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The general formulation of the second-order semi-Lagrangian methods was presented for convection-dominated diffusion
problems. In view of the method of lines, this formulation is in a sufficiently general fashion as to include two-step backward
difference formula and Crank-Nicolson type semi-Lagrangian schemes as particular ones. And it is easy to be extended to higher-
order schemes. We show that it maintains second-order accuracy even if the involved numerical characteristic lines are first-order
accurate. The relationship between semi-Lagrangian methods and the modified method of characteristic is also addressed. Finally
convergence properties of the semi-Lagrangian finite difference schemes are tested.

1. Introduction

There have been many numerical methods developed to deal
with convection-dominated diffusion problems, and among
them characteristic-based methods are the most popular.
Numerical methods that follow characteristic lines back-
wards in time and then interpolate at their feet date back to
the work of Courant et al. [1]. As one kind of characteristics-
based method, the semi-Lagrangian (SL) method was intro-
duced in the beginning of the 1980s by Robert [2]. Its basic
idea is to discretize the Lagrangian derivative of the solution
instead of the Eulerian derivative.This technique can increase
significantly the maximum allowable time step while main-
taining the efficiency of symmetric solvers. The SL methods
have been extensively applied in numerical simulations of
models forweather forecast and oceanography (see Staniforth
and Côté [3] and Smolarkiewicz and Pudykiewicz [4] for
review). As another kind of characteristic-basedmethods, the
modified method of characteristic (MMOC) was introduced
by Douglas Jr. and Russell [5] at roughly the same time as
the SL method and has been extensively implemented in
numerical simulations of fluid flows in porous media (see
[6–8]) and many other transport problems (see [9–12] for
review).

Strang [13] pointed out that the first-order methods were
often too crude and the third-ordermethods too complicated.
The computations are thus made expensive either by the fine
mesh required by a first order scheme in order to provide
enough detail or else by the delicate differencing which
maintains a high-order accuracy. Second-order schemes are
the obvious compromise.

Based on MMOC, in the beginning of 1980s Ewing
and Russell [14] introduced the backward difference for-
mula (BDF) of characteristic for linear constant-coefficient
convection-diffusion problems. Afterwards characteristic
schemes of Crank-Nicolson (CN) type for convection-
diffusion equations and the Navier-Stokes (NS) equations
were studied by Rui and Tabata [15] and Notsu and Tabata
[16], respectively.The SL-BDF schemes for incompressibleNS
problems were proposed by Boukir et al. [17, 18]. The SL-CN
methods were proposed for convection-diffusion equations
and/or the incompressible NS equations by Bermúdez et al.
[19, 20], Fourestey and Piperno [21], Xiu and Karniadakis
[22], and Xiu et al. [23]. Al-Lawatia et al. [24] and Falcone
and Ferretti [25] presented and analyzed the single-step high-
order semi-Lagrangian schemes of the Runge-Kutta type.
More research was given by Bermejo and Conde [26], Xiao
and Yabe [27], and Toda et al. [28].
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Up to now we have not seen the SL method to be
formulated in a sufficiently general fashion. In this paper
we present a general second-order SL formulation for
convection-dominated diffusion problems. By the method of
lines approach, this formulation includes most of the second-
order SL schemes mentioned previously. Extension of it to
higher-order schemes is also addressed. Our development
of the general SL formulation is mainly motivated by the
work of Rui and Tabata [15] and Notsu and Tabata [16].
They treated convection-diffusion and the NS problem,
respectively, byMMOC.They emphasized that an “additional
correction term” was indispensable to maintain the second-
order accuracy of the MMOC schemes. We will see that the
correction term of the MMOC schemes is actually a natural
term of the SL schemes.

First, we show that by the method of lines (MOL)
approach, the general SL formulation includes the SL-BDF2
and the SL-CN schemes as specific ones. Second, we verify
that the formulation maintains second-order accuracy even
if the involved numerical characteristic lines are first-order
accurate. Third, we show that MMOC can be considered
as a special version of the SL method. Finally, combining
finite difference discretization in spaces, a fully discretized SL
scheme is presented. Numerical tests demonstrate that the SL
finite difference scheme is second-order convergent.

The outline of the rest of this paper is as follows. In
Section 2 the forming of the SL schemes is recalled and
the relationship between the first-order SL methods and
MMOC is addressed. In Section 3 the general SL formulation
is derived and its second-order consistency is proved. The
relation of the second-order SL method and MMOC is also
addressed. In Section 4 the finite difference SL schemes are
derived. In Section 5 several SL finite difference schemes are
applied to theGaussian hill problem. In Section 6 conclusions
of this paper are drawn.

2. The SL Methods and the MMOC

In this section we recall some details of the construction of
the SL method and MMOC. Also we study the relationship
between them.

Let Ω be a bounded domain in R2 with Lipschitz
boundary 𝜕Ω, and let 𝑇 be a positive constant. Without loss
of generality, we consider the initial boundary value problem:
find 𝜙 : Ω × (0, 𝑇) → R such that

𝜕𝜙

𝜕𝑡
+ u ⋅ ∇𝜙 − 𝜈Δ𝜙 = 𝑓 in Ω × (0, 𝑇) , (1a)

𝜙 (x, 𝑡) = 0 on 𝜕Ω × (0, 𝑇) , (1b)

𝜙 (x, 0) = 𝜙
0
(x) in Ω, (1c)

where 𝜈 is a positive constant, u : Ω × (0, 𝑇) → R2, and
𝑓 : Ω × (0, 𝑇) → R are given functions. For simplicity, we
assume that u is a divergence-free velocity field, that is,∇⋅u =
0, and vanishes on the boundary 𝜕Ω.

Characteristic line is the trajectory of a fluid particle. The
travel of the particle is associated with the velocity field u. For
a given point (x, 𝑠) ∈ Ω×[0, 𝑇], the characteristic line through

(x, 𝑠) is represented by the vector function X(x, 𝑠; 𝑡), which
solves the initial value problem

dX (x, 𝑠; 𝑡)
d𝑡

= u (X (x, 𝑠; 𝑡) , 𝑡) , (2a)

X (x, 𝑠; 𝑠) = x. (2b)

Here X(x, 𝑠; 𝑡) is the position of the particle on the character-
istic line at time 𝑡. The particle is located at x at time 𝑠. We
assume that u ∈ 𝐶0(Ω×[0, 𝑇]) is Lipschitz continuous on 𝜕Ω
with respect to the first variable. By the theory of ODEs, the
characteristic line is well defined. By the chain rule we have

d𝜙
d𝑡

(X (x, 𝑠; 𝑡) , 𝑡) =
𝜕𝜙

𝜕𝑡
(X (x, 𝑠; 𝑡) , 𝑡)

+ u (X (x, 𝑠; 𝑡) , 𝑡) ⋅ ∇𝜙 (⋅, 𝑡) ∘ X (x, 𝑠; 𝑡) ,
(3)

where 𝜙(⋅, 𝑡) ∘ X(x, 𝑠; 𝑡) is the composition of functions with
respect to the first argument of 𝜙. Similar to the deriving of
(4.1) and (4.2) in [19], (1a) can be written to Lagrangian form

d𝜙
d𝑡

(X (x, 𝑠; 𝑡) , 𝑡) − 𝜈Δ𝜙 (⋅, 𝑡) ∘ X (x, 𝑠; 𝑡) = 𝑓 (X (x, 𝑠; 𝑡) , 𝑡) .
(4)

For a positive integer𝑁, let Δ𝑡 = 𝑇/𝑁 be time step length
and 𝑡
𝑛
= 𝑛Δ𝑡, for 𝑛 = 1, 2, . . . , 𝑁. Let X(x, 𝑡

𝑛+1
; 𝑡) denote

the characteristic line on [𝑡
𝑛
, 𝑡
𝑛+1

] (or [𝑡
𝑛−1

, 𝑡
𝑛+1

] for two-step
methods) through (x, 𝑡

𝑛+1
). Thus (4) can locally be written to

d𝜙
d𝑡

(X (x, 𝑡
𝑛+1

; 𝑡) , 𝑡) − 𝜈Δ𝜙 (⋅, 𝑡) ∘ X (x, 𝑡
𝑛+1

; 𝑡)

= 𝑓 (X (x, 𝑡
𝑛+1

; 𝑡) , 𝑡) .

(5)

Tracking the particle backward from x to X(x, 𝑡
𝑛+1

; 𝑡
𝑛
)

along the characteristic line on [𝑡
𝑛
, 𝑡
𝑛+1

] (or from x to
X(x, 𝑡

𝑛+1
; 𝑡
𝑛−1

) on [𝑡
𝑛−1

, 𝑡
𝑛+1

] for two-step methods) corre-
sponds to the backward solution of the following Cauchy
problem:

dX (x, 𝑡
𝑛+1

; 𝑡)

d𝑡
= u (X (x, 𝑡

𝑛+1
; 𝑡) , 𝑡) ,

X (x, 𝑡
𝑛+1

; 𝑡
𝑛+1

) = x.
(6)

For function𝑤 : Ω×[𝑡
𝑛
, 𝑡
𝑛+1

] → R, denote𝑤𝑖 = 𝑤(x, 𝑡
𝑖
) and

X𝑖 = X(x, 𝑡
𝑛+1

, 𝑡
𝑖
) for 𝑖 = 𝑛, 𝑛 + 1. By applying the backward

Euler’s method to (5), it follows that

𝜑
𝑛+1

− 𝜑
𝑛
(X𝑛)

Δ𝑡
− 𝜈Δ𝜑

𝑛+1
= 𝑓
𝑛+1

, (7)

where 𝜑
𝑛 represents the approximate of 𝜙𝑛. Note that in

practice, (6) can usually be solved approximately. By applying
the backward Euler’s method to (6), it follows that

x − X𝑛
𝐸

Δ𝑡
= u𝑛+1 (x) , (8)
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andX𝑛
𝐸
= x−u𝑛+1Δ𝑡 (similarly we see thatX𝑛−1

𝐸
= x−2u𝑛+1Δ𝑡

for the two-step methods). In (7) with X𝑛 being replaced by
X𝑛
𝐸
, we have

𝜑
𝑛+1

− 𝜑
𝑛
(x − u𝑛+1Δ𝑡)
Δ𝑡

− 𝜈Δ𝜑
𝑛+1

= 𝑓
𝑛+1

. (9)

On the other hand, (9) can be derived by MMOC [5].
In fact, with u = (𝑢

1
, 𝑢
2
), let s denote the direction vector

(1, 𝑢
1
, 𝑢
2
), and define the operator

d
ds

:=
1

𝜃
(
𝜕

𝜕𝑡
+ u ⋅ ∇) , (10)

with 𝜃(x, 𝑡) := [1 + |u(x, 𝑡)|2]1/2 = [1 + |𝑢
1
(x, 𝑡)|2 +

|𝑢
2
(x, 𝑡)|2]1/2. So (1a) can be written to the form

𝜃
d𝜙
ds

− 𝜈Δ𝜙 = 𝑓. (11)

Using the backward difference quotient, we have

d𝜙𝑛+1

ds
=

𝜙
𝑛+1

− 𝜙
𝑛
(x − Δ𝑡u𝑛+1/𝜃𝑛+1)

Δ𝑡

+
Δ𝑡

2

d2𝜙𝑛+1

d2s
+ 𝑂 (Δ𝑡

2
) .

(12)

Substituting (12) into (11), we obtain (9).ThusMMOC can be
considered as a special version of SL. In the next section we
will see that similar relation exists for second-order case.

3. General Second-Order SL Formulation

In this section we present a general second-order SL formula-
tion and show that by MOL this formulation includes several
widely used schemes as specific ones.

Let us first consider the abstract ODEs of the following
form: given the Hilbert space H and 𝑦

0
∈ H, find 𝑦 :

(0, 𝑇] → H such that

𝑦

(𝑡) = 𝑔 (𝑡, 𝑦 (𝑡)) , 𝑡 ∈ (0, 𝑇] ,

𝑦 (0) = 𝑦
0
,

(13)

where 𝑔 : (0, 𝑇] ×H → H. A general second-order scheme
for (13) can be of the form (see [29, 30])

2

∑

ℓ=0

𝛼
ℓ
𝑌
𝑛+ℓ−1

= Δ𝑡

2

∑

ℓ=0

𝛽
ℓ
𝑔
𝑛+ℓ−1

(𝑌
𝑛+ℓ−1

) , 𝑛 = 1, 2, . . . , 𝑁 − 1.

(14)

As usual we denote scheme (14) as (𝜌, 𝜎), where 𝜌 and 𝜎 are
the characteristic polynomials of the scheme, with

𝜌 (𝜁) :=

2

∑

ℓ=0

𝛼
ℓ
𝜁
ℓ
, 𝜎 (𝜁) :=

2

∑

ℓ=0

𝛽
ℓ
𝜁
ℓ
. (15)

We further assume that (𝜌, 𝜎) is normalized by ∑2
ℓ=0

𝛽
ℓ
= 1

and satisfies the following conditions:

𝛼
1
= 1 − 2𝛼

2
, 𝛼

0
= −1 + 𝛼

2
,

𝛽
1
=
1

2
+ 𝛼
2
− 2𝛽
2
, 𝛽

0
=
1

2
− 𝛼
2
+ 𝛽
2
,

(16)

for 𝛼
2
≥ 1/2, 𝛽

2
≥ 𝛼
2
/2, such that (𝜌, 𝜎) is Dahlquist and

𝐴-stable [31].
For a fixed x ∈ Ω and 𝑡 ∈ [𝑡

𝑛−1
, 𝑡
𝑛+1

], let 𝑦(𝑡) =

𝜙(X(x, 𝑡
𝑛+1

; 𝑡), 𝑡).Then the (𝜌, 𝜎) scheme for (5) is of the form
2

∑

ℓ=0

𝛼
ℓ
𝜑
𝑛+ℓ−1

(X𝑛+ℓ−1)

= Δ𝑡

2

∑

ℓ=0

𝛽
ℓ
[𝜈Δ𝜑
𝑛+ℓ−1

∘ X𝑛+ℓ−1 + 𝑓𝑛+ℓ−1 (X𝑛+ℓ−1)] ,

𝑛 = 1, 2, . . . , 𝑁 − 1.

(17)
With X being replaced by the approximate characteristic line
X, we have the analogue of (17):
2

∑

ℓ=0

𝛼
ℓ
𝜑
𝑛+ℓ−1

(X𝑛+ℓ−1)

= Δ𝑡

2

∑

ℓ=0

𝛽
ℓ
[𝜈Δ𝜑
𝑛+ℓ−1

∘ X𝑛+ℓ−1 + 𝑓𝑛+ℓ−1 (X𝑛+ℓ−1)] ,

𝑛 = 1, 2, . . . , 𝑁 − 1.

(18)
Scheme (18) is the general second-order SL formulation
which byMOL includes all the previously introduced second-
order SL schemes. Next we will prove that it includes the SL-
BDF2 schemes and the SL-CN schemes as specific cases.

3.1. The BDF2 Scheme. In (14), let 𝛽
0
= 𝛽
1
= 0; then from

(16), we have 𝛼
2
= 3/2, 𝛼

1
= −2, 𝛼

0
= 1/2. Substituting these

coefficients into (14), we obtain the BDF2 scheme:
3𝑌
𝑛+1

− 4𝑌
𝑛
+ 𝑌
𝑛−1

2Δ𝑡
= 𝑔
𝑛+1

(𝑌
𝑛+1

) . (19)

Due to its stability and damping properties, (19) is one of the
most popular second-order schemes [29]. Substituting the
previously coefficients into (17), we get the SL analogue of
(19):

3𝜑
𝑛+1

− 4𝜑
𝑛
(X𝑛) + 𝜑𝑛−1 (X𝑛−1)
2Δ𝑡

− 𝜈Δ𝜑
𝑛+1

= 𝑓
𝑛+1

. (20)

Furthermore, in (20) with X𝑛 and X𝑛−1 being, respectively,
approximated by X𝑛

𝐸
= x − u𝑛+1Δ𝑡, X𝑛−1

𝐸
= x − 2u𝑛+1Δ𝑡, we

have
3𝜑
𝑛+1

− 4𝜑
𝑛
(x − u𝑛+1Δ𝑡) + 𝜑𝑛−1 (x − 2u𝑛+1Δ𝑡)

2Δ𝑡
− 𝜈Δ𝜑

𝑛+1

= 𝑓
𝑛+1

.

(21)
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This is just the multistep characteristic scheme derived based
on MMOC in [14]. In fact, using MMOC (analogous to (12))
we see that

d𝜙𝑛+1

ds
= (3𝜙

𝑛+1
− 4𝜙
𝑛
(x − Δ𝑡u𝑛+1/𝜃𝑛+1)

+𝜙
𝑛−1

(x − 2Δ𝑡u𝑛+1/𝜃𝑛+1)) (2Δ𝑡)−1

+
(Δ𝑡)
2

3

d3𝜙𝑛+1

ds3
+ 𝑂 (Δ𝑡

3
) .

(22)

Substituting (22) into (11), we obtain (21).
The SL-BDF2 schemes were presented and analyzed in

[14, 17, 18, 21]. It is deserved to note that though the involved
approximate characteristic line is first-order accurate, the
resulting SL-BDF2 scheme (21)maintains second-order accu-
rate.

3.2. The CN Scheme. In (14), let

𝛼
2
= 1, 𝛼

1
= −1, 𝛼

0
= 0;

𝛽
2
=
1

2
, 𝛽

1
= 𝛽
0
= 0.

(23)

From (14) we obtain the CN scheme

𝑌
𝑛+1

− 𝑌
𝑛

Δ𝑡
=
1

2
(𝑔
𝑛
(𝑌
𝑛
) + 𝑔
𝑛+1

(𝑌
𝑛+1

)) . (24)

From (17) we get the SL analogue of (24):

𝜑
𝑛+1

− 𝜑
𝑛
(X𝑛)

Δ𝑡
−
1

2
𝜈Δ (𝜑

𝑛
∘ X𝑛 + 𝜑𝑛+1)

=
1

2
(𝑓
𝑛+1

+ 𝑓
𝑛
(X𝑛)) ,

(25)

and with X𝑛 being replaced by X
𝐸
, we have

𝜑
𝑛+1

− 𝜑
𝑛
(x − u𝑛+1Δ𝑡)
Δ𝑡

−
1

2
𝜈Δ (𝜑

𝑛
∘ (x − u𝑛+1Δ𝑡) + 𝜑𝑛+1)

=
1

2
(𝑓
𝑛
(x − u𝑛+1Δ𝑡) + 𝑓𝑛+1) .

(26)

Remark 1. It is deserved to note that Rui and Tabata [15] and
Notsu and Tabata [16] called (1/2)𝜈Δ𝜑𝑛 ∘ (x − u𝑛+1Δ𝑡)-term
in (26) the “additional corrected term,” since it is introduced
from “outside” to recover the second-order consistency of the
MMOC schemes. But in view of the previous discussion, the
“additional corrected term” is a natural one in the SL schemes.
Thus we think the SL method is more general than MMOC.

3.3. The Consistency of the General Formulation. Now we
show that both (17) and (18) with first-order approximate
characteristic lines are second-order accurate. Let us denote

L [𝑤 (𝑡) ; Δ𝑡] :=

2

∑

ℓ=0

[𝛼
ℓ
𝑤
𝑛+ℓ−1

− Δ𝑡𝛽
ℓ
𝑔
𝑛+ℓ−1

(𝑤
𝑛+ℓ−1

)] ,

(27)

for 𝑤 : (0, 𝑇] → H. By the theory of ODEs (see [30]), using
the Taylor’s expansion, from (13) and (14) we have

L [𝑦 (𝑡) ; Δ𝑡]

= (𝛼
0
+ 𝛼
1
+ 𝛼
2
) 𝑦 (𝑡)

+ Δ𝑡 [(𝛼
1
+ 2𝛼
2
) − (𝛽

0
+ 𝛽
1
+ 𝛽
2
)] 𝑦

(𝑡)

+ Δ𝑡
2
[
1

2
(𝛼
1
+ 4𝛼
2
) − (𝛽

1
+ 2𝛽
2
)] 𝑦

(𝑡) + 𝑂 (Δ𝑡

3
) .

(28)

If the following conditions hold

𝛼
0
+ 𝛼
1
+ 𝛼
2
= 0,

(𝛼
1
+ 2𝛼
2
) − (𝛽

0
+ 𝛽
1
+ 𝛽
2
) = 0,

1

2
(𝛼
1
+ 4𝛼
2
) − (𝛽

1
+ 2𝛽
2
) = 0,

(29)

then L[𝑦(𝑡); Δ𝑡] = 𝑂(Δ𝑡
3
). It is easy to see that conditions

(29) and (16) are equivalent if ∑2
ℓ=0

𝛽
ℓ
= 1. In (13), let

𝑦 (𝑡) = 𝜑 (X (⋅, 𝑡
𝑛+1

; 𝑡) , 𝑡) ,

𝑔 (𝑦 (𝑡) , 𝑡) = 𝜈Δ𝜑 (⋅, 𝑡) ∘ X (⋅, 𝑡
𝑛+1

; 𝑡) + 𝑓 (X (⋅, 𝑡
𝑛+1

; 𝑡) , 𝑡) .

(30)

From (28)–(30) it follows that

L [𝜙 (X (⋅, 𝑡
𝑛+1

; 𝑡) , 𝑡) ; Δ𝑡] = 𝑂 (Δ𝑡
3
) , (31)

where 𝜙 is the exact solution of (5). Thus we have confirmed
the following proposition.

Proposition 2. Suppose that u and 𝑓 in (1a)–(1c) are smooth
functions inΩ× (0, 𝑇), and X(𝑡) is the exact characteristic line
which solves (6). Then (17) is second-order consistent with (5).

Analogous to Proposition 2, if first-order characteristic
lines are involved, then the following proposition holds.

Proposition 3. Suppose that u and 𝑓 in (1a)–(1c) are smooth
functions in Ω × (0, 𝑇). In (18), if X𝑛 = X𝑛

𝐸
, X𝑛−1 = X𝑛−1

𝐸
, then

the scheme

2

∑

ℓ=0

𝛼
ℓ
𝜑
𝑛+ℓ−1

(X𝑛+ℓ−1
𝐸

) − 𝜈Δ𝑡

2

∑

ℓ=0

𝛽
ℓ
Δ𝜑
𝑛+ℓ−1

∘ X𝑛+ℓ−1
𝐸

= Δ𝑡

2

∑

ℓ=0

𝛽
ℓ
𝑓
𝑛+ℓ−1

(X𝑛+ℓ−1
𝐸

)

(32)

is second-order consistent with (5).
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Proof. Analogous to the deriving of (4.1) and (4.2) in [19], for
𝑡 ∈ [𝑡
𝑛−1

, 𝑡
𝑛+1

] (5) can be written to the form

𝜕𝜙 (⋅, 𝑡)

𝜕𝑡
∘ X (x, 𝑡

𝑛+1
; 𝑡) + u (X (x, 𝑡

𝑛+1
; 𝑡) , 𝑡)

⋅ ∇𝜙 (⋅, 𝑡) ∘ X (x, 𝑡
𝑛+1

; 𝑡) − 𝜈Δ𝜙 (⋅, 𝑡) ∘ X (x, 𝑡
𝑛+1

; 𝑡)

= 𝑓 (X (x, 𝑡
𝑛+1

; 𝑡) , 𝑡) .

(33)

Noting that

X (x, 𝑡
𝑛+1

; 𝑡) = x − Δ𝑡u𝑛+1 (x) + 𝑂 (Δ𝑡
2
) ,

X (x, 𝑡
𝑛+1

; 𝑡) = x − 2Δ𝑡u𝑛+1 (x) + 𝑂 (Δ𝑡
2
) ,

(34)

we denote

X
𝐸
(x, 𝑡
𝑛+1

; 𝑡) = x − Δ𝑡u𝑛+1 (x) ,

X
𝐸
(x, 𝑡
𝑛+1

; 𝑡) = x − 2Δ𝑡u𝑛+1 (x) .
(35)

With X(x, 𝑡
𝑛+1

; 𝑡) being replaced by X
𝐸
(x, 𝑡
𝑛+1

; 𝑡) and 𝜑 being
the approximate of 𝜙, we obtain 𝑂(Δ𝑡2)-perturbation of (33)
of the form

𝜕𝜑 (⋅, 𝑡)

𝜕𝑡
∘ X
𝐸
(x, 𝑡
𝑛+1

; 𝑡) + u (X
𝐸
(x, 𝑡
𝑛+1

; 𝑡) , 𝑡)

⋅ ∇𝜑 (⋅, 𝑡) ∘ X (x, 𝑡
𝑛+1

; 𝑡) − 𝜈Δ𝜑 (⋅, 𝑡) ∘ X
𝐸
(x, 𝑡
𝑛+1

; 𝑡)

= 𝑓 (X
𝐸
(x, 𝑡
𝑛+1

; 𝑡) , 𝑡) .

(36)

Rewrite (36) to the Lagrangian form

d𝜑 (⋅, 𝑡)
d𝑡

(X
𝐸
(x, 𝑡
𝑛+1

; 𝑡) , 𝑡) − 𝜈Δ𝜑 (⋅, 𝑡) ∘ X
𝐸
(x, 𝑡
𝑛+1

; 𝑡)

= 𝑓 (X
𝐸
(x, 𝑡
𝑛+1

; 𝑡) , 𝑡) .

(37)

Thus (37) is the second-order approximation to (5).
Corresponding to (30), let

𝑦 (𝑡) = 𝜑 (X
𝐸
(⋅, 𝑡
𝑛+1

; 𝑡) , 𝑡) ,

𝑔 (𝑦 (𝑡) , 𝑡) = 𝜈Δ𝜑 (⋅, 𝑡) ∘ X
𝐸
(x, 𝑡
𝑛+1

; 𝑡) + 𝑓 (X
𝐸
(⋅, 𝑡
𝑛+1

; 𝑡) , 𝑡) .

(38)

Similar to the proof of Proposition 2, we can see that (32)
is second-order consistent with (37). We deduce that (32) is
second-order consistent with (5).

Remark 4. In (32) higher-order numerical characteristic lines
are usually preferred, though the characteristic line computed
by the backward Euler’s method can retain the second-
order accuracy. For example, Bermúdez et al. [19, 20], Rui
and Tabata [15], and Notsu and Tabata [16] computed the
numerical characteristic by the higher-order Runge-Kutta
methods. In the following numerical tests we will see that
the first-order characteristic line is too coarse to ensure
reasonable convergence of the SL-CN schemes.

4. The SL Finite Difference Method

In this section we present a full-discretized SL formulation
which combines finite difference for spatial discretizations.
We also numerically verify the convergence of the formula-
tion.

First, we build the finite difference scheme for (5). Assume
thatΩ is a unit square, with boundary 𝜕Ω. Denote 𝜕Ω = Γ

1
∪

Γ
2
∪ Γ
3
∪ Γ
4
, with

Γ
1
:= {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 1, 𝑦 = 0} ,

Γ
2
:= {(𝑥, 𝑦) | 𝑥 = 1, 0 ≤ 𝑦 ≤ 1} ,

Γ
3
:= {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 1, 𝑦 = 1} ,

Γ
4
:= {(𝑥, 𝑦) | 𝑥 = 0, 0 ≤ 𝑦 ≤ 1} .

(39)

For the partition of Ω, we denote ℎ := 𝑀
−1
, x
𝑖𝑗
:= (𝑖ℎ, 𝑗ℎ)

and 𝑤(x
𝑖𝑗
, 𝑡) := 𝑤

𝑖𝑗
(𝑡). LetΩ

ℎ
:= 𝜔
1
× 𝜔
2
, with

𝜔
1
:= {𝑥
𝑖
| 0 ≤ 𝑖 ≤ 𝑀} , 𝜔

2
:= {𝑦
𝑗
| 0 ≤ 𝑗 ≤ 𝑀} .

(40)

LetΩ
ℎ
:= 𝜔
1
× 𝜔
2
, with

𝜔
1
:= {𝑥
𝑖
| 1 ≤ 𝑖 ≤ 𝑀 − 1} , 𝜔

2
:= {𝑦
𝑗
| 1 ≤ 𝑗 ≤ 𝑀 − 1} .

(41)

Let x := (𝑥, 𝑦), X := (𝑋, 𝑌) with X(𝑥, 𝑦, 𝑡) = (𝑋(𝑥, 𝑦, 𝑡),

𝑌(𝑥, 𝑦, 𝑡)). By the transformation given in Appendix section,
term Δ𝜙(⋅, 𝑡) ∘ X(x, 𝑡

𝑛+1
; 𝑡) in (5) changes to expression

that consists of 𝜕2𝜙/𝜕𝑥2, 𝜕2𝜙/𝜕𝑦2, 𝜕2𝜙/𝜕𝑥𝜕𝑦, 𝜕𝜙/𝜕𝑥, 𝜕𝜙/𝜕𝑦,
𝜕
2
𝑋/𝜕𝑥
2, 𝜕2𝑋/𝜕𝑦2, 𝜕2𝑋/𝜕𝑥𝜕𝑦, 𝜕𝑋/𝜕𝑥, 𝜕𝑋/𝜕𝑦, and so forth.

If 𝑋(𝑥, 𝑦, 𝑡), 𝑌(𝑥, 𝑦, 𝑡) are polynomials of 𝑥, 𝑦 of degrees not
more than one, then it holds that (see Appendix)

Δ𝜙 (⋅, 𝑡) ∘ X (x, 𝑡
𝑛+1

; 𝑡)

= {
𝜕
2
𝜙

𝜕𝑥2
⋅ [(

𝜕𝑋

𝜕𝑦
)

2

+ (
𝜕𝑌

𝜕𝑦
)

2

] +
𝜕
2
𝜙

𝜕𝑦2

⋅ [(
𝜕𝑋

𝜕𝑥
)

2

+ (
𝜕𝑌

𝜕𝑥
)

2

]

−
2𝜕
2
𝜙

𝜕𝑥𝜕𝑦
[
𝜕𝑋

𝜕𝑥
⋅
𝜕𝑋

𝜕𝑦
+
𝜕𝑌

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
]}

⋅ [
𝜕𝑌

𝜕𝑥
⋅
𝜕𝑋

𝜕𝑦
−
𝜕𝑌

𝜕𝑦
⋅
𝜕𝑋

𝜕𝑥
]

−2

.

(42)

Using centered difference to discretize these partial deriva-
tives, we obtain the finite difference approximation of (5) as
follows: find 𝜙

ℎ
: Ω
ℎ
× (0, 𝑇) → R such that

d𝜙
ℎ

d𝑡
(X (x
𝑖𝑗
, 𝑡
𝑛+1

; 𝑡) , 𝑡) − 𝜈Δ
ℎ
𝜙 (⋅, 𝑡) ∘ X (x

𝑖𝑗
, 𝑡
𝑛+1

; 𝑡)

= 𝑓 (X (x
𝑖𝑗
, 𝑡
𝑛+1

; 𝑡) , 𝑡) ,

(43)
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where Δ
ℎ
𝜙(⋅, 𝑡) ∘ X(x

𝑖𝑗
, 𝑡
𝑛+1

; 𝑡) is the approximate of Δ𝜙(⋅, 𝑡) ∘
X(x, 𝑡

𝑛+1
; 𝑡). Applying (17) to (43), with Φ̃ representing the

approximate of 𝜙
ℎ
, we obtain the second-order-in-time finite

difference scheme:

2

∑

𝑙=0

𝛼
𝑙
Φ̃
𝑛+ℓ−1

(X𝑛+ℓ−1
𝑖𝑗

) − 𝜈Δ𝑡Δ
ℎ

2

∑

𝑙=0

𝛽
𝑙
Φ̃
𝑛+ℓ−1

∘ X𝑛+ℓ−1
𝑖𝑗

= Δ𝑡

2

∑

𝑙=0

𝛽
𝑙
𝑓
𝑛+ℓ−1

(X𝑛+ℓ−1
𝑖𝑗

) ,

𝑖, 𝑗 = 1, 2, . . . ,𝑀 − 1, 𝑛 = 1, 2, . . . , 𝑁 − 1.

(44)

In (44) with X being replaced by X
𝐸
, Φ representing the

approximate of Φ̃, we finally discretize (1a)–(1c) as follows:

2

∑

𝑙=0

𝛼
𝑙
Φ
𝑛+ℓ−1

𝑖𝑗
(X𝑛+ℓ−1
𝐸

) − 𝜈Δ𝑡Δ
ℎ

2

∑

𝑙=0

𝛽
𝑙
Φ
𝑛+ℓ−1

𝑖𝑗
∘ X𝑛+ℓ−1
𝐸

= Δ𝑡

2

∑

𝑙=0

𝛽
𝑙
𝑓
𝑛+ℓ−1

𝑖𝑗
(X𝑛+ℓ−1
𝐸

)

𝑖, 𝑗 = 1, 2, . . . ,𝑀 − 1, 𝑛 = 1, 2, . . . , 𝑁 − 1.

(45)

The computation of the starting values of this multistep
scheme is similar to the general Eulerian schemes. Since X𝑛

𝐸

and X𝑛−1
𝐸

in (45) are not grid points of Ω
ℎ
, interpolations

are needed. In the following numerical tests, we will use
cubic interpolations (CI) and cubic spline interpolations,
respectively (CSI).

5. Numerical Results

In this section, we test some specific cases of (45). The
problem of rotating Gaussian hill has been widely used to
test numerical schemes for convection-diffusion equations.
In (1a)–(1c), let Ω = (−0.5, 0.5) × (−0.5, 0.5), 𝑇 = 𝜋/4,
u = (−𝑦, 𝑥), 𝑓 = 0, and 𝜈 = 1.25 × 10

−4 or 𝜈 = 1.0 × 10
−3.

The Dirichlet boundary conditions and initial condition of
(1a)–(1c) are given such that the exact solution is

𝑐 (𝑥, 𝑦, 𝑡) =
𝜎

𝜎 + 4𝜈𝑡
exp{−

(𝑥 (𝑡) − 𝑥
𝑐
)
2

+ (𝑦 (𝑡) − 𝑦
𝑐
)
2

𝜎 + 4𝜈𝑡
} ,

(46)

where 𝑥(𝑡) = 𝑥 cos 𝑡 + 𝑦 sin 𝑡, 𝑦(𝑡) = −𝑥 sin 𝑡 + 𝑦 cos 𝑡,
(𝑥
𝑐
, 𝑦
𝑐
) = (0.25, 0) and 𝜎 = 0.01. The exact characteristic is

given by

𝑋(𝑥, 𝑦, 𝑡) = 𝑥 cos 𝑡 − 𝑦 sin 𝑡,

𝑌 (𝑥, 𝑦, 𝑡) = 𝑥 sin 𝑡 + 𝑦 cos 𝑡.
(47)

By the Euler’s method the approximate characteristic is given
by

𝑋
𝑛

𝐸
(𝑥, 𝑦) = 𝑥 + 𝑦Δ𝑡,

𝑋
𝑛−1

𝐸
(𝑥, 𝑦) = 𝑥 + 2𝑦Δ𝑡,

𝑌
𝑛

𝐸
(𝑥, 𝑦) = 𝑦 − 𝑥Δ𝑡,

𝑌
𝑛−1

𝐸
(𝑥, 𝑦) = 𝑦 − 2𝑥Δ𝑡.

(48)

Note that since the velocity u does not satisfy the nonflow
boundary condition (1b), the characteristics and its approxi-
mations are not necessarily contained in Ω. We assume that
𝜙 = 0 outside of Ω (just as in Notsu and Tabata [16], Rui and
Tabata [15], and Long and Yuan [32]).

Using the standard central difference along the numerical
characteristic and the transformation given in Appendix, we
have

Δ
ℎ
Φ
𝑖𝑗
∘ X𝑛+1
𝐸

= Δ
ℎ
Φ
𝑖𝑗
=

Φ
𝑛+1

𝑖+1,𝑗
+ Φ
𝑛+1

𝑖−1,𝑗
+ Φ
𝑛+1

𝑖,𝑗+1
+ Φ
𝑛+1

𝑖,𝑗−1
− 4Φ
𝑛+1

𝑖,𝑗

ℎ2
,

Δ
ℎ
Φ
𝑖𝑗
∘ X𝑛
𝐸

=

(Φ
𝑛

𝑖+1,𝑗
+ Φ
𝑛

𝑖−1,𝑗
+ Φ
𝑛

𝑖,𝑗+1
+ Φ
𝑛

𝑖,𝑗−1
− 4Φ
𝑛

𝑖,𝑗
) (X𝑛
𝐸
)

(1 + Δ𝑡2) ℎ2
,

Δ
ℎ
Φ
𝑖𝑗
∘ X𝑛−1
𝐸

=

(Φ
𝑛−1

𝑖+1,𝑗
+ Φ
𝑛−1

𝑖−1,𝑗
+ Φ
𝑛−1

𝑖,𝑗+1
+ Φ
𝑛−1

𝑖,𝑗−1
− 4Φ
𝑛−1

𝑖,𝑗
) (X𝑛−1
𝐸

)

(1 + 4Δ𝑡2) ℎ2
.

(49)

Therefore the BDF2 scheme takes the form

3Φ
𝑛+1

𝑖𝑗
− 4Φ
𝑛

𝑖𝑗
(X𝑛
𝐸
) + Φ
𝑛−1

𝑖𝑗
(X𝑛−1
𝐸

) − 2𝜈Δ𝑡Δ
ℎ
Φ
𝑛+1

𝑖𝑗
= 0,

(50)

and the CN scheme takes the form

Φ
𝑛+1

𝑖𝑗
− Φ
𝑛

𝑖𝑗
(X𝑛) − (𝜈Δ𝑡

2
)Δ
ℎ
Φ
𝑛+1

𝑖𝑗
− (

𝜈Δ𝑡

2
)Δ
ℎ
Φ
𝑛

𝑖𝑗
∘ X𝑛
𝐸
= 0.

(51)

To compare the results, we need the first-step backward
difference scheme (BDF1):

Φ
𝑛+1

𝑖𝑗
− Φ
𝑛

𝑖𝑗
(X𝑛
𝐸
) − 𝜈Δ𝑡Δ

ℎ
Φ
𝑛+1

𝑖𝑗
= 0. (52)

Let 𝐸
𝑙
2 denote the 𝑙2-error,

𝐸
𝑙
2 = (ℎ

2
∑

𝑖𝑗


𝜙
𝑁

𝑖𝑗
− Φ
𝑁

𝑖𝑗



2

)

1/2

, (53)

where x
𝑖𝑗
∈ Ω
ℎ
and 𝑡𝑁 = 𝜋/4.
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Error curves, cubic interpolations

BDF1
BDF2

2-order
1-order

10−1

10−2

10−3

10−4

10−5

10−3 10−2 10−1

(a)

Error curves, spline interpolations

BDF1
BDF2

2-order
1-order

10−1

10−2

10−3

10−4

10−5

10−3 10−2 10−1

(b)

Figure 1: 𝐸
𝑙
2 -error of BDF1 and BDF2 versus the time step Δ𝑡

in log-log scale, with 𝑇 = 𝜋/4, 𝜈 = 1.00 × 10
−3; ℎ = Δ𝑡 =

0.1, 0.05, 0.04, 0.25, 0.02, 0.005. CI are involved in (a) and CSI in (b).

Figure 1 illustrates convergence of BDF1 and BDF2 using
numerical characteristics and using CI (Figure 1(a)) and
CSI (Figure 1(b)), respectively. The straight lines are the
first-order line and the second-order line, respectively. We
can see that BDF2 exhibits higher-order convergence than
BDF1.

Figure 2 shows the convergence of CN schemes using
exact characteristics (Figure 2(a)) and using numerical char-
acteristics (Figure 2(b)), respectively. We can see that when
first-order numerical characteristics are involved, the com-
puted result is poor. This confirms the fact that the higher-
order numerical characteristic line is necessary to ensure
reasonable convergence.

Figure 3 exhibits convergence of BDF2 with the smaller
diffusion coefficient 𝜈 = 1.25 × 10

−4 using numerical char-
acteristics. We see that either using CI or CSI, convergence is
approximately second-order.

Error curves, using numerical characteristics

Cubic
Spline

2-order
1-order

10−1

10−2

10−3

10−4

10−2 10−1

(a)

Error curves, using exact characteristics

Cubic
Spline

2-order
1-order

10−1

10−2

10−3

10−4

10−2 10−1

(b)

Figure 2: 𝐸
𝑙
2 -error of CN scheme versus Δ𝑡 in log-log scale, with

𝑇 = 𝜋/4, 𝜈 = 1.25 × 10
−4; ℎ = Δ𝑡 = 0.1, 0.05, 0.04, 0.25, 0.02. Exact

characteristic lines are involved in (a) and numerical ones in (b).

Error curves, using numerical characteristics

Cubic
Spline

2-order
1-order

10−1

10−2

10−3

10−4

10−3 10−2 10−1

Figure 3: 𝐸
𝑙
2 -errors of BDF2 using CI and CSI with 𝜈 = 1.25×10

−4;
𝑇 = 𝜋/4, ℎ = Δ𝑡 = 0.1, 0.08, 0.05, 0.02, 0.008, 0.005.
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Remark 5. As the particular cases of the general formulation,
the following schemes are also tested:

𝛼
2
= 2, 𝛼

1
= −3, 𝛼

0
= 1;

𝛽
2
= 3/2, 𝛽

1
= −1/2, 𝛽

0
= 0,

𝛼
2
= 3/4, 𝛼

1
= −1/2, 𝛼

0
= −1/4;

𝛽
2
= 3/2, 𝛽

1
= −7/4, 𝛽

0
= 5/4.

(54)

Both of them exhibit similar convergence properties as the
BDF2 schemes.

6. Conclusions

In this paper we formulate a general SL scheme of second-
order. By the MOL approach, this formulation includes all
previously introduced schemes. We prove that this general
scheme is second-order accurate even if the first-order
characteristic line is involved. This formulation is very easy
to extend to higher order cases. We see that MMOC can
be considered a special version of SL method. Convergence
properties of SL finite difference schemes are numerically
tested.

Appendix

Transformation of Derivatives

In this appendix we deal with the differentiation of composite
functions. When a convection-diffusion equation is written
to the Lagrangian form, directional derivatives appears.
However, for spatial discretizations we need transformation
of the directional derivatives.

Let us give the transformation of derivatives for the
diffusion term resulting from SL method.

Let 𝑋 = 𝑋(𝑥, 𝑦), 𝑌 = 𝑌(𝑥, 𝑦) and 𝑤(𝑋, 𝑌) =

𝑤(𝑋(𝑥, 𝑦), 𝑌(𝑥, 𝑦)). By the chain rule,

𝜕𝑤 (𝑋, 𝑌)

𝜕𝑥
=
𝜕𝑤

𝜕𝑋
⋅
𝜕𝑋

𝜕𝑥
+
𝜕𝑤

𝜕𝑌
⋅
𝜕𝑌

𝜕𝑥
,

𝜕𝑤 (𝑋, 𝑌)

𝜕𝑦
=
𝜕𝑤

𝜕𝑋
⋅
𝜕𝑋

𝜕𝑦
+
𝜕𝑤

𝜕𝑌
⋅
𝜕𝑌

𝜕𝑦
.

(A.1)

In the sequel, we simply write𝑤(𝑋(𝑥, 𝑦), 𝑌(𝑥, 𝑦)) as𝑤. From
(A.1) it follows that

𝜕𝑤

𝜕𝑋
=
(𝜕𝑤/𝜕𝑥) ⋅ (𝜕𝑌/𝜕𝑦) − (𝜕𝑤/𝜕𝑦) ⋅ (𝜕𝑌/𝜕𝑥)

(𝜕𝑋/𝜕𝑥) ⋅ (𝜕𝑌/𝜕𝑦) − (𝜕𝑋/𝜕𝑦) ⋅ (𝜕𝑌/𝜕𝑥)
, (A.2)

𝜕𝑤

𝜕𝑌
=
(𝜕𝑤/𝜕𝑥) ⋅ (𝜕𝑋/𝜕𝑦) − (𝜕𝑤/𝜕𝑦) ⋅ (𝜕𝑋/𝜕𝑥)

(𝜕𝑌/𝜕𝑥) ⋅ (𝜕𝑋/𝜕𝑦) − (𝜕𝑌/𝜕𝑦) ⋅ (𝜕𝑋/𝜕𝑥)
. (A.3)

By differentiating both sides of (A.2) with respect to 𝑥, and
noting that

𝜕

𝜕𝑥
(
𝜕𝑤

𝜕𝑋
) =

𝜕
2
𝑤

𝜕𝑋2
⋅
𝜕𝑋

𝜕𝑥
+

𝜕
2
𝑤

𝜕𝑋𝜕𝑌
⋅
𝜕𝑌

𝜕𝑥
, (A.4)

we have

𝜕
2
𝑤

𝜕𝑋2
⋅
𝜕𝑋

𝜕𝑥
+

𝜕
2
𝑤

𝜕𝑋𝜕𝑌
⋅
𝜕𝑌

𝜕𝑥

= (
𝜕
2
𝑤

𝜕𝑥2
⋅
𝜕𝑌

𝜕𝑦
+
𝜕𝑤

𝜕𝑥
⋅
𝜕
2
𝑌

𝜕𝑥𝜕𝑦
−

𝜕
2
𝑤

𝜕𝑥𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
−
𝜕𝑤

𝜕𝑦
⋅
𝜕
2
𝑌

𝜕𝑥2
)

⋅ (
𝜕𝑋

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
−
𝜕𝑋

𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
)

−1

+ (
𝜕𝑤

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
−
𝜕𝑤

𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
)

⋅(
𝜕
2
𝑋

𝜕𝑥2
⋅
𝜕𝑌

𝜕𝑦
+
𝜕𝑋

𝜕𝑥
⋅
𝜕
2
𝑌

𝜕𝑥𝜕𝑦
−
𝜕
2
𝑋

𝜕𝑥𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
−
𝜕𝑋

𝜕𝑦
⋅
𝜕
2
𝑌

𝜕𝑥2
)

⋅ (
𝜕𝑋

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
−
𝜕𝑋

𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
)

−2

.

(A.5)

Similarly, by differentiating both sides of (A.2) with respect
to 𝑦, and noting that

𝜕

𝜕𝑦
(
𝜕𝑤

𝜕𝑋
) =

𝜕
2
𝑤

𝜕𝑋2
⋅
𝜕𝑋

𝜕𝑦
+

𝜕
2
𝑤

𝜕𝑋𝜕𝑌
⋅
𝜕𝑌

𝜕𝑦
, (A.6)

we have

𝜕
2
𝑤

𝜕𝑋2
⋅
𝜕𝑋

𝜕𝑦
+

𝜕
2
𝑤

𝜕𝑋𝜕𝑌
⋅
𝜕𝑌

𝜕𝑦

= (
𝜕
2
𝑤

𝜕𝑥𝜕𝑦
⋅
𝜕𝑌

𝜕𝑦
+
𝜕𝑤

𝜕𝑥
⋅
𝜕
2
𝑌

𝜕𝑦2
−
𝜕
2
𝑤

𝜕𝑦2
⋅
𝜕𝑌

𝜕𝑥
−
𝜕𝑤

𝜕𝑦
⋅
𝜕
2
𝑌

𝜕𝑥𝜕𝑦
)

⋅ (
𝜕𝑋

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
−
𝜕𝑋

𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
)

−1

+ (
𝜕𝑤

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
−
𝜕𝑤

𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
)

⋅(
𝜕
2
𝑋

𝜕𝑥𝜕𝑦
⋅
𝜕𝑌

𝜕𝑦
+
𝜕𝑋

𝜕𝑥
⋅
𝜕
2
𝑌

𝜕𝑦2
−
𝜕
2
𝑋

𝜕𝑦2
⋅
𝜕𝑌

𝜕𝑥
−
𝜕𝑋

𝜕𝑦
⋅
𝜕
2
𝑌

𝜕𝑥𝜕𝑦
)

⋅ (
𝜕𝑋

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
−
𝜕𝑋

𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
)

−2

.

(A.7)

Eliminating the mixed partial derivatives from the left-hand
sides of both (A.5) and (A.7), we have

𝜕
2
𝑤

𝜕𝑋2
⋅ (

𝜕𝑋

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
−
𝜕𝑋

𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
)

= (
𝜕
2
𝑤

𝜕𝑥2
⋅ (

𝜕𝑌

𝜕𝑦
)

2

+
𝜕𝑤
2

𝜕𝑦2
⋅ (

𝜕𝑌

𝜕𝑥
)

2

−
2𝜕
2
𝑤

𝜕𝑥𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
+ ⋅ ⋅ ⋅)

⋅ (
𝜕𝑋

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
−
𝜕𝑋

𝜕𝑦
⋅
𝜕𝑌

𝜕𝑥
)

−1

+ ⋅ ⋅ ⋅ ,

(A.8)

where the omitted terms consist of the second derivatives of
𝑋 or𝑌with respect to 𝑥, 𝑦. If𝑋 and𝑌 are polynomials of 𝑥, 𝑦
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of degrees not more than one (as the example in Section 5),
these terms will become zeros.

Similarly, from (A.3), we have

𝜕
2
𝑤

𝜕𝑌2
⋅ (

𝜕𝑌

𝜕𝑥
⋅
𝜕𝑋

𝜕𝑦
−
𝜕𝑌

𝜕𝑦
⋅
𝜕𝑋

𝜕𝑥
)

= (
𝜕
2
𝑤

𝜕𝑥2
⋅ (

𝜕𝑋

𝜕𝑦
)

2

+
𝜕𝑤
2

𝜕𝑦2
⋅ (

𝜕𝑋

𝜕𝑥
)

2

−
2𝜕
2
𝑤

𝜕𝑥𝜕𝑦
⋅
𝜕𝑋

𝜕𝑥
⋅
𝜕𝑋

𝜕𝑦
+ ⋅ ⋅ ⋅)

⋅ (
𝜕𝑌

𝜕𝑥
⋅
𝜕𝑋

𝜕𝑦
−
𝜕𝑌

𝜕𝑦
⋅
𝜕𝑋

𝜕𝑥
)

−1

+ ⋅ ⋅ ⋅ .

(A.9)

Manipulation of (A.8) and (A.9) leads to

𝜕
2
𝑤

𝜕𝑋2
+
𝜕
2
𝑤

𝜕𝑌2

= (
𝜕
2
𝑤

𝜕𝑥2
⋅ [(

𝜕𝑋

𝜕𝑦
)

2

+ (
𝜕𝑌

𝜕𝑦
)

2

] +
𝜕𝑤
2

𝜕𝑦2

⋅ [(
𝜕𝑌

𝜕𝑥
)

2

+ (
𝜕𝑋

𝜕𝑥
)

2

] −
2𝜕
2
𝑤

𝜕𝑥𝜕𝑦

⋅ [
𝜕𝑌

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
+
𝜕𝑋

𝜕𝑥
⋅
𝜕𝑋

𝜕𝑦
] + ⋅ ⋅ ⋅ )

⋅ (
𝜕𝑌

𝜕𝑥
⋅
𝜕𝑋

𝜕𝑦
−
𝜕𝑌

𝜕𝑦
⋅
𝜕𝑋

𝜕𝑥
)

−2

+ ⋅ ⋅ ⋅ ,

(A.10)

where the omitted terms consist of the second derivatives of
𝑋 or 𝑌.

If 𝑋(𝑥, 𝑦), 𝑌(𝑥, 𝑦) are polynomials of 𝑥, 𝑦 of degrees not
more than one, then from (A.10) it follows that

𝜕
2
𝑤

𝜕𝑋2
+
𝜕
2
𝑤

𝜕𝑌2

= (
𝜕
2
𝑤

𝜕𝑥2
⋅ [(

𝜕𝑋

𝜕𝑦
)

2

+ (
𝜕𝑌

𝜕𝑦
)

2

] +
𝜕𝑤
2

𝜕𝑦2

⋅ [(
𝜕𝑌

𝜕𝑥
)

2

+ (
𝜕𝑋

𝜕𝑥
)

2

] −
2𝜕
2
𝑤

𝜕𝑥𝜕𝑦

⋅ [
𝜕𝑌

𝜕𝑥
⋅
𝜕𝑌

𝜕𝑦
+
𝜕𝑋

𝜕𝑥
⋅
𝜕𝑋

𝜕𝑦
])

⋅ (
𝜕𝑌

𝜕𝑥
⋅
𝜕𝑋

𝜕𝑦
−
𝜕𝑌

𝜕𝑦
⋅
𝜕𝑋

𝜕𝑥
)

−2

.

(A.11)

Furthermore, if we use the exact characteristic line

𝑋(𝑥, 𝑦, 𝑡) = 𝑥 cos 𝑡 − 𝑦 sin 𝑡,

𝑌 (𝑥, 𝑦, 𝑡) = 𝑥 sin 𝑡 + 𝑦 cos 𝑡,
(A.12)

then from (A.11), it holds that

𝜕
2
𝑤

𝜕𝑋2
+
𝜕
2
𝑤

𝜕𝑌2
=
𝜕
2
𝑤

𝜕𝑥2
+
𝜕𝑤
2

𝜕𝑦2
. (A.13)

If we use the numerical characteristic line

𝑋(𝑥, 𝑦) = 𝑥 + 𝑦Δ𝑡,

𝑌 (𝑥, 𝑦) = 𝑦 − 𝑥Δ𝑡,

(A.14)

then from (A.11), it holds that

𝜕
2
𝑤

𝜕𝑋2
+
𝜕
2
𝑤

𝜕𝑌2
=

(𝜕
2
𝑤/𝜕𝑥
2
+ 𝜕𝑤
2
/𝜕𝑦
2
)

1 + Δ𝑡2
. (A.15)
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[10] E. Süli, “Convergence and nonlinear stability of the Lagrange-
Galerkin method for the Navier-Stokes equations,” Numerische
Mathematik, vol. 53, no. 4, pp. 459–483, 1988.

[11] Y. Yuan, “The characteristic-mixed finite element method for
enhanced oil recovery simulation and optimal order L2 error
estimate,” Chinese Science Bulletin, vol. 38, pp. 1066–1070, 1993.

[12] R. E. Ewing and H. Wang, “A summary of numerical methods
for time-dependent advection-dominated partial differential
equations,” Journal of Computational and Applied Mathematics,
vol. 128, no. 1-2, pp. 423–445, 2001.

[13] G. Strang, “On the construction and comparison of different
splitting schemes,” SIAM Journal on Numerical Analysis, vol. 53,
pp. 506–517, 1968.

[14] R. E. Ewing and T. F. Russell, “Multistep Galerkin methods
along characteristics for convection-diffusion problems,” in
Advances inComputerMethods for Partial Differential Equations
IV, R. Vichnevetsky and R. S. Stepleman, Eds., pp. 28–36,
IMACS Rutgers University, New Brunswich, NJ, USA, 1981.

[15] H. Rui and M. Tabata, “A second order characteristic finite ele-
ment scheme for convection-diffusion problems,” Numerische
Mathematik, vol. 92, no. 1, pp. 161–177, 2002.

[16] H. Notsu and M. Tabata, “A single-step characteristic-curve
finite element scheme of second order in time for the incom-
pressibleNavier-Stokes equations,” Journal of Scientific Comput-
ing, vol. 38, no. 1, pp. 1–14, 2009.

[17] K. Boukir, Y. Maday, and B. Métivet, “A high order character-
istics method for the incompressible Navier-Stokes equations,”
Computer Methods in Applied Mechanics and Engineering, vol.
116, no. 1–4, pp. 211–218, 1994.

[18] K. Boukir, Y. Maday, B. Métivet, and E. Razafindrakoto, “A
high-order characteristics/finite elementmethod for the incom-
pressible Navier-Stokes equations,” International Journal for
Numerical Methods in Fluids, vol. 25, no. 12, pp. 1421–1454, 1997.
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