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We study the existence and asymptotic stability in pth moment of a mild solution to a class of nonlinear fractional neutral stochastic
differential equations with infinite delays in Hilbert spaces. A set of novel sufficient conditions are derived with the help of semigroup
theory and fixed point technique for achieving the required result. The uniqueness of the solution of the considered problem is also

studied under suitable conditions. Finally, an example is given to illustrate the obtained theory.

1. Introduction

The stochastic differential equations have been widely applied
in science, engineering, biology, mathematical finance and in
almost all applied sciences. In the present literature, there are
many papers on the existence and uniqueness of solutions
to stochastic differential equations (see [1-4] and references
therein). More recently, Chang et al. [5] investigated the exis-
tence of square-mean almost automorphic mild solutions to
nonautonomous stochastic differential equations in Hilbert
spaces by using semigroup theory and fixed point approach.
Fu and Liu [2] discussed the existence and uniqueness of
square-mean almost automorphic solutions to some linear
and nonlinear stochastic differential equations and in which
they studied the asymptotic stability of the unique square-
mean almost automorphic solution in the square-mean sense.
On the other hand, recently fractional differential equations
have found numerous applications in various fields of science
and engineering [6]. The existence and uniqueness results
for abstract stochastic delay differential equation driven by
fractional Brownian motions have been studied in [7]. In
particular the stability investigation of stochastic differential
equations has been investigated by several authors [8-15].
Let K and H be two real separable Hilbert spaces with
inner products (-,-)x and (:,-);, respectively. We denote

their norms by |- [x and |- |;. To avoid confusion we just
use (-,-) for the inner product and | - | for the norm. Let
{e;};, be an orthonormal basis of K. Throughout the paper,
we assume that (Q, F,P;F) (F = {F,},) is a complete
filtered probability space satisfying that &, contains all P-
null sets of &. Suppose {W(t) : t > 0} is cylindrical K-
valued Brownian motion with a trace class operator Q, denote
tracQ = Yo} A; = A < 00, which satisfies that Qe; = Ase;.
So, actually, W(t) = Z:fl \/A—iWi(t)ei, where {W, (1)}, are
mutually independent one-dimensional standard Brownian
motions. Define (K, H) as the set of all bounded linear
operators A : K — H with the following norm:

-~ 1/2
|A| = <Z|Aei|2> < 00. €]

i=1

It is obvious that #(K, H) is a Hilbert space with an inner
product induced by the above norm. Let A € Z(K, H) be
called a Hilbert-Schmidt operator. We further assume that
the filtration is generated by the cylindrical Brownian motion
W(-) and augmented, that is,

Fi=0{W(s);0<s<tjvA, 2)

where / is the P-null sets.



The qualitative properties of stochastic fractional differ-
ential equations have been considered only in few publica-
tions. El-Borai et al. [16] studied the existence uniqueness,
and continuity of the solution of a fractional stochastic
integral equation. Ahmed [17] derived a set of sufficient
conditions for controllability of fractional stochastic delay
equations by using a stochastic version of the well-known
Banach fixed point theorem and semigroup theory. Moreover,
theory of neutral differential equations is of both theoretical
and practical interests. For a large class of electrical net-
works containing lossless transmission lines, the describing
equations can be reduced to neutral differential equations.
However, to the author’s best knowledge no work has been
reported in the present literature regarding the existence,
uniqueness, and asymptotic stability of mild solutions for
neutral stochastic fractional differential equations with infi-
nite delay in Hilbert spaces. Motivated by this consideration,
in this paper we consider the nonlinear fractional neutral
stochastic differential equations with infinite delays in the
following form:

‘DY [X @) +g X (t-7(1)]
=AX @)+ f(t X (t-1(1)

(3)
ot Xt-ve)) Y o,
dt
Xo()=¢ € Bz ([m(0),0],H), (4)

where A is the infinitesimal generator of a strongly continu-
ous semigroup of a bounded linear operator S(t), t > 0in the
Hilbert space H, f : R, xH — H,0:R,xH — Z(K,H)
are two Borel measurable mappings,and g : R, xH — H
is continuous mapping. The fractional derivative ‘D, « €
(0,1) is understood in the Caputo sense. In addition, let
7(t),v(t) € C(R,,R,) satisfy t — 7(t) — oo, t —v(t) — ©0
ast — oo. Let m(0) = max{inf_,(s — 7(s)), inf (s —
v(s))}. Here %90([m(0), 0], H) denote the family of all
almost surely bounded, % -measurable, continuous random
variables ¢(t) [m(0),0] — H with norm ||, =
SUP,(0)<t<0 E19(t) |y Throughout this paper, we assume that
P = 2is an integer.

2. Preliminaries and Basic Properties

Let A be the infinitesimal generator of an analytic semigroup
S(t) in H. Then, (A—nxI) is invertible and generates a bounded
analytic semigroup for 77 > 0 large enough. Therefore, we can
assume that the semigroup S(t) is bounded and the generator
A is invertible. It follows that (~A)’, 0 < 5 < 1 can be
defined as a closed linear invertible operator with its domain
D(-A)" being dense in H. We denote by H, the Banach space
D(-A)" endowed with the norm |xl, = |(=A)"x|, which is
equivalent to the graph norm of (—A)". For more details about
semigroup theory, one can refer [18].

Lemma 1 (see [18]). Suppose that the preceding conditions are
satisfied.

(a) Let 0 < n < 1, then H, is a Banach space.
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(b) If 0 < v < 1, then the embedding H, C H, is compact
whenever the resolvent operator of A is compact.

(c) For everyn € (0, 1, there exists a positive constant O
such that |A"S(t)| < C,I/t”, t>0.

Definition 2 (see [19]). The fractional integral of order g with
the lower limit 0 for a function f is defined as
1

apn_ L [ f0)
= I («) L (t—s)'™

provided the righthand side is pointwise defined on [0, co),
where I'(+) is the gamma function.

ds, t>0,9>0 (5)

Definition 3 (see [19]). The Caputo derivative of order « for a
function f: [0,00) — R can be written as

_— 1 t (n)
Df(t)zf(n—oc)J —

ds=1""f" (1),
0 (t-9 Y S (6)

t>0,0<n-1<a<n.

If f is an abstract function with values in H, then integrals
which appear in the above definitions are taken in Bochner’s
sense.

According to Definitions 2 and 3, it is suitable to rewrite
the stochastic fractional equation (3) in the equivalent inte-
gral equation

X (@)= [p0)+g(0,9)] —gt, X (t—-1(t)
N ﬁ Lt (t - 5)*! [AX (6) + (5 X (s—7(5))

dw (s)
I ds.
(7)

In view of [18, Lemma 3.1] and by using Laplace trans-
form, we present the following definition of mild solution of

(3).

Definition 4. A stochastic process {X(t) : t € [0,T]}, 0 <
T < oo is called a mild solution of (3), if

+0 (s, X (s=v (s)))

(i) X(t) is #,-adapted and is measurable, t > 0;

(ii) X(t) € H has cadlag paths on t € [0, T] almost surely
and for each t € [0, T], the function (¢t — s)“_lATa(t -
5)g(s, X(s—1(s))) is integrable such that the following
integral equation is satisfied:

X(t) =S, ) [90)+g(0,9)] - g(t, X (t -7 (1))

_ Jt (t— ) TAT, (t—5) g (s, X (s — 7 (5))) ds
0

. jt (t= )T, (= 5) f (5, X (s - 7(s))) ds
0

+ Jt (t- s)“_lT“ t-=95)o (s, X(s=v(s))dW (s),
0
(8)
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(iii) Xo() = ¢ € B5([m(0),0], H),

where

S, ()X = LOO 7., (6) S (£°6) X d6,

T, ()X =« ro B, (0) S (°6) X d6
0

with #, a probability density function defined on (0, co).
The following properties of S, (t) and T, (¢) [18] are useful.

Lemma 5. Under previous assumptions on S(t), t > 0 and A,
(i) S, (t) and T, (t) are strongly continuous;
(ii) forany X € H, 5 € (0,1) and 6 € (0, 1] one has
AT, (1) X = AT, (1) APX,

aCy T(2-6) (10)
@ Taraa_gy <O

|A°T, (1) <

Definition 6. Let p > 2 be an integer. Equation (8) is said to
be stable in pth moment if for arbitrarily given € > 0 there
exists a § > 0 such that

E <sup|X(t)|P) <€ when |(p|@ < 0. 1)

t>0

Definition 7. Let p > 2 be an integer. Equation (8) is said to
be asymptotically stable in pth moment if it is stable in pth
moment and, for any ¢ € B4 ([m(0,0)], H), it holds

Tlim E (sup|X (t)|‘D) =0. (12)

t>T

3. Main Result

In this section, we prove the existence, uniqueness, and
stability of the solution to fractional stochastic equation (3)
by using the Banach fixed point approach.

In order to obtain the existence and stability of the
solution to (3), we impose the following assumptions on (3).

(H1) There exist constants M > 1 and a > 0 such that
1S(t)| < Me™™.

(H2) There exists a positive constant L, for every t > 0 and
x, y € H, such that
|f &)= fEy) <Ly |-yl
(13)
lo(t,x) -0 (ty)| <Li|x-y|.

(H3) There exist 0 < B < 1 such that g is Hg-valued,

(—A)ﬁ g is continuous and there exists a positive
constant M, such that

A g (t0) - A g (t.y)| <Mg|x =y (4)

foreveryt > 0and x,y € H.

(He) © = (4% [(-4) " Mp + 47 MP K(ew BT
ap)? + 4P o MPIRLP + 477 C o MPLIL'PP?] <
1, where C, = (p(p-1)/2P? M, =
t 7{11‘“9 T a—1
fo 0n,(0)e™™ db, L = jo My (t —5)""'ds and
T )
L'=[] M, (t-9""Tds.

In addition, in order to derive the stability of the
solution, we further assume that

(H5)

gt0)=0,  f(t0)=0, o(50)=0. (15)

It is obvious that (3) has a trivial solution when ¢ = 0
under the assumption (H5).

Lemma 8. Let p > 2, t > 0and let ® be an L (K, H)-valued,
predictable process such that E fot ICD(s)Ig,ds < 00. Then,

P
sup E

O<s<t

r D (u) dW (u)

0

< (220Y([ efocr)”

Theorem 9. Let p > 2 be an integer. Assume that the
conditions (H1)-(H4) hold, then the nonlinear fractional
neutral stochastic differential equation (3) is asymptotically
stable in the pth moment.

(16)

Proof. Denote by B the space of all F-adapted process
o(t,w) [m(0),0] x Q — R, which is almost surely
continuous in t for fixed w € Q and satisfies ¢(t, w) = ¢(¢) for
t € [m(0),0] and E|¢(t, w)|? — 0ast — 0.Itis thenroutine
to check that B is a Banach space when it is equipped with a
norm defined by |¢|g = sup,. Elg(t)|%;. Define the nonlinear
operator ¥ : B — B such that (YX)(t) = ¢(t), t € [m(0),0]
and, for t > 0,

(¥X) () = S, () [ (0) + g (0,9)] — g (t, X (t — 7 (t)))

_ Jt (t—s) AT, (t—5) g (5, X (s — 7 (5))) ds
0

+ r (t =) "T (t—s) f(s, X (s—7(s)))ds
0

+Jt (t—5)*""T, (t—s) 0 (s, X (s=v (s))) AW (s).
0
17)

As mentioned in Luo [20], to prove the asymptotic stability
it is enough to show that the operator ¥ has a fixed point
in H. To prove this result, we use the contraction mapping
principle. To apply the contraction mapping principle, first
we verify the mean square continuity of ¥ on [0, c0). Let



X € B, t; > 0and let || be sufficiently small, and observe
that

E|(YX) (t, + h) - (¥X) (t1)|p
(18)

5
< 5PN EIF, (8, + h) - F, (1)
i=1

Note that

E|F\(t, + h) - F,(t))|f

= E|(S, (6, + 1) - S, (1)) [0 (0) - g (0,9)]]".

(19)

The strong continuity of S, (¢) [18] implies that the right hand
of (19) goes to 0 as |h| — 0. In view of Lemma 5 and the
Holder’s inequality, the third term of (18) becomes

E|F; (t, +h) - Bty

t,+h
_E j (t,+h=)" AT, (6 +h-5) g
0

X (s, X (s—71(s)))ds

S RCEDI N ACERY

P
x (s, X (s—1(s)))ds

t,+h
<3"'E J (t, +h=s)" (AT, (t, +h—-5s)g
ty

P
X (s, X (s—71(s)))ds

t

+37E UO (6 4= )" = (6, - 9] -A) T,

p
X (tp+h-s)g(s, X (s—1(s)ds

+3/'E r (t, - 5)* (-A)

0

X [To(tr +h=s) = To (t,=5)] g

p
X (s, X(s—71(s)))ds

t,+h
<3F'E <J (t, +h=s) (=4 PT, (t, + h—5s)|
tl

P
x |(-A)g (S,X(S—T(s)))|ds)
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+3F'E <Ltl [t +h=9)"" = (6, -9)"]

x '(—A)l_ﬁTa (t; +h- s)|
p
x |(=A)Yg (s, X (s = 7(s)))] ds)
+3P7'E <r (t, —s)*" |(—A)1‘ﬁ|
0
X |T (ty +h=s) =T, (t; - 5)]

P
x |(=A)g (s, X (s = 7(s)))] ds)

t,+h

p-1
< 37K (a, B) Mig’(J (t,+h- s)“ﬁlds>

t,+h .
X J (t, +h =) E|IX (s - 7 (s))|Pds
t

+ 377K (o, B) MF

y <J't1 (ty+h-9)"" = (t - s)OHdS)p1
0 (t, +h—s)" D

X Jtl (t,+h- S)OH - (t, - 5)0‘71

0 (t, + h—s)"F"

E|X (s —1(s))|Pds

Pl PP ([ A
+3P ¢ Mg|(—A) | (L (t, —s) ds>

f
X J (t, - $)“ "EIX (s — 7 (s))|Pds

0

heP

p-1
< 37K (a, B) M§<@>

t,+h )
x J (t, +h—s)PEIX (s — 7 (s))|Pds
1y

p-1 p
+ 3P K (o, B) ME

y (Jtl (ty+h=-9)"" = (t - s)“1d5>Pl
0 (t, +h—s) D

Jtl (t, +h- S)a_l - (t, - s)a_l
x

0 (t, +h—s)"F

E|X (s —1(s))|Pds

—1

p-1_pasp 1-p|P Y
+3 eMg|(—A) | L
(04

% Jtl (t, —s)" "EIX (s - 7 (s))|Pds,
0

(20)
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— P P p
where K(a, B) = (xPI“(Hﬁ)CI_ﬁ/F(Haﬁ).
small, the right hand side of the above equation tends to zero
as|h| — 0.

Next we consider

Since € is sufficiently

E|F4 (t, +h) - F, (tl)lp

t,+h w1
_E j (t,+h=s) T, (t, + h—s)

0

X f(s,X(s—1(s)))ds

p

-9 T -9 Fe X ds

0

t,+h
<3"'E J (t,+h—s)"T, (t, +h—s)
ty

p
Xf (s, X(s—1(s))ds

t

+37E UO [(+n-9" (- 9]

P
XT,(t;+h—s) f(s, X (s—1(s)ds

#3009 T -9 - T - 91

p

X(s, X (s—71(s)))ds

+3F'E <r [(t,+h- B R s)“_l]
0
P
x|T, (t; +h=9)||f (s, X (s =7 (s)))| ds>
+3E (L“ (6= ) T, 6y + h—5) =T, (8, = 3)|

P
x|f (s, X (s— T(s)))|d5> .

(21)
By the Holder’s inequality, we obtain
—~17p t1+h a—1 Pt
<3f LlMPaP<L M, (b, +h =) ds)
1

t+h a1 »
X J M, ps(t; +h=5)" EIX (s — 7(s))|"ds

t

~1;p
+3P LI MPo?
p-1

« <Lt My s [t 41 9 = (6= )] ds)

5

tl ox— o—
<[ My [ =T = (0 -9

x| X (s — 7 (s))|Pds
A
+ 3p_lepr<—1)
N\«

t

X L (t, = ) "EIX (s - 7 (s))|Pds.
(22)

Therefore, the right hand side of the above equation tends to
zero as [h| — 0 and e sufficiently small. Further, we have

E|Fs (t, +h) —Fs (t1)|P

t,+h =
:EJ (t; +h—=3)""T,(t; +h—35)
0

X0 (s, X (s—1(5)))dW (s)

RGO ATER

P
x0 (s, X (s —7(5)))dW (s)

- t,+h al
<3P EJ (t,+h— )T, (), + h—s)
t

P
x0 (s, X (s —7(s))) dW (s)

+3F7E Uotl [(t,+h- ) -ty - 5)“71]

P
XT, (t; +h—s)o (s, X (s—1(s))dW (s)

#3709 [T b9 - T (6 -9)

P
x0 (s, X (s —1(s))) dW (s)

t,+h
<377'C,E (j (t,+h—s) VI, (£, +h—s)

P2
Xlo(s, X(s—1 (s)))|2d5>
3B ([ rh-97 - -9
X |T, (t; +h - s)|2

P2
x|o (s, X (s — T(S)))|2d5>



t

+371C,E (L (t, - )"

X | Ty (b, + =) =Ty (t, = s)|

p/2
x|o (s, X (s — T(S)))|2d$)

<3P'c, LiMPaf

- BN
-1\ P/(p-2)
X (L (M, sty +h=5)") ds)

1

t,+h RN
X Jt (Mt1+h—s(t1 +h- 5)06 )
1

X E|X (s — 7 (s)[Pds + 377'C, , LI MP o

. <Ltl (M, s [t + R =)™

~(t,~s)

a-1 ] )P/(pz)ds>(P—2)/2

<[ O [ =T = -9
x E|X (s — 7 (s))|Pds

ppa=2/p=2 (P2
-1
+37 e, L ————
px—2/p-2

31
x J (t, - s)"“"VPEIX (s - 7 (5))Pds.
0
(23)
As above, the right hand side of the above inequality tends
to zero. Similarly, we have F, — Oash — 0. Thus V¥ is
continuous in pth moment on [0, 00).

Next we show that ¥(B) € B. Let X € B. From (18), we
have

E|(¥X) (1)
< 6" ElS, (1) 9 (0) + 6" E[S, (£) g (0,9)["

+6" ' E|lg (. X (t -t ()]

+6''E Ut (t—s) (AT, (t - s)
0

P
xg (s, X (s—71(s)))ds
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p

+6/'E Jt (t =) T (t—s) f(s, X (s—7(s)))ds
0

t
+6''E L (t—9s)'T, (t-s)

p

x0 (s, X (s = v (5)))dW (s)

(24)

Now, we estimate the terms on the right hand side of (24) by
using the assumptions (H1), (H3), and (H4). Now, we have

6" E[S, (t) ¢ (0)|

0 « p
ssP*IMPUO o (0) e f’de) o,

— 0 ast — oo,

6" 'E|S, (1) g (0, 9)”
0 « p
<ot [“no@e a0 |-art mdlet

— 0 ast— o0,

6" 'Elg(t, X (t -7 ()|
< 6p—1|(_A)‘/3|PM§E|X (t -7 @)
(25)

For X(t) € B and for any € > 0 there exists a £, > 0 such that
EIX(t-1@)|f <efort>t,.
Therefore,

6p_1E|g(t,X(t - T(t)))]P — 0 ast— oo. (26)

For the fourth term of (24), we have

p

6" 'E Jt (t—9s) " (~A)T, (t-5) g (s, X (s—7(s)))ds
0

<6"'E (Lt (t = 9" () PT, (¢ - 9)|

4
X l(—A)ﬁg (s, X(s—-1 (s)))| ds)
p-1

< 6P_1M§K (e, B) (Lt (t- s)aﬁ_lds>

x jt (t — ) E|1X (s - 7 ()P ds
0

o p-1
< 6" MIK (o, B) (Z—;)

X Jt (t— )P E|IX (s — 7(s))[Pds — 0 as t —> o0.
0
(27)
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Also, we have

p

6 'E Jt t—9s)"T, (t—s) f(s, X (s—7(s)))ds
0

<6"'E (Jt t -9 T (t-9)
0
p
X|f (X (s=7(s)| ds)

t p-1
<6’ aP MPLE <J M, (t - s)‘“ds>

0

8 Jt M,_((t = )" "E|X (s - 7(s)))I"ds,
0

p

6" 'E Jt (t— )T, (t—s)0 (s, X (s — v (5)))dW (s)
0

t
<6"'C,E IL (t-s VT, (-9

p/2
x|o (s, X (s = v (s)))|*ds

t . p=2/p
< 6P‘1chfaPMP<L (M, - 9] 2)d5>

X JZ M,_((t - )*E|X (s - v (s))Pds.
(28)

By the same discussion as above, we have that (28) tends to
zero ast — oo. Thus E|¥X(#)|P — 0Oast — oo. We
conclude that ¥(B) € B.

Finally, we prove that ¥ has a unique fixed point. Indeed,
forany X,Y € B, we have

sup E[(YX) (£) - (¥Y) (1)
te[0,T]

<47 sup Blg (X (-7 (0) =g 0¥ (-7 @)

+4P sup E
te[0,T]

jt (t— ) (CA)T, (¢ —s)

0

x[g(sX(s=7(s))

p
-g(s,Y (s—7(s)]ds

+4P sup E
tel0,T]

Jt t—s)"T, (t-s)

0

x[f(sX(s=7())

p

—f(s,Y(s=7(s)))]ds

+4P" sup E
te[0,T]

Jt (t =%, (t— )

0

x [0 (s, X (s =v(s))

p
-0 (s,Y (s=v(s)]dW (s)

< 477 |- Ay ME sup EIX (1) - Y ()
te[0,T]

t
+4P sup E <J (t—s)" |(—A)1"3T“ (t - s)|
te[0,T) 0

x |4y [g (s, X (s = 7(5)))
P
—g(s,Y (s—7()))] | ds)

t
+47 " sup E <J (t—s)*" T, (t - s)]|
te[0,T] 0

X|f (s, X (s=7(s)))
p
—f(sY (s=1(s)| ds)

t
+ 4P_1CP sup E <J (t - 5)2(“_1)|Ta (t - s)|2
te[0,T] 0

X |o (s, X (s =v(s)))

p/2
(Y (s=v (s)))lzds)

Tk \?
< [41’1 '(—A)’ﬁ"ﬂ ME + 477 MPK (o, B) (W)

+ 4P aP MPLELP

+4P*1cPaPMPLf;L’P’ 2] sup E|X (1) - Y (t)|*.
te[0,T]

(29)

Therefore, ¥ is a contradiction mapping and hence there
exists a unique fixed point, which is a mild solution of (3)
with X(s) = ¢(s) on [m(0),0] and E|X()]? — 0 as
t — oo.

To show the asymptotic stability of the mild solution of
(3), as the first step, we have to prove the stability in pth
moment. Let € > 0 be given and choose § > 0 such that§ < €
satisfies 69~ [MP + MP|(-A) F|PMP15+ 6P [|(-A) FIP ME +

MPK (o, YT o) + a MPLELP + Cpaf MPLEL'PPe <
€.

If X(t) = X(t,¢) is mild solution of (3), with |p|?, < 8,
then (¥X)(t) = X(¢) satisfies E|X(t)|? < € for every t > 0.
Notice that E|X()|? < e ont € [m(0),0]. If there exists t



such that E|X(#)|? = e and E|X(s)|? < e for s € [m(0),1].
Then (24) show that

Elx (@)
<6’ [Mp(r]a ) e_“faey

M (1, ©) ) A #| Mg] 5

g\? (30)
p-1 —B|P arp P T
+67 | |(-A) P M? +MgK(oc,ﬂ)(ﬁ
+o MPLELY + C o MPLELY 2] ¢
<€

which contradicts the definition of ¢. Therefore, the mild
solution of (3) is asymptotically stable in pth moment. [

In particular, when p = 2 from Theorem 9 we have the
following.

Theorem 10. Suppose that the conditions (H1)-(H3) hold.
Then, the stochastic fractional differential equations (3)

are mean square asymptotically stable if AIM;[I(—A)_‘BI2 +
Vi BT /ap)’] + 402 M2 LA [L? + L] < 1, where V(a, p) =
LupClp/Trrapy
When g =0, p =2, (3) reduces to
‘DX (t) = AX () + f (£, X (t — T (1))
dw (t)
dt ’
Xo() =9 € Bz ([m(0),0],H).

+o(tX({Et-v()) t>0, (31)

From Theorems 9 and 10, we can easily get the following
result.

Corollary 11. Suppose the assumptions (H1) and (H2) hold.
Then, the stochastic equations (8) are mean square asymptoti-
cally stable if 20> M?LA[L* + L'] < 1.

Example 12. Consider the following stochastic nonlinear
fractional partial differential equation with infinite delay in
the following form

D [u(ty)+gtu(t-7.y)]

*ul(t, _
- P
v (bult-7y) PO, G2

u(t,0)=u(t,m) =0,

u(t,y)=¢(ty), yel0n],t<0,
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where W(t) denotes a standard cylindrical Wiener process
and a standard one-dimensional Brownian motion. To write
the system (32) into the abstract form of (3), we consider the
space H = K = L*[0, 7] and define the operator A : D(A) c
H — Hby Aw = w" with domain

D(A) = {w € X; ww are absolutely continuous,
(33)
w’ e X, w(0)=w(m) =0},

Aw = OZO:nZ (w,w,)w, weD(A), (34)

n=1

wherew, (s) = V2sin(ns), n=1,2,...isthe orthogonal set of
eigenvectors in A. It is well known that A generates a compact,
analytic semigroup {S(¢), t > 0} in X and

StHw = Zeinzt (w,w,) w,. (35)

n=1

It is well known that |S(¢)| < e ™!, Take p=2.Since M =1,
we can get the inequality 4[|(—A)_ﬁ|2 + V(a, [3’)(7‘:"‘/g/ocﬁ)2 +
o*(L* + L] < 1. Further, if we impose suitable conditions
on g, f,and & to verify assumptions of Theorem 10, then we

can conclude that the mild solution of (32) is mean square
asymptotically stable.
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