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With the aid ofMaple symbolic computation and Lie groupmethod, (2+1)-dimensional PBLMP equation is reduced to some (1+1)-
dimensional PDE with constant coefficients. Using the homoclinic test technique and auxiliary equation methods, we obtain new
exact nontraveling solution with arbitrary functions for the PBLMP equation.

1. Introduction

In this paper, we will consider the potential Boiti-Leon-
Manna-Pempinelli (PBLMP) equation

𝑢𝑦𝑡 + 𝑢𝑥𝑥𝑥𝑦 − 3𝑢𝑥𝑥𝑢𝑦 − 3𝑢𝑥𝑢𝑥𝑦 = 0, (1)

where 𝑢 : 𝑅𝑥 × 𝑅𝑦 × 𝑅
+

𝑡
→ 𝑅. By some transformations,

the PBLMP equation (1) can be equivalent to the asymmet-
ric Nizhnik-Novikov-Veselov (ANNV) system. In fact, the
ANNV equation can be obtained from the inner parameter-
dependent symmetry constraint of the KP equation [1] and
may be considered as a model for an incompressible fluid
[2]. The Painlevé analysis, Lax pair, and some exact solutions
have been studied for the PBLMP equation [3]. Tang and
Lou obtained the bilinear form of (1) and variable separation
solutions including two arbitrary functions by themultilinear
variable separation approach [4, 5].

In this paper, by means of Maple symbolic computation,
we will use the Lie group method [6, 7], homoclinic test
technique [8, 9] and so forth to reduce and solve the PBLMP
equation. First, we will derive symmetry of (1). Then we use
the symmetry to reduce (1) to some (1 + 1)-dimensional
PDE with constant coefficients. Finally, solving the reduced
PDE by Homoclinic test technique and auxiliary equation
methods [10, 11] implies abundant exact nontraveling wave
periodic solutions for the PBLMP equation.

2. Symmetry of (1)
This section is devoted to Lie point group symmetries of (1).
Let

𝜎 = 𝜎 (𝑥, 𝑦, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑦, 𝑢𝑡) (2)

be the symmetry of (1). Based on Lie group theory [6], 𝜎
satisfies the following symmetry equation:

𝜎𝑦𝑡 + 𝜎𝑦𝑥𝑥𝑥 − 3𝑢𝑥𝑥𝜎𝑦 − 3𝑢𝑦𝜎𝑥𝑥 − 3𝑢𝑥𝜎𝑥𝑦 − 3𝑢𝑥𝑦𝜎𝑥 = 0.

(3)

To get some symmetries of (1), we take the function 𝜎 in the
form

𝜎 = 𝑎 (𝑥, 𝑦, 𝑡) 𝑢𝑥 + 𝑏 (𝑥, 𝑦, 𝑡) 𝑢𝑦 + 𝑐 (𝑥, 𝑦, 𝑡) 𝑢𝑡

+𝑑 (𝑥, 𝑦, 𝑡) 𝑢 + 𝑒 (𝑥, 𝑦, 𝑡) ,

(4)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are functions of 𝑥, 𝑦, 𝑡 to be determined, and
𝑢(𝑥, 𝑦, 𝑡) satisfies (1). Substituting (4) and (1) into (3), one can
get

𝑎 =
1

3
𝑘1𝑥 + 𝜆 (𝑡) , 𝑏 = 𝜇 (𝑦) ,

𝑐 = 𝑘1𝑡 + 𝑘2, 𝑑 =
1

3
𝑘1, 𝑒 =

1

3
𝜆

(𝑡) 𝑥 + 𝜉 (𝑡) ,

(5)
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where 𝑘1, 𝑘2 are arbitrary constants. 𝜆(𝑡), 𝜉(𝑡) are arbitrary
functions of t. 𝜇(𝑦) is a arbitrary function of y. Substituting
(5) into (4), we obtain the symmetries of (1) as follows:

𝜎 = (
1

3
𝑘1𝑥 + 𝜆 (𝑡)) 𝑢𝑥 + 𝜇 (𝑦) 𝑢𝑦 + (𝑘1𝑡 + 𝑘2) 𝑢𝑡 +

1

3
𝑘1𝑢

+
1

3
𝜆

(𝑡) 𝑥 + 𝜉 (𝑡) .

(6)

3. Symmetry Reduction of (1)
Based on the integrability of reduced equation of the symme-
try (6), we consider the following three cases.

Case 1. Let 𝑘1 = 𝑘2 = 0, 𝜆(𝑡) = 𝑟, 𝜉(𝑡) = 1, 𝜇(𝑦) = −1/𝜏(𝑦)

in (6), then

𝜎 = 𝜏(𝑦)
−1

(𝑟𝜏 (𝑦) 𝑢𝑥 − 𝑢𝑦 + 𝜏 (𝑦)) , (7)

where 𝑟 is an arbitrary nonzero constant, 𝜏(𝑦) ̸= 0. Solving the
differential equation for 𝜎 = 0, one gets

𝑢 = ∫ 𝜏 (𝑦) 𝑑𝑦 + 𝑤 (𝜃, 𝑡) , 𝜃 = 𝑥 + ∫ 𝑟𝜏 (𝑦) 𝑑𝑦. (8)

Substituting (8) into (1), we get the following (1 + 1)-dimen-
sional nonlinear PDE with constant coefficients:

𝑟𝑤𝜃𝜃𝜃𝜃 − 6𝑟𝑤𝜃𝑤𝜃𝜃 + 𝑟𝑤𝜃𝑡 − 3𝑤𝜃𝜃 = 0. (9)

Integrating (9) once with respect to 𝜃 and taking integration
constant to zero yield

𝑟𝑤𝜃𝜃𝜃 − 3𝑟𝑤
2

𝜃
+ 𝑟𝑤𝑡 − 3𝑤𝜃 = 0. (10)

Case 2. Taking 𝑘1 = 0, 𝑘2 = 1, 𝜆(𝑡) = 0, 𝜉(𝑡) = 0, 𝜇(𝑦) =

1/𝜏(𝑦) in (6) yields

𝜎 = 𝜏(𝑦)
−1

(𝑢𝑦 + 𝑟𝜏 (𝑦) 𝑢𝑡) . (11)

Solving the differential equation for 𝜎 = 0, one gets

𝑢 = 𝑤 (𝑥, 𝜃) , 𝜃 = 𝑡 − ∫ 𝜏 (𝑦) 𝑑𝑦. (12)

Substituting (12) into (1), we have the function 𝑤(𝑥, 𝜃) which
must satisfy the following PDE:

𝑤𝑥𝑥𝑥𝜃 − 3𝑤𝑥𝑥𝑤𝜃 − 3𝑤𝑥𝑤𝑥𝜃 + 𝑤𝜃𝜃 = 0. (13)

Case 3. Let 𝑘1 = 𝑘2 = 0, 𝜆(𝑡) = 1, 𝜉(𝑡) = 0, 𝜇(𝑦) = −1/𝜏(𝑦)

in (6), then

𝜎 = 𝜏(𝑦)
−1

(𝜏 (𝑦) 𝑢𝑥 − 𝑢𝑦) . (14)

Solving the equation for 𝜎 = 0, we obtain

𝑢 = 𝑤 (𝜃, 𝑡) , 𝜃 = 𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦. (15)

Substituting (15) into (1) yields a reduced PDE of (1) with
constant coefficients:

𝑤𝜃𝜃𝜃𝜃 − 6𝑤𝜃𝜃𝑤𝜃 + 𝑤𝜃𝑡 = 0. (16)

Integrating (16) once with respect to 𝜃 and taking integration
constant to zero yield

𝑤𝜃𝜃𝜃 − 3𝑤
2

𝜃
+ 𝑤𝑡 = 0. (17)

Combining the above results, we obtain some reduced
equations of (1) expressed by (10), (13), and (17), respectively.
Meanwhile many new explicit solutions of (1) from these
reduced Equations. can be achieved. We omit other cases
based on symmetries (6) here.

4. Solve Reduced PDE and Get Exact
Nontraveling Wave Solutions of (1)

In this section, we seek exact nontraveling wave solutions
of (1) by using some appropriate methods to solve reduced
equations (10), (13), and (17).

4.1. Solve Reduced PDE (10). Now,we seek solutions of (10) by
auxiliary equation method. Make transformation as follows:

𝑤 (𝜃, 𝑡) = 𝜑 (𝜉) , 𝜉 = 𝑝𝜃 + 𝑞𝑡, (18)

where 𝑝, 𝑞 are nonzero constants. Substituting (18) into (10)
obtains an ordinary differential equation for 𝜑(𝜉) as follows:

𝑝
3
𝑟𝜑


− 3𝑟𝑝
2
𝜑
2
+ (𝑞𝑟 − 3𝑝) 𝜑


= 0, (19)

where 𝜑 = 𝑑𝜑/𝑑𝜉. Let 𝜑 = 𝑓, then (19) can be written as

𝑝
3
𝑟𝑓

− 3𝑟𝑝

2
𝑓
2
+ (𝑞𝑟 − 3𝑝) 𝑓 = 0. (20)

This is the fourth type of ellipse equation (12), its solutions are
as follows:

𝑓 =

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

−
3𝑝 − 𝑞𝑟

2𝑝
2
𝑟

sech2 [√
3𝑝 − 𝑞𝑟

4𝑝
3
𝑟

(𝜉 − 𝜉0)] ,

𝑝𝑟 (3𝑝 − 𝑞𝑟) > 0,

3𝑝 − 𝑞𝑟

2𝑝
2
𝑟

csch2 [√
3𝑝 − 𝑞𝑟

4𝑝
3
𝑟

(𝜉 − 𝜉0)] ,

𝑝𝑟 (3𝑝 − 𝑞𝑟) > 0,

−
3𝑝 − 𝑞𝑟

2𝑝
2
𝑟

sec2 [√−
3𝑝 − 𝑞𝑟

4𝑝
3
𝑟

(𝜉 − 𝜉0)] ,

𝑝𝑟 (3𝑝 − 𝑞𝑟) < 0,

(21)
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where 𝜉0 is the integration constant. From the result of
(21), some new exact solutions 𝑢1 through 𝑢3 of (1) can be
obtained:

𝑢1 = ∫ 𝜏 (𝑦) 𝑑𝑦 − √
3𝑝 − 𝑞𝑟

𝑝𝑟

× tanh[√
3𝑝 − 𝑞𝑟

4𝑝
3
𝑟

(𝑝 (𝑥 + 𝑟∫ 𝜏 (𝑦) 𝑑𝑦) + 𝑞𝑡 − 𝜉0)] ,

𝑝𝑟 (3𝑝 − 𝑞𝑟) > 0,

𝑢2 = ∫ 𝜏 (𝑦) 𝑑𝑦 − √
3𝑝 − 𝑞𝑟

𝑝𝑟

× coth[√
3𝑝 − 𝑞𝑟

4𝑝
3
𝑟

(𝑝 (𝑥 + 𝑟∫ 𝜏 (𝑦) 𝑑𝑦) + 𝑞𝑡 − 𝜉0)] ,

𝑝𝑟 (3𝑝 − 𝑞𝑟) > 0,

𝑢3 = ∫ 𝜏 (𝑦) 𝑑𝑦 − √
𝑞𝑟 − 3𝑝

𝑝𝑟

× tan[√
𝑞𝑟 − 3𝑝

4𝑝
3
𝑟

(𝑝 (𝑥 + 𝑟∫ 𝜏 (𝑦) 𝑑𝑦) + 𝑞𝑡 − 𝜉0)] ,

𝑝𝑟 (𝑞𝑟 − 3𝑝) < 0.

(22)

Particularly, we assume 𝑝 = 𝑞 = 1, 𝑟 = 2, 𝜏(𝑦) = sin(𝑦),
𝜉0 = 0, 𝑥 = sech(𝑡), then the solution 𝑢1 can be depicted by
Figure 1(a). If 𝑝 = −1, 𝑞 = 1, 𝑟 = −1, 𝜏(𝑦) = ∓ cos(𝑦), 𝜉0 =
0, 𝑥 = sin(t), then 𝑢3 can be depicted by Figures 1(b) and 2(a).

4.2. Solve Reduced PDE (13). Make transformation to (13) as
follows:

𝑤 (𝑥, 𝜃) = 𝜑 (𝜉) , 𝜉 = 𝑘𝑥 + 𝑐𝜃, (23)

where 𝑘, 𝑐 are non-zero constants. Substituting (23) into (13)
then we have

𝑐𝜑

+ 𝑘
3
𝜑


− 3𝐾
2
𝜑
2
= 0. (24)

It is equivalent to (19). Based on the above accordant idea, we
can get

𝑢4 = √−
𝑐

2𝑘

×tanh [√−
𝑐

2𝑘
3
(𝑘𝑥+𝑐 (𝑡−∫𝜏 (𝑦) 𝑑𝑦)− 𝜉0)] , 𝑘𝑐<0,

𝑢5 = √−
𝑐

2𝑘

×coth [√−
𝑐

2𝑘
3
(𝑘𝑥+𝑐(𝑡−∫𝜏 (𝑦) 𝑑𝑦)−𝜉0)] , 𝑘𝑐<0,

u
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Figure 1: (a) The figure of 𝑢
1
as 𝑝 = 1, 𝑞 = 1, 𝑟 = 2, 𝜏(𝑦) =

sin(𝑦), 𝜉
0
= 0, 𝑥 = sech(𝑡). (b) The figure of 𝑢

3
as 𝑝 = −1, 𝑞 =

1, 𝑟 = −1, 𝜏(𝑦) = − cos(𝑦), 𝜉
0
= 0, 𝑥 = sin(𝑡).
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Figure 2: (a) The figure of 𝑢
3
as 𝑝 = −1, 𝑞 = 1, 𝑟 = −1, 𝜏(𝑦) =

cos(𝑦), 𝜉
0
= 0, 𝑥 = sin(𝑡). (b) The figure of 𝑢

9
as 𝑝
1
= 1, 𝑐

1
=

1, 𝑝
2
= 1, 𝜏(𝑦) = sin(𝑦), 𝑥 = sin(𝑡).
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𝑢6 = √
𝑐

2𝑘

×tan[√ 𝑐

2𝑘
3
(𝑘𝑥+𝑐 (𝑡−∫ 𝜏 (𝑦) 𝑑𝑦)−𝜉0)] , 𝑘𝑐>0.

(25)

4.3. Solve Reduced PDE (17). In this section, we use homo-
clinic test technique [8, 9] to (17) and transform the unknown
function as follows:

𝑤 (𝜃, 𝑡) = −2(ln 𝑓 (𝜃, 𝑡))
𝜃
. (26)

Substituting (26) into (17) and using the bilinear form, we can
get

(𝐷𝜃𝐷𝑡 + 𝐷
4

𝜃
) (𝑓 ⋅ 𝑓) = 0, (27)

where the Hirota operator𝐷 is defined in [12]. In this case we
choose extended homoclinic test function

𝑓 = 𝑒
−𝑝
1
(𝜃−𝜔
1
𝑡)
+ 𝑐1 cos (𝑝2 (𝜃 + 𝜔2𝑡)) + 𝑐2𝑒

𝑝
1
(𝜃−𝜔
1
𝑡)
, (28)

where 𝑝2, 𝜔1, 𝜔2, 𝑐1, and 𝑐2 are real constants to be deter-
mined. Substituting (28) into (27) yields a set of algebraic
equations as follows:

𝑝1𝑐1𝑝2 (4 (𝑝
2

1
− 𝑝
2

2
) + 𝜔2 − 𝜔1) = 0,

𝑐1 ((𝑝
4

1
+ 𝑝
4

4
− 6𝑝
2

1
𝑝
2

2
) − 𝑝
2

1
𝜔1 − 𝑝

2

2
𝜔2) = 0,

𝑝1𝑝2𝑐1𝑐2 (4 (𝑝
2

1
− 𝑝
2

2
) + 𝜔2 − 𝜔1) = 0,

𝑐1𝑐2 ((𝑝
4

1
+ 𝑝
4

4
− 6𝑝
2

1
𝑝
2

2
) − 𝑝

2

1
𝜔1 − 𝑝

2

2
𝜔2) = 0,

4 (4𝑝
4

1
𝑐2 + 𝑐
2

1
𝑝
4

2
) − 4𝑝

2

1
𝜔1𝑐2 − 𝑐

2

1
𝑝
2

2
𝜔2 = 0.

(29)

Solving the above equations (29) yields

(1) {
𝑝1 = 𝑝1, 𝑝2 = 𝑝2, 𝑐1 = 0, 𝑐2 = 𝑐2,

𝜔1 = 4𝑝
2

1
, 𝜔2 = 𝜔2,

(30)

(2)

{{

{{

{

𝑝1 = 𝑝1, 𝑝2 = 𝑝2, 𝑐1 = 𝑐1, 𝑐2= −
𝑐
2

1
𝑝
2

2

𝑝
2

1

,

𝜔1 = −3𝑝
2

2
+ 𝑝
2

1
, 𝜔2 = −3𝑝

2

1
+ 𝑝
2

2
,

(31)

(3) {
𝑝1 = 𝑝2𝑖, 𝑝2 = 𝑝2, 𝑐1 = 𝑐1, 𝑐2 = 𝑐2,

𝜔1 = −4𝑝
2

2
, 𝜔2 = 4𝑝

2

2
,

(32)

(4)

{

{

{

𝑝1 = 𝑝2𝑖, 𝑝2 = 𝑝2, 𝑐1 = 𝑐1, 𝑐2 =
1

4
𝑐
2

1
,

𝜔1 = 𝜔2 − 8𝑝
2

2
, 𝜔2 = 𝜔2,

(33)

where 𝑖
2

= −1. Substituting (30)–(33) into (28) yields the
solutions 𝑢7 through 𝑢11 of (1) as follows:

𝑢7 = −2𝑝1 tanh(𝑝1 (𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦) − 4𝑝
2

1
𝑡 +

1

2
ln 𝑐2) ,

(34)

when 𝑐2 > 0 in (30);

𝑢8 = −2𝑝1 coth(𝑝1 (𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦) − 4𝑝
2

1
𝑡 +

1

2
ln (−𝑐2)) ,

(35)

when 𝑐2 < 0 in (30);

𝑢9 = −2𝑝1𝑝2

× (coth(𝑝1 (𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦)

− (𝑝
2

1
− 3𝑝
2

2
) 𝑡 + ln

𝑐1𝑝2

𝑝1

)

+ sin(𝑝2 (𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦) − (3𝑝
2

1
− 𝑝
2

2
) 𝑡))

× (𝑝2 sinh(𝑝1 (𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦)

− (𝑝
2

1
− 3𝑝
2

2
) 𝑡 + ln

𝑐1𝑝2

𝑝1

)

+ 𝑝1 cos(𝑝2 (𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦) − (3𝑝
2

1
− 𝑝
2

2
) 𝑡))

−1

,

(36)

when 𝑐1𝑝1𝑝2 > 0 in (31) (see Figure 2(b));

𝑢10 (𝑥, 𝑦, 𝑡) = 𝑝2 tan(𝑝2 (𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦) + 4𝑝
2

2
𝑡) ,

(37)

when 𝑐2 = 1 in (32);

𝑢
11
(𝑥, 𝑦, 𝑡)

= −2𝑝
2

×
sin (𝑝

2
(𝑥+∫ 𝜏 (𝑦) 𝑑𝑦)+(8𝑝

2

2
−𝜔
2
) 𝑡)+sin (𝑝

2
(𝑥+∫ 𝜏 (𝑦) 𝑑𝑦)+𝜔

2
𝑡)

cos (𝑝
2
(𝑥+∫ 𝜏 (𝑦) 𝑑𝑦)+(8𝑝2

2
−𝜔
2
) 𝑡)+cos (𝑝

2
(𝑥+∫ 𝜏 (𝑦) 𝑑𝑦)+𝜔

2
𝑡)
,

(38)

when 𝑐1 = 2 in (33).

Remark 1. If one lets 𝑤𝜃 = 𝑣 in (16), then (16) can be written
as

𝑣𝑡 − 6𝑣𝑣𝜃 + 𝑣𝜃𝜃𝜃 = 0. (39)

This is the famous KdV equation.

5. Conclusions

In this paper, a combination of Lie group method and
homoclinic test technique and so forth is applied and thus the
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symmetries (6) are obtained. The (2+1)-dimensional poten-
tial Boiti-Leon-Manna-Pempinelli equation (1) is reduced to
(1 + 1)-dimensional nonlinear PDE of constant coefficients
(10), (13), and (17). Further auxiliary equation method and
homoclinic test technique are used and some new exact non-
traveling wave solutions are obtained. And they include some
special and strange structures to be further studied and other
relevant solutions about symmetry (6) will be discussed later
in another paper. Our results show that combining the Lie
group method with homoclinic test technique and so forth
is effective in finding nontraveling wave exact solutions of
nonlinear evolution equations.
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