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Applying bilinear form and extended three-wavetype of ansätz approach on the (2 + 1)-dimensional Sawada-Kotera equation, we
obtain new multisoliton solutions, including the double periodic-type three-wave solutions, the breather two-soliton solutions,
the double breather soliton solutions, and the three-solitary solutions. These results show that the high-dimensional nonlinear
evolution equation has rich dynamical behavior.

1. Introduction

As is well known that the exact solutions of nonlinear evo-
lution equations play an important role in nonlinear science
field, especially in nonlinear physical science since they can
providemuch physical information andmore insight into the
physical aspects of the problem and thus lead to further appli-
cations. The search for exact solutions of nonlinear partial
differential equations has long been an interesting and hot
topic in nonlinearmathematical physics. Consequently,many
methods are available to look for exact solutions of nonlinear
evolution equations, such as the inverse scattering method,
the Lie group method, the mapping method, Exp-function
method, and ansätz technique [1–4]. Very recently, Wang
et al. [5] proposed a new technique called extended three-
wave approach to seek multiwave solutions for integrable
equations, and this method has been used to investigate
several equations [6, 7]. In this paper, we consider the
following Sawada-Kotera equation:

𝑢
𝑡
= (𝑢
𝑥𝑥𝑥𝑥

+ 5𝑢𝑢
𝑥𝑥

+
5

3
𝑢
3
+ 5𝑢
𝑥𝑦
)
𝑥

− 5∫ (𝑢
𝑦𝑦
) 𝑑𝑥 + 5𝑢𝑢

𝑦
+ 5𝑢
𝑥
∫(𝑢
𝑦
) 𝑑𝑥.

(1)

Equation (1) was derived by B. G. Konopelchenko and V. G.
Dubrovsky, and was called the Sawada-Kotera (SK) equation;
for example, see [8]. By means of the two-soliton method,
the exact periodic soliton solutions, N-soliton solutions, and
traveling wave solutions of the SK equation were found [8–
10].

In this paper, we discuss further the (2 + 1)-dimensional
SK equation, by using bilinear form and extended three-wave
type of ansätz approach, respectively [5, 11–15], and some new
multisoliton solutions are obtained.

2. The Multisoliton Solutions

We assume

𝑢 = −2(ln𝑓)
𝑥𝑥
, (2)

where 𝑓 = 𝑓(𝑥, 𝑦, 𝑡) is an unknown real function. Substitut-
ing (2) into (1), we can reduce (1) into the following equation
[8]:

(𝐷
6

𝑥
+ 5𝐷
𝑦
𝐷
3

𝑥
− 5𝐷
2

𝑦
+ 𝐷
𝑥
𝐷
𝑡
) 𝑓 ⋅ 𝑓 = 0, (3)
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where the Hirota bilinear operator𝐷 is defined by (𝑛,𝑚 ≥ 0)

𝐷
𝑚

𝑥
𝐷
𝑛

𝑡
𝑓 (𝑥, 𝑡) ⋅ 𝑔 (𝑥, 𝑡)

= (
𝜕

𝜕𝑥
−

𝜕

𝜕𝑥
)

𝑚

(
𝜕

𝜕𝑡
−

𝜕

𝜕𝑡
)

𝑛

× [𝑓 (𝑥, 𝑡) 𝑔 (𝑥

, 𝑡

)]
𝑥=𝑥,𝑡=𝑡

.

(4)

Now we suppose the solution of (3) as

𝑓 = 𝑒
−𝜉

+ 𝛿
1
cos (𝜂) + 𝛿

2
cosh (𝛾) + 𝛿

3
𝑒
𝜉
, (5)

where 𝜉 = 𝑎
1
𝑥 + 𝑏
1
𝑦 + 𝑐
1
𝑡, 𝜂 = 𝑎

2
𝑥 + 𝑏
2
𝑦 + 𝑐
2
𝑡, 𝛾 = 𝑎

3
𝑥 +

𝑏
3
𝑦 + 𝑐
3
𝑡, and 𝑎

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
(𝑖 = 1, 2, 3) are some constants

to be determined later. Substituting (5) into (3) and equating
all the coefficients of different powers of 𝑒𝜉, 𝑒−𝜉, sin(𝜂), cos(𝜂),
sinh(𝛾), cosh(𝛾), and the constant term to zero, we can obtain
a set of algebraic equations for 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and 𝛿

𝑗
(𝑖 = 1, 2, 3;

𝑗 = 1, 2, 3). Solving the system with the aid of Maple, we get
the following results.
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2
= 0, then
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2
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9

16
𝑎
3
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4
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2
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𝑎
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4

1
) ,

(6)

where 𝑎
1
, 𝑎
3
, 𝛿
1
, and 𝛿

3
are free real constants. Substituting

(6) into (5) and taking 𝛿
3
> 0, we have

𝑓
1
= 2√𝛿

3
cosh (𝑎

1
𝑥 + 𝐾

1
𝑦 + 𝐿

1
𝑡 +

1

2
ln (𝛿
3
))

− 𝛿
1
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1
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𝛿
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(7)

where𝐾
1
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1
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1
𝑎2
3
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1
).

Substituting (7) into (2) yields the three-soliton solution of
SK equation as follows:

𝑢
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,

(8)

where 𝜉
1
= 𝑎
1
𝑥 + 𝐾

1
𝑦 + 𝐿

1
𝑡, 𝜂
1
= 𝑎
3
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𝑦 + 𝐽
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𝛾
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1
𝑡.

If taking 𝑎
3
= 𝑖𝐴
3
in (7), then we have

𝑓
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(9)

where𝛿
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𝐴
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3
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3
−
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1
𝐴2
3
+ 40𝑎4

1
). Substituting (9) into (2) yields the double

breather soliton solution of SK equation as follows:

𝑢
2
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1
√𝛿
3
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2
+
1

2
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3
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𝛿
1
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3
cos (𝜂

2
)
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1
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3
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3
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2
+
1

2
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3
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+𝛿
1
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2
) −

𝛿
1
𝑎
2

1
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2
)

𝑎2
1
+ 𝐴2
3

)
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+ 2 [(2𝑎
1
√𝛿
3
sinh(𝜉

2
+
1

2
ln (𝛿
3
))

+
𝛿
1
𝑎2
1
𝐴
3
sin (𝜂
2
)

𝑎2
1
+𝐴2
3

)

× (2√𝛿
3
cosh (𝜉

2
+
1

2
ln (𝛿
3
))

+𝛿
1
cos (𝛾

2
)−

𝛿
1
𝑎2
1
cos (𝜂

2
)

𝑎2
1
+𝐴2
3

)

−1

]

2

,

(10)

where 𝜉
2
= 𝑎
1
𝑥 + 𝐾

2
𝑦 + 𝐿

2
𝑡, 𝜂
2
= 𝐴
3
𝑥 − 𝐻

2
𝑦 + 𝐽
2
𝑡, and

𝛾
2
= 𝑀
2
𝑦 + 𝑁

2
𝑡.

Case 2. If 𝑎
2

̸= 0, then

𝑏
1
= −𝑎
3

1
, 𝑏

2
= 𝑎
3

2
, 𝑏

3
= −𝑎
3

3
,

𝛿
1
= 𝛿
1
, 𝛿

2
= 𝛿
2
, 𝛿
3
= 𝛿
3
,

𝑐
1
= 9𝑎
5

1
, 𝑐

2
= 9𝑎
5

2
, 𝑐

3
= 9𝑎
5

3
,

(11)

where 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝛿
1
, 𝛿
2
, and 𝛿

3
are free real constants.

Substituting (11) into (5) and taking 𝛿
3
> 0, we have

𝑓
3
= 2√𝛿

3
cosh (𝑎

1
𝑥 − 𝑎
3

1
𝑦 + 9𝑎

5

1
𝑡 +

1

2
ln (𝛿
3
))

+ 𝛿
1
cos (𝑎

2
𝑥 + 𝑎
3

2
𝑦 + 9𝑎

5

2
𝑡)

+ 𝛿
2
cosh (𝑎

3
𝑥 − 𝑎
3

3
𝑦 + 9𝑎

5

3
𝑡) .

(12)

Substituting (12) into (2) yields the breather two-soliton
solution of SK equation as follows:

𝑢
3
= −(2 [2√𝛿

3
𝑎
2

1
cosh (𝜉

3
+
1

2
ln (𝛿
3
))

−𝛿
1
𝑎
2

2
cos (𝜂

3
) + 𝛿
2
𝑎
2

3
cosh (𝛾

3
) ])

× (2√𝛿
3
cosh (𝜉

3
+
1

2
ln (𝛿
3
))

+𝛿
1
cos (𝜂

3
) + 𝛿
2
cosh (𝛾

3
) )
−1

+ [(2 (2√𝛿
3
𝑎
1
sinh(𝜉

3
+
1

2
ln (𝛿
3
))

−𝛿
1
𝑎
2
sin (𝜂
3
) + 𝛿
2
𝑎
3
sinh (𝛾

3
) ))

× (2√𝛿
3
cosh (𝜉

3
+
1

2
ln (𝛿
3
))

+𝛿
1
cos (𝜂

3
) + 𝛿
2
cosh (𝛾

3
) )
−1

]

2

,

(13)

where 𝜉
3
= 𝑎
1
𝑥 − 𝑎3
1
𝑦 + 9𝑎5

1
𝑡, 𝜂
3
= 𝑎
2
𝑥 + 𝑎3
2
𝑦 + 9𝑎5

2
𝑡, and

𝛾
3
= 𝑎
3
𝑥 − 𝑎3
3
𝑦 + 9𝑎5

3
𝑡.

The expression (𝑢
3
) is the breather two-soliton solution of

SK equation which is a periodic wave in 𝑥, 𝑦 and meanwhile
is a two-soliton in 𝑥, 𝑦 (refer to Figure 1(b)).

Case 3. If 𝑎
2
= 𝑏
1
= 0, then

𝑎
1
= 2𝑎
3
, 𝑏

2
= √21𝑎

3

3
, 𝑏

3
= −

3

2
𝑎
3

3
,

𝑐
1
= −

169

2
𝑎
5

3
,

𝑐
2
= −20√21𝑎

5

3
, 𝑐

3
= −

349

4
𝑎
5

3
,

𝛿
3
=

5

152
𝛿
2

2
−

7

228
𝛿
2

1
,

(14)

where 𝑎
3
, 𝛿
1
, and 𝛿

2
are free real constants. Substituting (14)

into (5) and taking 𝛿
3
> 0, we have

𝑓
4
= 2√

5

152
𝛿2
2
−

7

228
𝛿2
1

× cosh (−2𝑎
3
𝑥 +

169

2
𝑎
5

3
𝑡 −

1

2
ln( 5

152
𝛿
2

2
−

7

228
𝛿
2

1
))

+ 𝛿
1
cos (−√21𝑎

3

3
𝑦 + 20√21𝑎

5

3
𝑡)

+ 𝛿
2
cosh (−𝑎

3
𝑥 +

3

2
𝑎
3

3
𝑦 +

349

4
𝑎
5

3
𝑡) ,

(15)

where (5/152)𝛿2
2
− (7/228)𝛿2

1
> 0. Substituting (15) into (2)

yields the breather two-soliton solution of SK equation as
follows:

𝑢
4
= −(2 [8√𝐾

4
𝑎
2

3
cosh (𝜉

4
−
1

2
ln (𝐾
4
))

+𝛿
2
𝑎
2

3
cosh (𝜂

4
) ])

× (2√𝐾
4
cosh (𝜉

4
−
1

2
ln (𝐾
4
))

+𝛿
1
cos (𝛾

4
) + 𝛿
2
cosh (𝜂

4
) )
−1

+ 2 [ (4√𝐾
4
𝑎
3
sinh(𝜉

4
−
1

2
ln (𝐾
4
))

+𝛿
2
𝑎
3
sinh (𝜂

4
) )

× (2√𝐾
4
cosh (𝜉

4
−
1

2
ln (𝐾
4
))

+𝛿
1
cos (𝛾

4
) + 𝛿
2
cosh (𝜂

4
) )
−1

]

2

,

(16)

where𝐾
4
= (5/152)𝛿2

2
− (7/228)𝛿2

1
, 𝜉
4
= −2𝑎

3
𝑥 + (169/2)𝑎5

3
𝑡,

𝜂
4
= −𝑎
3
𝑥 + (3/2)𝑎3

3
𝑦 + (349/4)𝑎5

3
𝑡, and 𝛾

4
= −√21𝑎3

3
𝑦 +

20√21𝑎5
3
𝑡.



4 Abstract and Applied Analysis

20
10

0

30

−10

−30

−20
𝑥20

10
0

−10

−20

𝑦

−0.06

−0.04

0

𝑢
2

−0.02

(a)

−1

−2

−3

−4

−5

0

10
0−5

−10

5 8
4

0

−8

−4

𝑥

𝑦

𝑢
3

(b)

24

0
1

2
3

0
−4

−2

−1
−2

−3

𝑥

𝑦

0

−8

−6

−4

−2

𝑢
4

(c)

2
4

0
−4

−2 𝑦2
4

0

−4

−2

𝑥

120000
100000
80000
60000
40000
20000

0

𝑢
5

(d)

Figure 1: (a) The figure of 𝑢
2
as 𝛿
1
= 1, 𝛿

3
= 1, and 𝑡 = 1. (b) The figure of 𝑢

3
as 𝛿
1
= √2, 𝛿

2
= 1, and 𝑡 = 0. (c) The figure of 𝑢

4
as 𝛿
1
= √2,

𝛿
2
= √5, and 𝑡 = 0.005. (d) The figure of 𝑢

5
as 𝛿
1
= 1, 𝛿

2
= 1, and 𝑡 = 0.

The expression (𝑢
4
) is the breather two-soliton solution of

SK equation which is a periodic wave in 𝑦-𝑡 and meanwhile
is a two-soliton in 𝑥, 𝑦 and in 𝑥-𝑡, respectively (refer to
Figure 1(c)).

Notice that 𝑢
3
and 𝑢

4
are also the breather two-soliton

solutions, but their structure is different, because the two
wave propagation directions are different in the 𝑢

3
and 𝑢

4
,

respectively (refer to Figures 1(b) and 1(c)).
If taking 𝑎

1
= 𝑖𝐴
1
, 𝑎
3
= 𝑖𝐴
3
in (12), then we have

𝑓
5
= 2 cos (𝐴

1
𝑥 + 𝐴

3

1
𝑦 + 9𝐴

5

1
𝑡)

+ 𝛿
1
cos (𝑎

2
𝑥 + 𝑎
3

2
𝑦 + 9𝑎

5

2
𝑡)

+ 𝛿
2
cos (𝐴

3
𝑥 + 𝐴

3

3
𝑦 + 9𝐴

5

3
𝑡) ,

(17)

when 𝛿
3

= 1. Substituting (17) into (2) gives the double-
periodic three-wave solution of SK equation as follows:

𝑢
5
=

2 [2𝐴2
1
cos (𝜉

5
) + 𝛿
1
𝑎2
2
cos (𝜂

5
) + 𝛿
2
𝐴2
3
cos (𝛾

5
)]

2 cos (𝜉
5
) + 𝛿
1
cos (𝜂

5
) + 𝛿
2
cos (𝛾

5
)

+ 2[
2𝐴
1
sin (𝜉
5
) + 𝛿
1
𝑎
2
sin (𝜂
5
) + 𝛿
2
𝐴
3
sin (𝛾
5
)

2 cos (𝜉
5
) + 𝛿
1
cos (𝜂

5
) + 𝛿
2
cos (𝛾

5
)

]

2

,

(18)

where 𝜉
5
= 𝐴
1
𝑥 + 𝐴3

1
𝑦 + 9𝐴5

1
𝑡, 𝜂
5
= 𝑎
2
𝑥 + 𝑎3
2
𝑦 + 9𝑎5

2
𝑡, and

𝛾
5
= 𝐴
3
𝑥 + 𝐴

3

3
𝑦 + 9𝐴

5

3
𝑡.

3. Conclusion

By using bilinear form and extended three-wave type of
ansätz approach, we discuss further the (2 + 1)-dimensional



Abstract and Applied Analysis 5

Sawada-Kotera equation and find some new multisoliton
solutions.The result shows that the extended three-wave type
of ansätz approachmay provide uswith a straightforward and
effectivemathematical tool for seekingmultiwave solutions of
high-dimensional nonlinear evolution equations.
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