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Suppose that 𝐸 and 𝐸 denote real Banach spaces with dimension at least 2, that 𝐷 ̸= 𝐸 and 𝐷 ̸= 𝐸 are bounded domains with
connected boundaries, that 𝑓 : 𝐷 → 𝐷

 is an𝑀-QH homeomorphism, and that 𝐷 is uniform. The main aim of this paper is to
prove that 𝑓 extends to a homeomorphism 𝑓 : 𝐷 → 𝐷

 and 𝑓|
𝜕𝐷

is bilipschitz if and only if 𝑓 is bilipschitz in 𝐷. The answer to
some open problems of Väisälä is affirmative under a natural additional condition.

1. Introduction and Main Results

During the past three decades, the quasihyperbolicmetric has
become an important tool in geometric function theory and
in its generalizations to metric spaces and Banach spaces [1].
Yet, some basic questions of the quasihyperbolic geometry
in Banach spaces are open. For instance, only recently the
convexity of quasihyperbolic balls has been studied in [2, 3]
in the setup of Banach spaces.

Our study is motivated by Väisälä’s theory of freely
quasiconformal maps and other related maps in the setup
of Banach spaces [1, 4, 5]. Our goal is to study some of the
open problems formulated by him.We begin with some basic
definitions and the statements of our results. The proofs and
necessary supplementary notation terminology will be given
thereafter.

Throughout the paper, we always assume that 𝐸 and 𝐸
denote real Banach spaces with dimension at least 2. The
norm of a vector 𝑧 in 𝐸 is written as |𝑧|, and for every pair
of points 𝑧

1
, 𝑧
2
in 𝐸, the distance between them is denoted

by |𝑧
1
− 𝑧
2
|, the closed line segment with endpoints 𝑧

1
and 𝑧
2

by [𝑧
1
, 𝑧
2
]. We begin with the following concepts following

closely the notation and terminology of [4–8] or [9].
We first recall some definitions.

Definition 1. A domain 𝐷 in 𝐸 is called 𝑐-uniform in the
norm metric, provided there exists a constant 𝑐 with the

property that each pair of points 𝑧
1
, 𝑧
2
in 𝐷 can be joined by

a rectifiable arc 𝛼 in𝐷 satisfying

(1) min
𝑗=1,2

ℓ(𝛼[𝑧
𝑗
, 𝑧]) ≤ 𝑐𝑑

𝐷
(𝑧) for all 𝑧 ∈ 𝛼, and

(2) ℓ(𝛼) ≤ 𝑐|𝑧
1
− 𝑧
2
|,

where ℓ(𝛼) denotes the length of 𝛼, 𝛼[𝑧
𝑗
, 𝑧] the part of 𝛼

between 𝑧
𝑗
and 𝑧, and 𝑑

𝐷
(𝑧) the distance from 𝑧 to the

boundary 𝜕𝐷 of𝐷.

Definition 2. Suppose 𝐺 � 𝐸 , 𝐺
 � 𝐸

, and𝑀 ≥ 1. We say
that a homeomorphism 𝑓 : 𝐺 → 𝐺

 is𝑀-bilipschitz if

1

𝑀

𝑥 − 𝑦
 ≤

𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝑀

𝑥 − 𝑦


(1)

for all 𝑥, 𝑦 ∈ 𝐺, and𝑀-QH if

1

𝑀
𝑘
𝐺
(𝑥, 𝑦) ≤ 𝑘

𝐺
 (𝑓 (𝑥) , 𝑓 (𝑦)) ≤ 𝑀𝑘

𝐺
(𝑥, 𝑦) (2)

for all 𝑥, 𝑦 ∈ 𝐺.

As for the extension of bilipschitz maps in R2, Ahlfors
[10] proved that if a planar curve through∞ admits a qua-
siconformal reflection, it also admits a bilipschitz reflection.
Furthermore, Gehring gave generalizations of Ahlfors’ result
in the plane.
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Theorem A (see [11, Theorem 7]). Suppose that 𝐷 is a 𝐾-
quasidisk in R2, that 𝐷 is a Jordan domain in R2, and that
𝜙 : 𝜕𝐷 → 𝜕𝐷

 is 𝐿
1
-bilipschitz. Then there exist 𝐿-bilipschitz

𝑓 : 𝐷 → 𝐷 and 𝑓⋆ : 𝐷⋆ → 𝐷⋆ such that 𝑓 = 𝑓⋆ = 𝜙 on
𝜕𝐷 and 𝐿 depends only on 𝐾 and 𝐿

1
, where𝐷⋆ = R

2

\ 𝐷 and
𝐷
⋆
= R
2

\ 𝐷.

Tukia and Väisälä [12] dealt with the curious phe-
nomenon that sometimes a quasiconformal property implies
the corresponding bilipschitz property.

Theorem B (see [12, Theorem 2.12]). Suppose that 𝑋 is a
closed set in R𝑛, 𝑛 ̸= 4, and that 𝑓 : R𝑛 → R𝑛 is a 𝐾-QC map
such that 𝑓|

𝑋
is 𝐿-bilipschitz. Then there is an 𝐿

1
-bilipschitz

map 𝑔 : R𝑛 → R𝑛 such that

(1) 𝑔|
𝑋
= 𝑓|
𝑋
;

(2) 𝑔(𝐷) = 𝑓(𝐷) for each component𝐷 of R𝑛 \ 𝑋;

(3) 𝐿
1
depends only on 𝐾, 𝐿, and 𝑛.

In [13], Gehring raised the following two related prob-
lems.

Open Problem 1. Suppose that𝐷 is a Jordan domain inR
2

and
that 𝑓|

𝜕𝐷
is 𝑀-bilipschitz. Characterize mappings 𝑓 having

𝑀
-bilipschitz extension to𝐷 with𝑀 = 𝑀(𝑐,𝑀).

Open Problem 2. Suppose that 𝐷 is a Jordan domain in R
2

.
For which domains 𝐷 does each 𝑀-bilipschitz 𝑓 in the 𝜕𝐷
have𝑀-bilipschitz extension to𝐷 with𝑀 = 𝑀(𝑐,𝑀)?

Gehring himself discussed these two problems and got
the following two results.

Theorem C (see [13, Theorem 2.11]). Suppose that 𝐷 and 𝐷

are Jordan domains in R
2

and that ∞ ∈ 𝐷
 if and only if

∞ ∈ 𝐷. Suppose also that 𝑓 : 𝐷 → 𝐷
 is a𝐾-quasiconformal

mapping and that 𝑓 extends to a homeomorphism 𝑓 : 𝐷 →

𝐷 such that 𝑓|
𝜕𝐷

is 𝑀-bilipschitz. Then there exists an 𝑀-
bilipschitz map 𝑔 : 𝐷 → 𝐷 with 𝑔|

𝜕𝐷
= 𝑓|
𝜕𝐷
, where

𝑀

= 𝑀

(𝑀,𝐾).

Theorem D (see [13, Theorem 4.9]). Suppose that 𝐷 and 𝐷

are Jordan domains inR
2

.Then each𝑀-bilipschitz𝑓 in 𝜕𝐷 has
an𝑀-bilipschitz extension 𝑔 : 𝐷 → 𝐷

 with 𝑔|
𝜕𝐷
= 𝑓|
𝜕𝐷

if
and only if 𝐷 is a 𝐾-quasidisk, where 𝑀 = 𝑀


(𝑀,𝐾) and

𝐾 = 𝐾(𝑀).

We remark that Theorem C is a partial answer to Open
Problem 1 and Theorem D is an affirmative answer to Open
Problem 2. In the proof of Theorem C, the modulus of a
path family, which is an important tool in the quasiconformal
theory in R𝑛, was applied. In general, this tool is no longer
applicable in the context of Banach spaces (see [4]). A natural
problem is whether Theorem C is true or false in Banach
spaces. In fact, this problem was raised by Väisälä in [1] in
the following form.

Open Problem 3. Suppose that 𝐷 and 𝐷
 are bounded

domains with connected boundaries in 𝐸 and 𝐸. Suppose
also that 𝑓 : 𝐷 → 𝐷

 is 𝑀-QH and that 𝑓 extends
to a homeomorphism 𝑓 : 𝐷 → 𝐷 such that 𝑓|

𝜕𝐷
is

𝑀-bilipschitz. Is it true that 𝑓 𝑀-bilipschitz with 𝑀 =
𝑀

(𝑐,𝑀)?

Our result is as follows.

Theorem 3. Suppose that 𝐷 and 𝐷 are bounded domains
with connected boundaries in 𝐸 and 𝐸, respectively. Suppose
also that 𝑓 : 𝐷 → 𝐷

 is 𝑀-QH and that 𝑓 extends to a
homeomorphism 𝑓 : 𝐷 → 𝐷 such that 𝑓|

𝜕𝐷
is𝑀-bilipschitz.

If 𝐷 is a 𝑐-uniform domain, then 𝑓 is 𝑀-bilipschitz with
𝑀

= 𝑀

(𝑐,𝑀).

We see fromTheorem 3 that the answer to Open Problem
3 is positive by replacing the hypothesis “𝐷 being bounded”
in Open Problem 3 with the one “𝐷 being bounded and
uniform.”

The organization of this paper is as follows. The proof of
Theorem 3 will be given in Section 3.1. In Section 2, some
preliminaries are introduced.

2. Preliminaries

The quasihyperbolic length of a rectifiable arc or a path 𝛼 in
the norm metric in𝐷 is the number (cf. [14, 15])

ℓ
𝑘
(𝛼) = ∫

𝛼

|𝑑𝑧|

𝑑
𝐷
(𝑧)
. (3)

For each pair of points 𝑧
1
, 𝑧
2
in 𝐷, the quasihyperbolic

distance 𝑘
𝐷
(𝑧
1
, 𝑧
2
) between 𝑧

1
and 𝑧
2
is defined in the usual

way:

𝑘
𝐷
(𝑧
1
, 𝑧
2
) = inf ℓ

𝑘
(𝛼) , (4)

where the infimum is taken over all rectifiable arcs 𝛼 joining
𝑧
1
to 𝑧
2
in𝐷. For all 𝑧

1
, 𝑧
2
in𝐷, we have (cf. [15])

𝑘
𝐷
(𝑧
1
, 𝑧
2
)

≥ inf {log(1 + ℓ (𝛼)

min {𝑑
𝐷
(𝑧
1
) , 𝑑
𝐷
(𝑧
2
)}
)}

≥



log
𝑑
𝐷
(𝑧
2
)

𝑑
𝐷
(𝑧
1
)



,

(5)

where the infimum is taken over all rectifiable curves 𝛼 in 𝐷
connecting 𝑧

1
and 𝑧
2
.

In [5], Väisälä characterized uniform domains by the
quasihyperbolic metric.

Theorem E (see [5, Theorem 6.16]). For a domain 𝐷, the
following are quantitatively equivalent:

(1) 𝐷 is a 𝑐-uniform domain;
(2) 𝑘
𝐷
(𝑧
1
, 𝑧
2
) ≤ 𝑐
 log(1 + |𝑧

1
− 𝑧
2
|/min{𝑑

𝐷
(𝑧
1
), 𝑑
𝐷
(𝑧
2
)})

for all 𝑧
1
, 𝑧
2
∈ 𝐷;



Abstract and Applied Analysis 3

(3) 𝑘
𝐷
(𝑧
1
, 𝑧
2
) ≤ 𝑐


1
log(1+|𝑧

1
−𝑧
2
|/min{𝑑

𝐷
(𝑧
1
), 𝑑
𝐷
(𝑧
2
)})+

𝑑 for all 𝑧
1
, 𝑧
2
∈ 𝐷.

Gehring and Palka [14] introduced the quasihyperbolic
metric of a domain in R𝑛, and it has been recently used
by many authors in the study of quasiconformal mappings
and related questions [16]. In the case of domains in R𝑛,
the equivalence of items (1) and (3) in Theorem E is due to
Gehring and Osgood [17] and the equivalence of items (2)
and (3) is due to Vuorinen [18]. Many of the basic properties
of this metric may be found in [4, 5, 17].

Recall that an arc 𝛼 from 𝑧
1
to 𝑧
2
is a quasihyperbolic

geodesic if ℓ
𝑘
(𝛼) = 𝑘

𝐷
(𝑧
1
, 𝑧
2
). Each subarc of a quasihy-

perbolic geodesic is obviously a quasihyperbolic geodesic.
It is known that a quasihyperbolic geodesic between every
pair of points in 𝐸 exists if the dimension of 𝐸 is finite,
see [17, Lemma 1]. This is not true in arbitrary spaces (cf.
[19, Example 2.9]). In order to remedy this shortage, Väisälä
introduced the following concepts [5].

Definition 4. Let𝛼 be an arc in𝐸.The arcmay be closed, open,
or half open. Let 𝑥 = (𝑥

0
, . . . , 𝑥

𝑛
), 𝑛 ≥ 1, be a finite sequence

of successive points of 𝛼. For ℎ ≥ 0, we say that 𝑥 is ℎ-coarse
if 𝑘
𝐷
(𝑥
𝑗−1
, 𝑥
𝑗
) ≥ ℎ for all 1 ≤ 𝑗 ≤ 𝑛. LetΦ

𝑘
(𝛼, ℎ) be the family

of all ℎ-coarse sequences of 𝛼. Set

𝑠
𝑘
(𝑥) =

𝑛

∑

𝑗=1

𝑘
𝐷
(𝑥
𝑗−1
, 𝑥
𝑗
) ,

ℓ
𝑘
𝐷

(𝛼, ℎ) = sup {𝑠
𝑘
(𝑥) : 𝑥 ∈ Φ

𝑘
(𝛼, ℎ)}

(6)

with the agreement that ℓ
𝑘
(𝛼, ℎ) = 0 ifΦ

𝑘
(𝛼, ℎ) = 0. Then the

number ℓ
𝑘
(𝛼, ℎ) is the ℎ-coarse quasihyperbolic length of 𝛼.

In this paper, we will use this concept in the case where
𝐷 is a domain equipped with the quasihyperbolic metric 𝑘

𝐷
.

We always use ℓ
𝑘
(𝛼, ℎ) to denote the ℎ-coarse quasihyperbolic

length of 𝛼.

Definition 5. Let 𝐷 be a domain in 𝐸. An arc 𝛼 ⊂ 𝐷 is (], ℎ)-
solid with ] ≥ 1 and ℎ ≥ 0 if

ℓ
𝑘
(𝛼 [𝑥, 𝑦] , ℎ) ≤ ]𝑘

𝐷
(𝑥, 𝑦) (7)

for all 𝑥, 𝑦 ∈ 𝛼. A (], 0)-solid arc is said to be a ]-neargeodesic,
that is, an arc 𝛼 ⊂ 𝐷 is a ]- neargeodesic if and only if
ℓ
𝑘
(𝛼[𝑥, 𝑦]) ≤ ]𝑘

𝐷
(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝛼.

Obviously, a ]-neargeodesic is a quasihyperbolic geodesic
if and only if ] = 1.

In [19], Väisälä got the following property concerning the
existence of neargeodesic in 𝐸.

Theorem F (see [19, Theorem 3.3]). Let {𝑧
1
, 𝑧
2
} ⊂ 𝐷 and ] >

1. Then there is a ]-neargeodesic in 𝐷 joining 𝑧
1
and 𝑧
2
.

The following result due to Väisälä is from [5].

Theorem G (see [5, Theorem 4.15]). For domains 𝐷 ̸= 𝐸 and
𝐷

̸= 𝐸
, suppose that 𝑓 : 𝐷 → 𝐷

 is 𝑀-QH. If 𝛾 is a 𝑐-
neargeodesic in𝐷, then the arc 𝛾 is 𝑐

1
-neargeodesic in𝐷 with

𝑐
1
depending only on 𝑐 and𝑀.

Let 𝐺 ̸= 𝐸 and 𝐺

̸= 𝐸
 be metric spaces, and let 𝜑 :

[0,∞) → [0,∞) be a growth function, that is, a home-
omorphism with 𝜑(𝑡) ≥ 𝑡. We say that a homeomorphism
𝑓 : 𝐺 → 𝐺

 is 𝜑-semisolid if

𝑘
𝐺
 (𝑓 (𝑥) , 𝑓 (𝑦)) ≤ 𝜑 (𝑘

𝐺
(𝑥, 𝑦)) (8)

for all 𝑥, 𝑦 ∈ 𝐺, and 𝜑-solid if both 𝑓and 𝑓−1 satisfy this
condition.

We say that 𝑓 is fully 𝜑-semisolid (resp. fully 𝜑-solid) if
f is 𝜑-semisolid (resp. 𝜑-solid) on every subdomain of 𝐺. In
particular, when 𝐺 = 𝐸, corresponding subdomains are taken
to be proper ones. Fully 𝜑-solid mapsare also called freely 𝜑-
quasiconformal maps, or briefly 𝜑-FQC maps.

For convenience, in the following, we always assume that
𝑥, 𝑦, 𝑧, . . . denote points in 𝐷 and 𝑥, 𝑦, 𝑧, . . . the images in
𝐷
 of 𝑥, 𝑦, 𝑧, . . . under 𝑓, respectively. Also we assume that 𝛼,

𝛽, 𝛾, . . . denote curves in𝐷 and 𝛼, 𝛽, 𝛾, . . . the images in𝐷
of 𝛼, 𝛽, 𝛾, . . . under 𝑓, respectively.

3. Bilipschitz Mappings

First we introduce the followingTheorems.

TheoremH (see [5,Theorem 7.18]). Let𝐷 and𝐷 be domains
in𝐸 and𝐸, respectively. Suppose that𝐷 is a 𝑐-uniform domain
and that 𝑓 : 𝐷 → 𝐷

 is 𝜑-FQC (see Section 2 for the
definition). Then the following conditions are quantitatively
equivalent:

(1) 𝐷 is a 𝑐
1
-uniform domain;

(2) 𝑓 is 𝜂-quasimöbius.

Theorem I (see [20, Theorem 1.1]). Suppose that 𝐷 is a 𝑐-
uniform domain and that 𝑓 : 𝐷 → 𝐷

 is (𝑀,𝐶)-CQH,
where 𝐷 � 𝐸 and 𝐷 � 𝐸

. Then the following conditions
are quantitatively equivalent:

(1) 𝐷 is a 𝑐
1
-uniform domain;

(2) 𝑓 extends to a homeomorphism 𝑓 : 𝐷 → 𝐷
 and 𝑓 is

𝜂-QM rel 𝜕𝐷.

The following theorem easily follows from Theorems H
and I.

Theorem 6. Suppose that 𝐷 � 𝐸 and 𝐷 � 𝐸
, that 𝐷 is a

𝑐-uniform domain, and that 𝑓 : 𝐷 → 𝐷
 is 𝜑-FQC. Then the

following conditions are quantitatively equivalent:

(1) 𝐷 is a 𝑐
1
-uniform domain;

(2) 𝑓 is 𝜃-quasimöbius;

(3) 𝑓 extends to a homeomorphism 𝑓 : 𝐷 → 𝐷
 and 𝑓 is

𝜃
1
-QM rel 𝜕𝐷.

Let us recall the following three theoremswhich are useful
in the proof of Theorem 3.
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Theorem J (see [1, Theorem 2.44]). Suppose that 𝐺 � 𝐸 and
𝐺
 � 𝐸

 is a 𝑐-uniform domain, and that 𝑓 : 𝐺 → 𝐺
 is𝑀-

QH. If 𝐷 ⊂ 𝐺 is a 𝑐-uniform domain, then 𝐷 = 𝑓(𝐷) is a
𝑐
-uniform domain with 𝑐 = 𝑐(𝑐,𝑀).

Theorem K (see [5, Theorem 6.19]). Suppose that 𝐷 � 𝐸 is
a 𝑐-uniform domain and that 𝛾 is a 𝑐

1
-neargeodesic in 𝐷 with

endpoints 𝑧
1
and 𝑧
2
. Then there is a constant 𝑏 = 𝑏(𝑐, 𝑐

1
) ≥ 1

such that

(1) min
𝑗=1,2

ℓ(𝛾[𝑧
𝑗
, 𝑧]) ≤ 𝑏𝑑

𝐷
(𝑧) for all 𝑧 ∈ 𝛼, and

(2) ℓ(𝛾) ≤ 𝑏|𝑧
1
− 𝑧
2
|.

Theorem L (see [21, Theorem 1.2]). Suppose that 𝐷
1
and 𝐷

2

are convex domains in 𝐸, where 𝐷
1
is bounded and 𝐷

2
is 𝑐-

uniform for some 𝑐 > 1, and that there exist 𝑧
0
∈ 𝐷
1
∩ 𝐷
2
and

𝑟 > 0 such that B(𝑧
0
, 𝑟) ⊂ 𝐷

1
∩ 𝐷
2
. If there exist constants

𝑅
1
> 0 and 𝑐

0
> 1 such that 𝑅

1
≤ 𝑐
0
𝑟 and𝐷

1
⊂ B(𝑧

0
, 𝑅
1
), then

𝐷
1
∪𝐷
2
is a 𝑐-uniform domain with 𝑐 = (𝑐 + 1)(2𝑐

0
+ 1) + 𝑐.

Basic Assumption A. In this paper, we always assume that 𝐷
and 𝐷 are bounded domains with connected boundaries in
𝐸 and 𝐸, respectively, that 𝑓 : 𝐷 → 𝐷

 is 𝑀-QH, that 𝑓
extends to a homeomorphism 𝑓 : 𝐷 → 𝐷 such that 𝑓|

𝜕𝐷
is

𝑀-bilipschitz, and that𝐷 is a 𝑐-uniform domain.

Before the proof of Theorem 3, we prove a series of
lemmas.

Lemma 7. There is a constant 𝑀
0
= 𝑀
0
(𝑀) > 𝑀 such

that if the points 𝑧
1
, 𝑧
2
∈ 𝐷 satisfies dist(𝑧

1
, 𝜕𝐷) ≤ 𝜀 and

dist(𝑧
2
, 𝜕𝐷) ≤ 𝜀 for sufficiently small 𝜀 > 0, then

1

𝑀
0

𝑧1 − 𝑧2
 ≤


𝑧


1
− 𝑧


2


≤ 𝑀
0

𝑧1 − 𝑧2
 . (9)

Proof. Let 𝑥
1
, 𝑥
2

∈ 𝜕𝐷 be such that |𝑧
1
− 𝑥
1
| =

(4/3) dist(𝑧
1
, 𝜕𝐷), |𝑧

2
−𝑥
2
| ≤ (4/3) dist(𝑧

2
, 𝜕𝐷) and |𝑥

1
−𝑥
2
| ≤

max{|𝑧
1
−𝑥
1
|, |𝑧
2
−𝑥
2
|} < 3|𝑥

1
−𝑥
2
| for sufficiently small 𝜀 > 0.

It follows from “𝑓 being𝑀-QH in 𝐷 and homeomorphic in
𝐷” that𝐻(𝑥, 𝑓) ≤ 𝐾 (cf. [1]) for each𝑥 ∈ 𝐷, where𝐾depends
only on𝑀. Hence,


𝑧


1
− 𝑥


1


<
3

2
𝐾

𝑥


1
− 𝑥


2


,


𝑧


2
− 𝑥


2


<
3

2
𝐾

𝑥


1
− 𝑥


2


.

(10)

If |𝑧
1
− 𝑧
2
| ≤ (1/4𝐾

2
𝑀)max{|𝑧

1
− 𝑥
1
|, |𝑧
2
− 𝑥
2
|}, then for

each 𝑧 ∈ [𝑧
1
, 𝑧
2
],

𝑑
𝐷
(𝑧) ≥

3𝐾
2
𝑀− 1

4𝐾2𝑀
max {𝑧1 − 𝑥1

 ,
𝑧2 − 𝑥2

} ,
(11)

and so we have

2

𝑧


1
− 𝑧


2



min {𝑑
𝐷
 (𝑧


1
) , 𝑑
𝐷
 (𝑧


2
)}

≤ log(1 +

𝑧


1
− 𝑧


2



min {𝑑
𝐷
 (𝑧


1
) , 𝑑
𝐷
 (𝑧


2
)}
)

≤ 𝑘
𝐷
 (𝑧


1
, 𝑧


2
) ≤ 𝑀𝑘

𝐷
(𝑧
1
, 𝑧
2
)

≤ 𝑀∫

[𝑧1 ,𝑧2]

|𝑑𝑧|

𝑑
𝐷
(𝑧)

≤
4𝐾
2
𝑀
2 𝑧1 − 𝑧2



(3𝐾2𝑀− 1)max {𝑧1 − 𝑥1
 ,
𝑧2 − 𝑥2

}
,

(12)

which shows that


𝑧


1
− 𝑧


2


≤
12𝐾
3
𝑀
3

3𝐾2𝑀− 1

𝑧1 − 𝑧2
 .

(13)

If |𝑧
1
− 𝑧
2
| > (1/4𝐾

2
𝑀)max{|𝑧

1
− 𝑥
1
|, |𝑧
2
− 𝑥
2
|}, then by

the assumption “𝑓 being𝑀-bilipschitz in 𝜕𝐷,”


𝑧


1
− 𝑧


2


≤

𝑧


1
− 𝑥


1


+

𝑧


2
− 𝑥


2


+

𝑥


1
− 𝑥


2



≤ (3𝐾 + 1)

𝑥


1
− 𝑥


2



≤ (3𝐾 + 1)𝑀
𝑥1 − 𝑥2



≤ (12𝐾 + 4)𝐾
2
𝑀
2 𝑧1 − 𝑧2

 .

(14)

The same discussion as the above shows that

𝑧1 − 𝑧2
 ≤ (12𝐾 + 4)𝐾

2
𝑀
2 
𝑧


1
− 𝑧


2


. (15)

Lemma 8. There is a constant𝑀
1
= 𝑀
1
(𝑐,𝑀) such that if the

points 𝑥 ∈ 𝐷 and 𝑧 ∈ S(𝑥, 𝑑
𝐷
(𝑥)) ∩ 𝐷 satisfies dist(𝑧, 𝜕𝐷) ≤ 𝜀

for sufficiently small 𝜀 > 0, then


𝑧

− 𝑥

≤ 𝑀
1
𝑑
𝐷
(𝑥) . (16)

Proof. Let 𝑥
0
∈ S(𝑥, 𝑑

𝐷
(𝑥))∩𝐷 such that dist(𝑥

0
, 𝜕𝐷) ≤ 𝜀 for

sufficiently small 𝜀 > 0, and let 𝑥
2
be the intersection point of

S(𝑥
0
, (1/2)𝑑

𝐷
(𝑥)) with [𝑥

0
, 𝑥]. Then we have

𝑘
𝐷
(𝑥
2
, 𝑥) ≤ log(1 +

𝑥 − 𝑥2


𝑑
𝐷
(𝑥) −

𝑥 − 𝑥2


)

≤ log 𝑑
𝐷
(𝑥)

𝑑
𝐷
(𝑥
2
)
= log 2,

(17)

which implies that

log

𝑥


2
− 𝑥



𝑥


2
− 𝑥


0



≤ 𝑘
𝐷
 (𝑥


2
, 𝑥

) ≤ 𝑀𝑘

𝐷
(𝑥
2
, 𝑥) = 𝑀 log 2. (18)
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Hence,

𝑥


2
− 𝑥

≤ 2
𝑀 
𝑥


2
− 𝑥


0


, (19)

and so

𝑥

− 𝑥


0


≤

𝑥

− 𝑥


2


+

𝑥


2
− 𝑥


0



≤ (2
𝑀
+ 1)


𝑥


2
− 𝑥


0


.

(20)

Let 𝑇 be a 2-dimensional linear subspace of 𝐸 which
contains 𝑥

0
and 𝑥

2
, and we use 𝜏 to denote the circle 𝑇 ∩

S(𝑥
0
, (1/2)𝑑

𝐷
(𝑥)). Take 𝑤

1
∈ 𝜏 ∩ 𝜕𝐷 such that 𝜏(𝑥

2
, 𝑤
1
) ⊂ 𝐷

and ℓ(𝜏[𝑥
2
, 𝑤
1
]) ≤ 2𝑑

𝐷
(𝑥). Let 𝑥

1
∈ S(𝑥, 𝑑

𝐷
(𝑥))∩𝜏[𝑥

2
, 𝑤
1
]∩

𝐷 and denote 𝜏(𝑥
1
, 𝑤
1
) by 𝜏
1
.

Claim 1. There must exist a 232-uniform domain𝐷
1
in𝐷 and

𝑥
3
∈ 𝜕𝐷
1
∩𝐷 satisfying dist(𝑥

3
, 𝜕𝐷) ≤ 𝜀 for sufficiently small

𝜀 > 0 such that 𝑥
0
, 𝑥 ∈ 𝐷

1
and (1/12)𝑑

𝐷
(𝑥) ≤ |𝑥

3
− 𝑥
0
| ≤

(11/12)𝑑
𝐷
(𝑥).

If 𝑑
𝐷
(𝑥
1
) = 0, then we take 𝐷

1
= B(𝑥, 𝑑

𝐷
(𝑥)) and 𝑥

3
=

𝑥
1
. Obviously, |𝑥

3
− 𝑥
0
| = (1/2)𝑑

𝐷
(𝑥). Hence Claim 1 holds

true in this case.
If 𝑑
𝐷
(𝑥
1
) > 0, we divide the proof of Claim 1 into two

parts.

Case 1. (𝑑
𝐷
(𝑥
1
) ≤ (5/12)𝑑

𝐷
(𝑥)). Then we take 𝐷

1
=

B(𝑥, 𝑑
𝐷
(𝑥)) ∪B(𝑥

1
, 𝑑
𝐷
(𝑥
1
)) and 𝑥

3
∈ S(𝑥

1
, 𝑑
𝐷
(𝑥
1
)) ∩𝐷 such

that dist(𝑥
3
, 𝜕𝐷) ≤ 𝜀 for sufficiently small 𝜀 > 0. It follows

fromTheorem L that𝐷
1
is a 29-uniform domain and

1

12
𝑑
𝐷
(𝑥) ≤

𝑥1 − 𝑥0
 −
𝑥1 − 𝑥3

 ≤
𝑥3 − 𝑥0



≤
𝑥1 − 𝑥0

 +
𝑥1 − 𝑥3

 ≤
11

12
𝑑
𝐷
(𝑥) ,

(21)

from which we see that Claim 1 is true.

Case 2. (𝑑
𝐷
(𝑥
1
) > (5/12)𝑑

𝐷
(𝑥)). Obviously, 𝑑

𝐷
(𝑥
1
) >

(5/6)|𝑥
1
− 𝑥
0
|. We let 𝑤

2
∈ 𝜏
1
be the first point along the

direction from 𝑥
1
to 𝑤
1
such that

𝑑
𝐷
(𝑤
2
) =

5

12
𝑑
𝐷
(𝑥) . (22)

If |𝑤
2
− 𝑥
1
| ≤ (1/3)𝑑

𝐷
(𝑥), then we take 𝐷

1
=

B(𝑥, 𝑑
𝐷
(𝑥)) ∪ B(𝑤

2
, 𝑑
𝐷
(𝑤
2
)),and let 𝑥

3
∈ S(𝑤

2
, 𝑑
𝐷
(𝑤
2
)) ∩𝐷

such that dist(𝑥
3
, 𝜕𝐷) ≤ 𝜀 for sufficiently small 𝜀 > 0. Then

𝑑
𝐷
(𝑤
2
) + 𝑑
𝐷
(𝑥) −

𝑤2 − 𝑥


≥ 𝑑
𝐷
(𝑤
2
) −

𝑤2 − 𝑥1
 ≥

1

12
𝑑
𝐷
(𝑥) ,

1

12
𝑑
𝐷
(𝑥) ≤

𝑥3 − 𝑥0


≤
𝑤2 − 𝑥0

 +
𝑤2 − 𝑥3

 ≤
11

12
𝑑
𝐷
(𝑥) .

(23)

It follows from Theorem L that 𝐷
1
is a 677-uniform

domain, which shows that Claim 1 is true.

If |𝑤
2
−𝑥
1
| > (1/3)𝑑

𝐷
(𝑥), thenwe first prove the following

subclaim.

Subclaim 1. There exists a simply connected domain 𝐷
1
=

∪
𝑡

𝑖=0
𝐵
𝑖
in𝐷, where 𝑡 = 1 or 2, such that

(1) 𝑥
0
, 𝑥 ∈ 𝐷

1
;

(2) for each 𝑖 ∈ {0, . . . , 𝑡}, (5/12)𝑑
𝐷
(𝑥) ≤ 𝑟

𝑖
≤ 𝑑
𝐷
(𝑥);

(3) if 𝑡 = 2, then |𝑥 − 𝑤
2
| − 𝑟
0
− 𝑟
2
≥ (1/144)𝑑

𝐷
(𝑥);

(4) 𝑟
𝑖
+ 𝑟
𝑖+1
− |V
𝑖
− V
𝑖+1
| ≥ (1/144)𝑑

𝐷
(𝑥), where 𝑖 ∈ {0, 1}

if 𝑡 = 2 or 𝑖 = 0 if 𝑡 = 1.

Here 𝐵
𝑖
= B(V

𝑖
, 𝑟
𝑖
), V
𝑖
∈ 𝜏[𝑥
2
, 𝑤
2
], V
1
∉ 𝐵
0
, and V

2
∉ 𝜏[𝑥
2
, V
1
].

To prove this subclaim, we let 𝑦
2
∈ 𝜏
1
be such that

|𝑥
1
− 𝑦
2
| = (1/3)𝑑

𝐷
(𝑥) and let 𝐶

0
= B(𝑥, 𝑑

𝐷
(𝑥)) and 𝐶

1
=

B(𝑦
2
, 𝑑
𝐷
(𝑦
2
)). Since 𝑑

𝐷
(𝑦
2
) > (5/12)𝑑

𝐷
(𝑥), we have

𝑑
𝐷
(𝑦
2
) + 𝑑
𝐷
(𝑥) −

𝑦2 − 𝑥
 ≥

1

12
𝑑
𝐷
(𝑥) . (24)

Next, we construct a ball denoted by 𝐶
2
.

If 𝑤
2
∈ 𝐶
1
, then we let 𝐶

2
= B(𝑤

2
, 𝑑
𝐷
(𝑤
2
)).

If 𝑤
2
∉ 𝐶
1
, then we let 𝑦

3
be the intersection of

S(𝑦
2
, 𝑑
𝐷
(𝑦
2
)) with 𝜏

1
[𝑦
2
, 𝑤
1
]. Since ℓ(𝜏

1
) ≤ 2𝑑

𝐷
(𝑥)

and 𝑑
𝐷
(𝑧) ≥ (5/12)𝑑

𝐷
(𝑥) for all 𝑧 ∈ 𝜏

1
(𝑥
1
, 𝑥
2
), we

have
𝑤1 − 𝑤2

 +
𝑤2 − 𝑦3

 +
𝑦3 − 𝑦2

 +
𝑦2 − 𝑥1

 +
𝑥2 − 𝑥1



≤ ℓ (𝜏
1
) ≤ 2𝑑

𝐷
(𝑥) ,

(25)

which implies that

𝑤2 − 𝑦3
 ≤

1

3
𝑑
𝐷
(𝑥) . (26)

We take 𝐶
2
= B(𝑤

2
, 𝑑
𝐷
(𝑤
2
)). Then (26) implies

𝑑
𝐷
(𝑤
2
) + 𝑑
𝐷
(𝑥
2
) −

𝑥2 − 𝑤2


≥ 𝑑
𝐷
(𝑤
2
) −

𝑤2 − 𝑦3
 ≥

1

12
𝑑
𝐷
(𝑥) .

(27)

Now we are ready to construct the needed domain𝐷
1
.

If 𝑑
𝐷
(𝑤
2
) + 𝑑
𝐷
(𝑥) − |𝑤

2
−𝑥| ≥ (1/48)𝑑

𝐷
(𝑥), then we take

𝐵
0
= 𝐶
0
, 𝐵
1
= 𝐶
2
, and 𝐷

1
= 𝐵
0
∪ 𝐵
1
with V

0
= 𝑥, V

1
= 𝑤
2
,

𝑟
0
= 𝑑
𝐷
(𝑥), and 𝑟

1
= 𝑑
𝐷
(𝑤
2
). Obviously, 𝐷

1
satisfies all the

conditions in Subclaim 1. In this case, 𝑡 = 1.
If 𝑑
𝐷
(𝑤
2
) + 𝑑
𝐷
(𝑥) − |𝑤

2
−𝑥| < (1/48)𝑑

𝐷
(𝑥), then we take

𝐵
0
= B(𝑥, (35/36)𝑑

𝐷
(𝑥)) with 𝑟

0
= (35/36)𝑑

𝐷
(𝑥) and V

0
= 𝑥,

𝐵
1
= 𝐶
1
with 𝑟

1
= 𝑑
𝐷
(𝑦
2
) and V

1
= 𝑦
2
, and 𝐵

2
= 𝐶
2
with

𝑟
2
= 𝑑
𝐷
(𝑤
2
) and V

2
= 𝑤
2
. Then Inequalities (24) and (27)

show that𝐷
1
= ⋃
2

𝑖=0
𝐵
𝑖
satisfies all the conditions in Subclaim

1. In this case, 𝑡 = 2.
Hence, the proof of Subclaim 1 is complete.
The following follows from a similar argument as in the

proof of [22, Theorem 1.1].
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Corollary 9.Thedomain𝐷
1
constructed in Subclaim 1 is a 232-

uniform domain.

Let 𝑥
3
∈ S(𝑤

2
, 𝑑
𝐷
(𝑤
2
)) ∩ 𝐷 such that dist(𝑥

3
, 𝜕𝐷) ≤ 𝜀 for

sufficiently small 𝜀 > 0. Then

1

12
𝑑
𝐷
(𝑥) ≤

𝑥3 − 𝑥0
 ≤

11

12
𝑑
𝐷
(𝑥) . (28)

Then the proof of Claim 1 easily follows from (28), Subclaim
1, and Corollary 9.

We come back to the proof of Lemma 8. It follows from
(28) and Lemma 7 that

𝑥 − 𝑥3
 ≤

𝑥 − 𝑥0
 +
𝑥0 − 𝑥3

 ≤
23

12
𝑑
𝐷
(𝑥) ,

1

12𝑀
0

𝑑
𝐷
(𝑥) ≤

1

𝑀
0

𝑥3 − 𝑥0
 ≤


𝑥


3
− 𝑥


0


≤ 𝑀
0

𝑥3 − 𝑥0


≤
11𝑀
0

12
𝑑
𝐷
(𝑥) .

(29)

Then it follows from Theorem J that 𝐷
1
is an 𝑀-uniform

domain, where 𝑀 = 𝑀

(𝑐,𝑀). Hence, we know from

Theorem 6 that 𝑓−1 is a 𝜃-Quasimöbius in 𝐷
1
, where 𝜃 =

𝜃(𝑐,𝑀), and so (19), (20), (28), and (29) imply that

1

23
≤

𝑥3 − 𝑥0


𝑥2 − 𝑥0


⋅

𝑥2 − 𝑥


𝑥 − 𝑥3


≤ 𝜃(


𝑥


3
− 𝑥


0


𝑥


2
− 𝑥


0



⋅


𝑥


2
− 𝑥



𝑥
 − 𝑥


3



)

≤ 𝜃(
𝑀
0
2
𝑀+1

𝑑
𝐷
(𝑥)

𝑥
 − 𝑥


3



) ,

(30)

which, together with (20), shows

𝑥

− 𝑥


0


≤

𝑥

− 𝑥


3


+

𝑥


3
− 𝑥


0



≤ (
2
𝑀+1

𝜃−1 (1/23)
+
11𝑀
0

12
)𝑑
𝐷
(𝑥)

<
2
𝑀
0
+2

𝜃−1 (1/23)
𝑑
𝐷
(𝑥) .

(31)

Thus, the proof of Lemma 8 is complete.

Lemma 10. For all 𝑥 ∈ 𝐷, if 𝑧 ∈ S(𝑥, 𝑑
𝐷
(𝑥)) ∩ 𝐷 such that

dist(𝑥, 𝜕𝐷) ≤ 𝜀 for sufficiently small 𝜀 > 0, then |𝑧 − 𝑥| ≥
(1/𝑒
4𝑀
0
𝑀
2

1 )𝑑
𝐷
(𝑥), where𝑀

1
= 𝑀
1
(𝑐,𝑀).

Proof. Suppose on the contrary that there exist points 𝑥
1
∈ 𝐷

and 𝑦
1
∈ S(𝑥

1
, 𝑑
𝐷
(𝑥
1
)) ∩ 𝐷 with dist(𝑦

1
, 𝜕𝐷) ≤ 𝜀 for

sufficiently small 𝜀 > 0 such that


𝑥


1
− 𝑦


1


<

1

𝑒
4𝑀
0
𝑀
2

1

𝑥1 − 𝑦1
 . (32)

We take 𝑦
2
∈ S(𝑦

1
, 𝑑
𝐷
(𝑥
1
))∩𝐷 such that dist(𝑦

2
, 𝜕𝐷) ≤ 𝜀

for sufficiently small 𝜀 > 0. From Lemma 7 we know that


𝑦


1
− 𝑦


2


≥

1

𝑀
0

𝑦1 − 𝑦2
 =

1

𝑀
0

𝑑
𝐷
(𝑥
1
) . (33)

Let 𝑇
1
be a 2-dimensional linear subspace of 𝐸 deter-

mined by 𝑥
1
, 𝑦
1
and 𝑦

2
, and 𝜔 the circle 𝑇

1
∩ S(𝑦

1
, 𝑑
𝐷
(𝑥
1
)).

We take 𝑦
3
∈ 𝜔 ∩ 𝜕𝐷 which satisfies 𝜔(𝑥

1
, 𝑦
3
) ⊂ 𝐷 and

ℓ(𝜔[𝑥
1
, 𝑦
3
]) ≤ 4𝑑

𝐷
(𝑥
1
). Let 𝜔

1
= 𝜔(𝑥

1
, 𝑦
3
) and 𝑤

1
be the

first point along the direction from 𝑥
1
to 𝑦
3
such that

𝑑
𝐷
(𝑤
1
) =

1

4𝑀
0
𝑀
1

𝑑
𝐷
(𝑥
1
) . (34)

Let V
1
∈ S(𝑤

1
, 𝑑
𝐷
(𝑤
1
)) ∩𝐷 such that dist(𝑤

1
, 𝜕𝐷) ≤ 𝜀 for

sufficiently small 𝜀 > 0. Then it follows from Lemma 8 that

𝑑
𝐷
 (𝑤


1
) ≤


𝑤


1
− V


1


≤ 𝑀
1
𝑑
𝐷
(𝑤
1
) =

1

4𝑀
0

𝑑
𝐷
(𝑥
1
) , (35)

which, together with Lemmas 7 and 8 and (32), implies that

𝑥


1
− 𝑤


1


≥

𝑦


1
− V


1


−

𝑥


1
− 𝑦


1


−

V


1
− 𝑤


1



≥
1

𝑀
0

𝑦1 − V
1



−
1

𝑒
4𝑀
0
𝑀
2

1

𝑥1 − 𝑦1
 − 𝑀1

V1 − 𝑤1


≥
1

𝑀
0

(𝑑
𝐷
(𝑥
1
) − 𝑑
𝐷
(𝑤
1
))

−
1

𝑒
4𝑀
0
𝑀
2

1

𝑥1 − 𝑦1
 − 𝑀1

V1 − 𝑤1


>
1

2𝑀
0

𝑑
𝐷
(𝑥
1
) .

(36)

Hence, we infer from (32) that

𝑘
𝐷
 (𝑥


1
, 𝑤


1
) ≥ log(1 +


𝑥


1
− 𝑤


1



𝑑
𝐷
 (𝑥


1
)
) > 𝑀

2

1
. (37)

Since ℓ(𝜔
1
) ≤ 4𝑑

𝐷
(𝑥
1
), by the choice of 𝑤

1
, one has

𝑘
𝐷
(𝑥
1
, 𝑤
1
) ≤ ∫
𝜔
1[𝑥1 ,𝑤1]

|𝑑𝑥|

𝑑
𝐷
(𝑥)

≤ 16𝑀
0
𝑀
1
, (38)

whence

𝑘
𝐷
 (𝑥


1
, 𝑤


1
) ≤ 𝑀𝑘

𝐷
(𝑥
1
, 𝑤
1
) ≤ 16𝑀𝑀

0
𝑀
1
, (39)

which contradicts with (37). The proof of Lemma 10 is
complete.

Lemma 11. For 𝑥
1
∈ 𝐷 and 𝑥

2
∈ 𝜕𝐷, we have


𝑥


1
− 𝑥


2


≤ 𝑀
2

𝑥1 − 𝑥2
 , (40)

where𝑀
2
= 2𝑀

0
+𝑀
1
.

Proof. For 𝑥
1
∈ 𝐷, we let 𝑦

1
∈ S(𝑥

1
, 𝑑
𝐷
(𝑥
1
)) ∩ 𝐷 such that

dist(𝑦
1
, 𝜕𝐷) ≤ 𝜀 for sufficiently small 𝜀 > 0. Then it follows

from Lemma 8 that

𝑥


1
− 𝑦


1


≤ 𝑀
1

𝑥1 − 𝑦1
 . (41)
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For 𝑥
2
∈ 𝜕𝐷, if |𝑦

1
− 𝑥
2
| ≤ 2|𝑥

1
− 𝑦
1
|, then by Lemma 7,

we have

𝑥


1
− 𝑥


2


≤

𝑥


1
− 𝑦


1


+

𝑦


1
− 𝑥


2



≤ 𝑀
1

𝑥1 − 𝑦1
 + 𝑀0

𝑦1 − 𝑥2


≤ (2𝑀
0
+𝑀
1
)
𝑥1 − 𝑦1



≤ (2𝑀
0
+𝑀
1
)
𝑥1 − 𝑥2

 .

(42)

If |𝑦
1
− 𝑥
2
| > 2|𝑦

1
− 𝑥
1
|, then we have

𝑥1 − 𝑥2
 >

𝑦1 − 𝑥2
 −
𝑥1 − 𝑦1

 >
1

2

𝑦1 − 𝑥2
 .

(43)

Hence, by Lemma 7 and (41),

𝑥


1
− 𝑥


2


≤

𝑥


1
− 𝑦


1


+

𝑦


1
− 𝑥


2



≤ 𝑀
1

𝑥1 − 𝑦1
 + 𝑀0

𝑦1 − 𝑥2


≤ (2𝑀
0
+𝑀
1
)
𝑥1 − 𝑥2

 ,

(44)

from which the proof follows.

Lemma 12. For 𝑥
1
∈ 𝐷 and 𝑥

2
∈ 𝜕𝐷, one has


𝑥


1
− 𝑥


2


≥

1

𝑀
3

𝑥1 − 𝑥2
 , (45)

where𝑀
3
= 2𝑀

0
𝑀
1
𝑒
(5𝑀𝑀

0
+8𝑀
0
)𝑀
2

1 .

Proof. We begin with a claim.

Claim 2. For all 𝑧 ∈ 𝐷, we have 𝑑
𝐷
(𝑧

) ≥ (1/

𝑒
(5𝑀𝑀

0
+8𝑀
0
)𝑀
2

1 )𝑑
𝐷
(𝑧).

To prove this claim, we let 𝑤
2
∈ [𝑧, 𝑦

1
] be such that |𝑤

2
−

𝑦
1
| = (1/2𝑀

1
𝑒
4𝑀
0
𝑀
2

1 )𝑑
𝐷
(𝑧). It follows from [18] that

𝑘
𝐷
(𝑤
2
, 𝑧) ≤ log(1 +

𝑤2 − 𝑧


𝑑
𝐷
(𝑧) −

𝑤2 − 𝑧


) < 5𝑀
0
𝑀
2

1
. (46)

By Lemma 8, we have

𝑤


2
− 𝑦


1


≤ 𝑀
1

𝑤2 − 𝑦1
 =

1

2𝑒
4𝑀
0
𝑀
2

1

𝑑
𝐷
(𝑧) . (47)

Hence, Lemma 10 implies |𝑤
2
− 𝑧

| ≥ (1/2𝑒

4𝑀
0
𝑀
2

1 )𝑑
𝐷
(𝑧),

whence

log

𝑤


2
− 𝑧



𝑑
𝐷
 (𝑧)

≤ 𝑘
𝐷
 (𝑤


2
, 𝑧

) ≤ 𝑀𝑘

𝐷
(𝑤
2
, 𝑧) ≤ 5𝑀𝑀

0
𝑀
2

1
,

(48)

which shows that Claim 2 is true.

Now we are ready to finish the proof of Lemma 12. For
𝑥
1
∈ 𝐷 and 𝑥

2
∈ 𝜕𝐷, if |𝑥

1
− 𝑥
2
| ≤ 2𝑀

0
𝑀
1
𝑑
𝐷
(𝑥
1
), then by

Claim 2,

𝑥


1
− 𝑥


2


≥ 𝑑
𝐷
 (𝑥


1
) ≥

1

𝑒
(5𝑀𝑀

0
+8𝑀
0
)𝑀
2

1

𝑑
𝐷
(𝑥
1
)

≥
1

2𝑀
0
𝑀
1
𝑒
(5𝑀𝑀

0
+8𝑀
0
)𝑀
2

1

𝑥1 − 𝑥2
 .

(49)

If |𝑥
1
− 𝑥
2
| > 2𝑀

0
𝑀
1
𝑑
𝐷
(𝑥
1
), then we take 𝑤

3
∈

S(𝑥
1
, 𝑑
𝐷
(𝑥
1
)) ∩ 𝐷 such that dist(𝑤

3
, 𝜕𝐷) ≤ 𝜀 for sufficiently

small 𝜀 > 0, and so
𝑤3 − 𝑥2

 ≥
𝑥1 − 𝑥2

 −
𝑥1 − 𝑤3



≥ (1 −
1

2𝑀
0
𝑀
1

)
𝑥1 − 𝑥2

 ,

𝑤3 − 𝑥2
 ≥

𝑥1 − 𝑥2
 −
𝑥1 − 𝑤3



≥ (2𝑀
0
𝑀
1
− 1)

𝑥1 − 𝑤3
 ,

(50)

whence Lemmas 7 and 8 imply

𝑥


1
− 𝑥


2


≥

𝑤


3
− 𝑥


2


−

𝑥


1
− 𝑤


3



≥
1

𝑀
0

𝑤3 − 𝑥2
 − 𝑀1

𝑥1 − 𝑤3


≥ (
1

𝑀
0

−
𝑀
1

2𝑀
0
𝑀
1
− 1

)
𝑤3 − 𝑥2



≥
1

3𝑀
0

𝑥1 − 𝑥2
 ,

(51)

from which the proof is complete.

By the previous lemmas, we get the following result.

Lemma 13. 𝐷 is a 𝑐
1
-uniform domain, where 𝑐

1
= 𝑐
1
(𝑐,𝑀).

Proof. We first prove that 𝑓−1 is 𝜃
1
-Quasimöbius rel 𝜕𝐷,

where 𝜃
1
(𝑡) = (𝑀

2
𝑀
3
)
2
𝑡, 𝑀
2
and 𝑀

3
are the same as in

Lemmas 11 and 12, respectively. By definition, it is necessary
to prove that for 𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
∈ 𝐷,

𝑥4 − 𝑥1


𝑥4 − 𝑥2


⋅

𝑥2 − 𝑥3


𝑥1 − 𝑥3


≤ (𝑀
2
𝑀
3
)
2


𝑥


4
− 𝑥


1


𝑥


4
− 𝑥


2



⋅


𝑥


2
− 𝑥


3


𝑥


1
− 𝑥


3



,

(52)

where 𝑥
1
, 𝑥
2
∈ 𝜕𝐷
. Obviously, to prove Inequality (52), we

only need to consider the following three cases.

Case 3 (𝑥
1
, 𝑥


2
, 𝑥


3
, 𝑥


4
∈ 𝜕𝐷
). Since 𝑓 is𝑀-bilipschitz in 𝜕𝐷,

we have
𝑥4 − 𝑥1


𝑥4 − 𝑥2



⋅

𝑥2 − 𝑥3


𝑥1 − 𝑥3


≤ 𝑀
4


𝑥


4
− 𝑥


1


𝑥


4
− 𝑥


2



⋅


𝑥


2
− 𝑥


3


𝑥


1
− 𝑥


3



. (53)

Case 4 (𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝜕𝐷

 and 𝑥
4
∈ 𝐷
). It follows from

Lemmas 11 and 12 that
𝑥4 − 𝑥1


𝑥4 − 𝑥2



⋅

𝑥2 − 𝑥3


𝑥1 − 𝑥3


≤

𝑀
2
𝑀
3


𝑥


4
− 𝑥


1


𝑥


4
− 𝑥


2



⋅

𝑀
2

𝑥


2
− 𝑥


3


𝑥


1
− 𝑥


3



≤ 𝑀
2
𝑀
2
𝑀
3


𝑥


4
− 𝑥


1


𝑥


4
− 𝑥


2



⋅


𝑥


2
− 𝑥


3


𝑥


1
− 𝑥


3



.

(54)
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Case 5 (𝑥
1
, 𝑥
2
∈ 𝜕𝐷

 and 𝑥
3
, 𝑥


4
∈ 𝐷
). We obtain from

Lemmas 11 and 12 that

𝑥4 − 𝑥1


𝑥4 − 𝑥2


⋅

𝑥2 − 𝑥3


𝑥1 − 𝑥3


≤

𝑀
2
𝑀
3


𝑥


4
− 𝑥


1


𝑥


4
− 𝑥


2



⋅

𝑀
2
𝑀
3


𝑥


2
− 𝑥


3


𝑥


1
− 𝑥


3



≤ (𝑀
2
𝑀
3
)
2


𝑥


4
− 𝑥


1


𝑥


4
− 𝑥


2



⋅


𝑥


2
− 𝑥


3


𝑥


1
− 𝑥


3



.

(55)

The combination of Cases 3 ∼ 5 shows that Inequality
(52) holds, which implies that 𝑓−1 is a 𝜃

1
-Quasimöbius rel

𝜕𝐷
. Hence,Theorem 6 shows that𝐷 is a 𝑐

1
-uniform domain,

where 𝑐
1
depends only on 𝑐 and𝑀.

3.1. The Proof of Theorem 3. For any 𝑧
1
, 𝑧
2
∈ 𝐷, it suffices to

prove that

1

𝑀

𝑧1 − 𝑧2
 ≤


𝑧


1
− 𝑧


2


≤ 𝑀
 𝑧1 − 𝑧2

 ,
(56)

where𝑀 depends only on 𝑐 and𝑀.
It follows from the hypothesis “𝑓 being𝑀-bilipschitz in

𝜕𝐷,” Lemmas 11 and 12 that we only need to consider the case
𝑧
1
, 𝑧
2
∈ 𝐷.

If |𝑧
1
− 𝑧
2
| ≤ (1/2)max{𝑑

𝐷
(𝑧
1
), 𝑑
𝐷
(𝑧
2
)}, then

𝑘
𝐷
(𝑧
1
, 𝑧
2
) ≤ ∫
[𝑧
1
,𝑧
2
]

|𝑑𝑥|

𝑑
𝐷
(𝑥)

≤
2
𝑧1 − 𝑧2



max {𝑑
𝐷
(𝑧
1
) , 𝑑
𝐷
(𝑧
2
)}
≤ 1,

(57)

which shows that

log(1 +

𝑧


1
− 𝑧


2



min {𝑑
𝐷
 (𝑧


1
) , 𝑑
𝐷
 (𝑧


2
)}
)

≤ 𝑘
𝐷
 (𝑧


1
, 𝑧


2
) ≤ 𝑀𝑘

𝐷
(𝑧
1
, 𝑧
2
) ≤ 𝑀,

(58)

and so

𝑧


1
− 𝑧


2



𝑒𝑀min {𝑑
𝐷
 (𝑧


1
) , 𝑑
𝐷
 (𝑧


2
)}

≤ log(1 +

𝑧


1
− 𝑧


2



min {𝑑
𝐷
 (𝑧


1
) , 𝑑
𝐷
 (𝑧


2
)}
)

≤
2𝑀

𝑧1 − 𝑧2


max {𝑑
𝐷
(𝑧
1
) , 𝑑
𝐷
(𝑧
2
)}
.

(59)

We see from Lemma 8 that

min {𝑑
𝐷
 (𝑧


1
) , 𝑑
𝐷
 (𝑧


2
)}

≤ 𝑀
1
max {𝑑

𝐷
(𝑧
1
) , 𝑑D (𝑧2)} .

(60)

Then (59) implies that

𝑧


1
− 𝑧


2


≤ 2𝑀𝑀

1
𝑒
𝑀 𝑧1 − 𝑧2

 . (61)

For the other case |𝑧
1
− 𝑧
2
| > (1/2)max{𝑑

𝐷
(𝑧
1
), 𝑑
𝐷
(𝑧
2
)},

we let 𝛽 be a 2-neargeodesic joining 𝑧
1
and 𝑧

2
in 𝐷. It

follows from Theorem G that 𝛽 is a 𝑐
2
-neargeodesic, where

𝑐
2
depends only on𝑀. Let 𝑧 ∈ 𝛽 such that


𝑧


1
− 𝑧

=
1

2


𝑧


1
− 𝑧


2


. (62)

Then we know from |𝑧


2
− 𝑧

| ≥ (1/2)|𝑧



1
− 𝑧


2
| andTheorem K

that

𝑧


1
− 𝑧


2


≤ 2min {𝑧



1
− 𝑧

,

𝑧


2
− 𝑧

}

≤ 2min {diam (𝑧


1
, 𝑧

) , diam (𝑧



2
, 𝑧

)}

≤ 2𝜇𝑑
𝐷
 (𝑧

) ,

(63)

where 𝜇 depends only on 𝑐 and𝑀.
We claim that

𝑑
𝐷
(𝑧) ≤ 3ℓ (𝛽) . (64)

Otherwise,

max {𝑑
𝐷
(𝑧
1
) , 𝑑
𝐷
(𝑧
2
)}

≥ 𝑑
𝐷
(𝑧) −max {𝑧1 − 𝑧

 ,
𝑧2 − 𝑧

} > 2ℓ (𝛽)

≥ 2
𝑧1 − 𝑧2

 .

(65)

This is the desired contradiction.
ByTheorem K and Lemma 13, we have

𝑑
𝐷
(𝑧) ≤ 3ℓ (𝛽) ≤ 3𝑏

𝑧1 − 𝑧2
 , (66)

where 𝑏 = 𝑏(𝑐
1
). Hence, Lemma 8 and (63) show that


𝑧


1
− 𝑧


2


≤ 2𝜇𝑑

𝐷
 (𝑧

) ≤ 6𝑏𝑀

1
𝜇
𝑧1 − 𝑧2

 . (67)

By Lemma 13, we see that 𝐷 is a 𝑐
1
-uniform domain.

Hence a similar argument as in the proofs of Inequalities (61)
and (67) yields that

𝑧1 − 𝑧2
 ≤ 𝑀4


𝑧


1
− 𝑧


2


, (68)

where𝑀
4
= 𝑀
4
(𝑐,𝑀).

Obviously, the inequalities (61), (67), and (68) show that
(56) holds, and thus the proof of the theorem is complete.
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[4] J. Väisälä, “Free quasiconformality in Banach spaces. I,”Annales
Academiae Scientiarum Fennicae, vol. 15, no. 2, pp. 355–379,
1990.
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36, pp. 50–74, 1979.

[18] M. Vuorinen, “Conformal invariants and quasiregular map-
pings,” Journal d’Analyse Mathématique, vol. 45, pp. 69–115,
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