𝑎,𝑘
))
2

=

(𝑛 − 1) (𝑛
2

+ 𝑛 + 2)

(𝑛 + 2)
2

𝑛−1

∑

𝑖=0

𝑢
2

(𝑥
𝑖,𝑖
)

−

2 (𝑛
2

+ 𝑛 + 2)

(𝑛 + 2)
2
∑

𝑖 ̸= 𝑗

𝑥
𝑖,𝑖
𝑥
𝑗,𝑗
.

(39)

On the other hand, the contribution from the edge that joins
the vertices 𝑥

𝑎,𝑏
and 𝑥

𝑎,𝑐
(in 𝑉
𝑚
\ 𝑉
𝑚−1

) equals

(𝑢 (𝑥
𝑎,𝑏
) − 𝑢 (𝑥

𝑎,𝑐
))
2

=

1

(𝑛 + 2)
2
(𝑢 (𝑥
𝑏,𝑏
) − 𝑢 (𝑥

𝑐,𝑐
))
2

.

(40)

Taking the sum over all of the vertices in 𝑉
𝑚
\ 𝑉
𝑚−1

yields

∑

𝑎 ̸= 𝑏 ̸= 𝑐

(𝑢 (𝑥
𝑎,𝑏
) − 𝑢 (𝑥

𝑎,𝑐
))
2

=

(𝑛 − 1) (𝑛 − 2)

(𝑛 + 2)
2

𝑛−1

∑

𝑖=0

𝑢
2

(𝑥
𝑖,𝑖
) −

2 (𝑛 − 2)

(𝑛 + 2)
2
∑

𝑖 ̸= 𝑗

𝑢 (𝑥
𝑖,𝑖
) 𝑢 (𝑥

𝑗,𝑗
) .

(41)

From (39) and (41), it follows that the total energy of the cell
is

𝐸
𝑚
(𝑢
󸀠

) =

𝑛 (𝑛 − 1)

𝑛 + 2

𝑛−1

∑

𝑖=0

𝑢
2

(𝑥
𝑖,𝑖
) − 2𝑛 (𝑛 + 2) . (42)

This, together with (37), gives

𝐸
𝑚
(𝑢
󸀠

) =

𝑛

𝑛 + 2

𝐸
𝑚−1
(𝑢) . (43)

Taking this result for all the 𝑚 − 1-cells concludes the proof.

Definition 6. The energy in P
𝑛
is given by

𝐸 (𝑢) = lim
𝑚→∞

(

𝑛 + 2

𝑛

)

𝑚

𝐸
𝑚
(𝑢) . (44)

The domain of 𝐸(⋅) being the space 𝐷(𝑛) of functions such
that the energy is finite. Write𝐷(𝑛)

0
for the subspace of𝐷(𝑛) of

functions that vanish on the boundary. The energy product
𝐸(𝑢, 𝑣) can be recovered by the polarization identity.

Let 𝜇 be a self-similar measure in P
𝑛
; the Laplacian Δ

𝜇
is

given by the following:

Definition 7 (Kigami’s Laplacian). With 𝜇 and Δ
𝜇
as above,

one says that 𝑢 is in the domain of Δ
𝜇
if there exists a

continuous function 𝑓 such that

𝐸 (𝑢, 𝑣) = −∫

𝑃𝑛

𝑓𝑣𝑑𝜇, ∀𝑣 ∈ 𝐷
(𝑛)

0
. (45)

In such case, we define Δ
𝜇
𝑢 = 𝑓.

Aside from the above weak representation, a pointwise
formula can be obtained for Δ

𝑚
𝑢, proceeding exactly in the

sameway as in [17] (Theorem 2.2.1). In the case where 𝜇 is the
standard measure in 𝑃

𝑛
(i.e., the only Borel regular measure

such that the measure of every 𝑚-cell is equal to 𝑛−𝑚), the
pointwise formula is

Δ
𝜇
𝑢 (𝑥) =

𝑛

2

lim
𝑚→∞

(𝑛 + 2)
𝑚

Δ
𝑚
𝑢 (𝑥) . (46)

This leads to the following: if a sequence {𝜆
𝑚
} is defined

recursively by (35) (assuming that 𝜆
𝑚
is never equal to 𝑛, 𝑛+

2, or 2𝑛) and 𝑢
𝑚
is given by relation (25), then

𝜆 =

𝑛

2

lim
𝑚→∞

(𝑛 + 2)
𝑚

𝜆
𝑚

(47)

is an eigenvalue of Δ
𝜇
with eigenfunction 𝑢 given by the limit

𝑢
𝑚
→ 𝑢. The limit above exists provided that the sign in

relation (35) is chosen to be “+” for at most a finite number
of times.
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