
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 780107, 5 pages
http://dx.doi.org/10.1155/2013/780107

Research Article
A New Smoothing Nonlinear Conjugate Gradient Method for
Nonsmooth Equations with Finitely Many Maximum Functions

Yuan-yuan Chen1,2 and Shou-qiang Du1

1 College of Mathematics, Qingdao University, Qingdao 266071, China
2 School of Management, University of Shanghai for Science and Technology, Shanghai 200093, China

Correspondence should be addressed to Yuan-yuan Chen; usstchenyuanyuan@163.com

Received 8 March 2013; Accepted 25 March 2013

Academic Editor: Yisheng Song

Copyright © 2013 Y.-y. Chen and S.-q. Du. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The nonlinear conjugate gradient method is of particular importance for solving unconstrained optimization. Finitely many
maximum functions is a kind of very useful nonsmooth equations, which is very useful in the study of complementarity problems,
constrained nonlinear programming problems, andmany problems in engineering andmechanics. Smoothingmethods for solving
nonsmooth equations, complementarity problems, and stochastic complementarity problems have been studied for decades. In this
paper, we present a new smoothing nonlinear conjugate gradient method for nonsmooth equations with finitely many maximum
functions.The newmethod also guarantees that any accumulation point of the iterative points sequence, which is generated by the
new method, is a Clarke stationary point of the merit function for nonsmooth equations with finitely many maximum functions.

1. Introduction

In this paper, we consider the following nonsmooth equations
with finitely many maximum functions:

max
𝑗∈𝐽
1

{ℎ1𝑗 (𝑥)} = 0,

...

max
𝑗∈𝐽
𝑛

{ℎ𝑛𝑗 (𝑥)} = 0,

(1)

where ℎ𝑖𝑗 : 𝑅
𝑛 → 𝑅 for 𝑖 = 1, . . . , 𝑛 and 𝑗 ∈ 𝐽𝑖, 𝑖 = 1, . . . , 𝑛 are

continuously differentiable functions, and 𝐽𝑖 are finite index
sets. Denote that

ℎ𝑖 (𝑥) = max
𝑗∈𝐽
𝑖

{ℎ𝑖𝑗 (𝑥)} , 𝑖 = 1, . . . , 𝑛,

𝐻 (𝑥) = (ℎ1 (𝑥) , . . . , ℎ𝑛 (𝑥))
𝑇,

(2)

then (1) can be reformulated as

𝐻(𝑥) = 0, (3)

where 𝐻 : 𝑅𝑛 → 𝑅𝑛 is nonsmooth equations and 𝐽𝑖(𝑥) =
{𝑗𝑖 ∈ 𝑁 | ℎ𝑖𝑗(𝑥) = ℎ𝑖(𝑥)}, 𝑖 = 1, . . . , 𝑛. Nonsmooth equations
have been studied for decades, which is proposed in the
study of the optimal control, the variational inequality and
complementarity problems, equilibrium problems, and engi-
neering mechanics [1–3], because many practical problems,
such as stochastic complementarity problems, variational
inequality problems, KKT systems of constrained nonlinear
programming problems, and many problems in equilibrium
problems, can be reformulated into (1). In the past few years,
there has been a growing interest in the study of (1) (such
as [4, 5]). Due to its simplicity and global convergence, the
iterative methods, such as nonsmooth Levenberg-Marquardt
method, general Newton method, and smoothing methods
for solving nonsmooth equations, have been widely studied
[4–11].

In this paper, we give a new smoothing nonlinear con-
jugate gradient method for (1). In the following section,
we will recall some definitions and some background of
nonlinear conjugate gradient methods. And we also give the
new smoothing nonlinear conjugate gradient method for (1),
which guarantees that any accumulation point of the iterative
points sequence is a Clarke stationary point of the merit
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function for (1). In the last section, some discussions are also
given.

Notation. In the following, a quantity with a subscript 𝑘
denotes that quantity is evaluated at 𝑥𝑘, the norm is the 2
norm, and 𝑅++ = {𝑡 | 𝑡 > 0}.

2. Preliminaries and New Method

In this section, firstly, we give some definitions and some
backgrounds of nonlinear conjugate gradient method. Sec-
ondly, we propose the new methods for (1) and give the con-
vergence analysis.

In the following, we give two definitions, which will be
used in this paper.

Definition 1. Let 𝐹 : 𝑅𝑛 → 𝑅 be a locally Lipschitz function.
Then, 𝐹 is almost everywhere differentiable. Denote 𝐷𝐹 be
the set of points where 𝐹 is differentiable, then the general
gradient of 𝐹 at 𝑥 in the sense of Clark is

𝜕𝐹 (𝑥) = conv{ lim
𝑥
𝑘
→𝑥, 𝑥

𝑘
∈𝐷
𝐹

∇𝐹 (𝑥𝑘)} , (4)

where conv denotes the convex set.

Definition 2. Let 𝑟 : 𝑅𝑛 → 𝑅 be a locally Lipschitz con-
tinuous function. We call 𝑟 : 𝑅𝑛 × 𝑅++ → 𝑅 a smoothing
function of 𝑟, if 𝑟(⋅, 𝜇) is continuously differentiable for any
fixed 𝜇 ∈ 𝑅++ and

lim
𝑥→𝑥, 𝜇↓0

𝑟 (𝑥, 𝜇) = 𝑟 (𝑥) . (5)

In the following, we will give the new method for (1). In
order to describe the method clearly, we divide this section
into two parts. In Case 1, we give the new nonlinear conjugate
gradientmethod for smooth objective function. In Case 2, we
give the new smoothing nonlinear conjugate gradient meth-
od for nonsmooth objective function.

Denote that

𝑓 (𝑥) = 1
2
‖𝐻 (𝑥)‖2, (6)

where 𝐻 is defined in (3). Then (1) is equivalent to the
following unconstrained minimization problem with zero
optimal value

min
𝑥∈𝑅𝑛

𝑓 (𝑥) . (7)

Case 1. In this section, we assume that 𝑓 is a continuously
differentiable function. Then (7) is a standard unconstrained
optimization problem. There are many methods for solving
the unconstrained optimization problem, such as Newton
method, nonlinear conjugate gradient method, and quasi-
Newton method [12–16]. Here, based on [13, 14], we will give
a new nonlinear conjugate gradient method to solve (7). The
iterates for solving (7) is given by

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, (8)

where𝑑𝑘 is the direction and𝛼𝑘 > 0 is a step size; in this paper,
we use the Wolfe type line search [14]. Compute 𝛼𝑘 > 0, such
that

𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓 (𝑥𝑘) ≤ −𝜌𝛼2𝑘
𝑑𝑘


2,

𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇𝑑𝑘 ≥ −2𝜎𝛼𝑘

𝑑𝑘

2,

(9)

where 𝜌, 𝜎 ∈ (0, 1), 𝜌 < 𝜎, and 𝑔 is the gradient of 𝑓. The
direction is defined by

𝑑𝑘 = {
−𝑔𝑘, if 𝑘 = 1,
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1, if 𝑘 ≥ 2,

(10)

where

𝛽𝑘 =
𝑔𝑇𝑘𝑦𝑘−1
𝑑𝑇
𝑘−1

𝑧𝑘−1
− 𝛿

𝑦𝑘−1

2

(𝑑𝑇
𝑘−1

𝑧𝑘−1)
2
𝑔𝑇𝑘 𝑑𝑘−1, (11)

𝑧𝑘−1 = 𝑦𝑘−1+𝑡𝑘−1𝑠𝑘−1, 𝑡𝑘−1 = 𝜖0+max{0, −𝑠𝑇𝑘−1𝑦𝑘−1/𝑠
𝑇
𝑘−1𝑠𝑘−1},

𝜖0 > 0, 𝛿 > 1/4, 𝑦𝑘−1 = 𝑔𝑘 − 𝑔𝑘−1, 𝑠𝑘−1 = 𝑥𝑘 − 𝑥𝑘−1.

Now we give the new method for (7) as follows.

Method 1. Consider the following steps.

Step 0. Given 𝑥0 ∈ 𝑅𝑛, 𝑑0 = −𝑔0, and 𝑘 := 0, if ‖𝑔0‖ = 0,
then stop.

Step 1. Find 𝛼𝑘 > 0 satisfying (9), and 𝑥𝑘+1 is given by (8).

Step 2. Compute 𝑑𝑘 by (10). Set 𝑘 := 𝑘 + 1, and go to Step 1.

We also need the following assumptions.

Assumption 3. Consider the following:

(i) 𝐿 = {𝑥 ∈ 𝑅𝑛 | 𝑓(𝑥) ≤ 𝑓(𝑥0)} is level bounded;
(ii) in the neighborhood of 𝐿, there exists 𝐿 > 0, such that

𝑔 (𝑥) − 𝑔 (𝑦)
 ≤ 𝐿 𝑥 − 𝑦

 , (12)

where 𝑥, 𝑦 ∈ 𝑈, 𝑈 is a neighborhood of 𝐿.

In the following, we will give the global convergence
analysis about Method 1. Firstly, we give some lemmas.

Lemma 4. Let {𝑥𝑘} be generated by Method 1, then

𝑔𝑇𝑘 𝑑𝑘 ≤ −(1 − 1
4𝜇

) 𝑔𝑘

2, (13)

where 𝜇 > 1/4.

By [13, Theorem 2.1], we have Lemma 4.

Lemma 5 (see [14]). Suppose that Assumption 3 holds, 𝛼𝑘 is
computed by (9), and we have

∞

∑
𝑘=1

(𝑔𝑇𝑘 𝑑𝑘)
2

𝑑𝑘

2

< +∞. (14)
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By Lemmas 4 and 5, we have Lemma 6.

Lemma 6. Suppose that Assumption 3 holds, 𝛼𝑘 is determined
by (9), and we get

∞

∑
𝑘=1

𝑔𝑘

4

𝑑𝑘

2
< +∞. (15)

Now, we give the global convergence theorem forMethod
1.

Theorem 7. Suppose that Assumption 3 holds and {𝑥𝑘} is
generated by Method 1, then

lim inf
𝑘→∞

𝑔𝑘
 = 0. (16)

Proof. Suppose by contradiction that there exists 𝜖 > 0, such
that

𝑔𝑘
 ≥ 𝜖, (17)

holds for 𝑘 ≥ 1. By

𝑑𝑇𝑘−1𝑧𝑘−1 ≥ 𝜖0𝑑
𝑇
𝑘−1𝑠𝑘−1, (18)

and (11), we have

𝛽𝑘
 ≤ (

𝐿𝜖0 + 𝜇𝐿
2

𝜖20
)

𝑔𝑘
𝑑𝑘−1

,

𝑑𝑘
 ≤

𝑔𝑘
 + (

𝐿𝜖0 + 𝜇𝐿2

𝜖20
) 𝑔𝑘

 .

(19)

Denoting that𝑚 = (1+((𝐿𝜖0+𝜇𝐿
2)/𝜖20)), we get ‖𝑑𝑘‖

2 ≤ 𝑚2 ‖
𝑔𝑘‖
2. Then we have

∞

∑
𝑘=1

𝑔𝑘

4

𝑑𝑘

2
≥
∞

∑
𝑘=1

𝜖2

𝑚2
= +∞, (20)

which contradicts (15). So we get the theorem.

Case 2. In this section, we assume that 𝑓 is a nonsmooth
function. Equation (7) is the nonsmooth unstrained opti-
mization problem.Denote that𝑓(𝑥, 𝜇) is the smoothing func-
tion for 𝑓(𝑥), 𝑔𝑘 = ∇𝑥𝑓(𝑥𝑘, 𝜇𝑘), then 𝛼𝑘 > 0 is computed by

𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝜇𝑘) ≤ 𝑓 (𝑥𝑘, 𝜇𝑘) − 𝜌𝛼
2
𝑘

𝑑𝑘

2,

𝑔𝑇𝑘+1𝑑𝑘 ≥ −2𝜎𝛼𝑘
𝑑𝑘


2,

(21)

where 0 < 𝜌 < 𝜎 < 1. The direction is defined by

𝑑𝑘 = {
−𝑔𝑘, if 𝑘 = 1,
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1, if 𝑘 ≥ 2,

(22)

where

𝛽𝑘 =
𝑔𝑇𝑘𝑦𝑘−1
𝑑𝑇
𝑘−1

�̃�𝑘−1
− 𝛿

𝑦𝑘−1

2

(𝑑𝑇
𝑘−1

�̃�𝑘−1)
2
𝑔𝑇𝑘 𝑑𝑘−1, (23)

�̃�𝑘−1 = 𝑦𝑘−1+𝑡𝑘−1𝑠𝑘−1, 𝑡𝑘−1 = 𝜖0+max{0, −𝑠𝑇𝑘−1𝑦𝑘−1/𝑠
𝑇
𝑘−1𝑠𝑘−1},

𝜖0 > 0, 𝛿 > 1/4, 𝑦𝑘−1 = 𝑔𝑘 − 𝑔𝑘−1, 𝑠𝑘−1 = 𝑥𝑘 − 𝑥𝑘−1.

We give the following smoothing nonlinear conjugate
gradient method.

Method 2. Give 𝑥0 ∈ 𝑅𝑛, 𝜇0 > 0, 𝛾 > 0, and 𝛾1 ∈ (0, 1).

Step 1. Find 𝛼𝑘 > 0 satisfying (21), and 𝑥𝑘+1 is given by (8).

Step 2. If ‖∇𝑥𝑓(𝑥𝑘+1, 𝜇𝑘)‖ ≥ 𝛾𝜇𝑘, then set 𝜇𝑘+1 = 𝜇𝑘; other-
wise, let 𝜇𝑘+1 ≤ 𝛾1𝜇𝑘.

Step 3. Compute 𝑑𝑘 by (22). Set 𝑘 := 𝑘 + 1, and go to Step 1.

Theorem 8. Suppose that 𝑓(⋅, 𝜇) satisfies Assumption 3, for
fixed 𝜇 > 0. Then the sequence {𝑥𝑘} generated by Method 2
satisfies

lim
𝑘→∞

𝜇𝑘 = 0,

lim inf
𝑘→∞

∇𝑥𝑓 (𝑥𝑘, 𝜇𝑘−1)
 = 0.

(24)

Proof. If the set {𝑘 | 𝜇𝑘+1 ≤ 𝛾1𝜇𝑘} is finite, then for a fixed
𝐾, ‖∇𝑓(𝑥𝑘, 𝜇𝑘−1)‖ ≥ 𝛾𝜇𝑘−1, for all 𝑘 > 𝐾. Denoteing that
𝜇 = 𝜇𝑘, 𝑘 > 𝐾, because 𝑓(⋅, 𝜇) is a smooth function, the
previousmethod reduces toMethod 1, where𝑓(𝑥) = 𝑓(𝑥, 𝜇).
By Theorem 7, we get

lim inf
𝑘→∞

∇𝑥𝑓 (𝑥𝑘, 𝜇)
 = 0. (25)

So we know that ‖∇𝑓(𝑥𝑘, 𝜇𝑘−1)‖ ≥ 𝛾𝜇𝑘−1 for 𝑘 > 𝐾 is
impossible.Then we can assume that the set {𝑘 | 𝜇𝑘+1 ≤ 𝛾1𝜇𝑘}
is infinite, then

lim
𝑘→∞

𝜇𝑘 = 0. (26)

By the infinity of {𝑘 | 𝜇𝑘+1 ≤ 𝛾1𝜇𝑘}, we can assume that the
set is {𝑘0, 𝑘1, . . . | 𝑘0 < 𝑘1 < ⋅ ⋅ ⋅ }. Then we have

lim inf
𝑖→∞

∇𝑓 (𝑥𝑘𝑖+1, 𝜇𝑘𝑖)
 ≤ 𝛾1 lim

𝑖→∞
𝜇𝑘
𝑖

. (27)

By

lim
𝑖→∞

𝜇𝑘
𝑖

= 0, (28)

we have

lim inf
𝑘→∞

∇𝑥𝑓 (𝑥𝑘, 𝜇𝑘−1)
 = 0. (29)

So we complete the proof.

Remark 9. From the result of Theorem 8, we know that for
some kinds of smoothing functions [9, 10], any accumulation
point 𝑥⋆ of {𝑥𝑘} generated by Method 2 is a Clarke stationary
point of 𝑓; that is, 0 ∈ 𝜕𝑓(𝑥⋆).

3. Some Discussions

In this paper, we give a new smoothing nonlinear conjugate
gradientmethod for (1).The newmethod also guarantees that
any accumulation point is a Clarke stationary point of the
merit function for (1).
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Discussion 1. In our Methods 1 and 2, we can use any line
search, which is well defined under the condition that the
search directions are descent directions.

Discussion 2. There are some kinds of smoothing functions,
which satisfied Assumption 3 for fixed 𝜇 > 0 (see [9, 10]).
When the smoothing function of 𝑓 has gradient consistent
property, then any accumulation point of the sequence {𝑥𝑘}
generated by Method 2 is a Clarke stationary point. Under
some assumptions, we can also use the methods in [15] to
solve nonsmooth equations with finitely many maximum
functions (1).

Discussion 3. The new method can also be used for solving
nonlinear complementarity problem (NCP). By F-B function

𝜑 (𝑎, 𝑏) = √𝑎2 + 𝑏2 − (𝑎 + 𝑏) , (30)

we know that NCP is equivalent to 𝜓(𝑥) = 0, where 𝜓
is a continuously differentiable function, so we can use the
smooth version Method 1 to solve it. Method 2 can also be
used to solve the vertical complementarity problems

𝐻𝑖 (𝑥) ≥ 0, 𝑖 = 1, . . . , 𝑚,
𝑚

∏
𝑖=1

𝐻𝑗𝑖 (𝑥) = 0, 𝑗 = 1, . . . , 𝑛,
(31)

where 𝐻𝑖(𝑥) : 𝑅𝑛 → 𝑅𝑛 are continuously differentiable
functions.

Discussion 4. The new method can also be used for solving
Hamilton-Jacobi-Bellman equations (HJB) (see [17]). The
Hamilton-Jacobi-Bellman equations (HJB) is used to find 𝑥 ∈
𝑅𝑛, such that

max
1≤𝑖≤𝑘

{𝐿𝑖𝑥 − 𝑙𝑖} = 0, in Θ,

𝑥 = 0, on 𝜕Θ,
(32)

where Θ is a bounded domain in 𝑅𝑑, 𝐿𝑖 and 𝑖 = 1, . . . , 𝑘
are elliptic operators of second order. HJB arise in stochastic
control problems and often are used to solve finance and
control problems. By finite element method, we can obtain
the following discrete HJB equation; find 𝑥 ∈ 𝑅𝑛, such that

max
1≤𝑗≤𝑘

{𝐴𝑗𝑥 − 𝜁𝑗} = 0, (33)

where 𝐴𝑗 ∈ 𝑅𝑛×𝑛, 𝜁𝑗 ∈ 𝑅𝑛, 𝑗 = 1, . . . , 𝑘.

Discussion 5. We also can consider to use the new method
to solve the general variational inequality problem (see [18]).
The general variational inequality problem is to compute 𝑥 ∈
𝑅𝑛, such that

𝑞 (𝑥) ∈ 𝑋, (𝑦 − 𝑞 (𝑥))𝑇𝑝 (𝑥) ≥ 0, for any 𝑦 ∈ 𝑋, (34)

where 𝑝, 𝑞 : 𝑅𝑛 → 𝑅𝑛 are two continuously differentiable
functions and 𝑋 ⊆ 𝑅𝑛 is a closed convex set. Equation (34)

is denoted by GVI(𝑋, 𝑝, 𝑞) in [18]. GVI(𝑋, 𝑝, 𝑞) is a gener-
alization of complementarity problems, nonlinear variational
inequalities problems, and general nonlinear complementar-
ity problems. The variational inequalities problems are to
compute

(𝑦 − 𝑥)𝑇𝑝 (𝑥) ≥ 0, for any 𝑦 ∈ 𝑋, (35)

where 𝑥 ∈ 𝑋. The general nonlinear complementarity prob-
lems are to compute 𝑥 ∈ 𝑅𝑛, such that

𝑞 (𝑥) ≥ 0, 𝑝 (𝑥) ≥ 0, 𝑞(𝑥)𝑇𝑝 (𝑥) = 0. (36)

We can rewrite (34) as the following nonsmooth equation:

𝑞 (𝑥) − 𝑃𝑋 [𝑞 (𝑥) − 𝑝 (𝑥)] = 0, (37)

where 𝑃𝑋 is the projection operator onto 𝑋 under the
Euclidean norm. The general nonlinear complementarity
problems are widely used in solving engineering problems
and economic problems; such that, under some conditions,
the 𝑛-person noncooperative game problem can be reformu-
lated as (37) (see [19]).Therefore, how to use our newmethod
to solve the general nonlinear complementarity problems and
the 𝑛-person noncooperative game problem would be an
interesting topic and deserves further investigation.
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