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The aim of the present paper is to study an infinite horizon optimal control problem in which the controlled state dynamics
is governed by a stochastic delay evolution equation in Hilbert spaces. The existence and uniqueness of the optimal control
are obtained by means of associated infinite horizon backward stochastic differential equations without assuming the Gâteaux
differentiability of the drift coefficient and the diffusion coefficient. An optimal control problem of stochastic delay partial
differential equations is also given as an example to illustrate our results.

1. Introduction

In this paper, we consider a controlled stochastic evolution
equation of the following form:

𝑑𝑋
𝑢

(𝑠) = 𝐴𝑋
𝑢

(𝑠) 𝑑𝑠 + 𝐹 (𝑠, 𝑋
𝑢

𝑠
) 𝑑𝑠

+ 𝐺 (𝑠, 𝑋
𝑢

𝑠
) 𝑅 (𝑠, 𝑋

𝑢

𝑠
, 𝑢 (𝑠)) 𝑑𝑠 + 𝐺 (𝑠, 𝑋

𝑢

𝑠
) 𝑑𝑊 (𝑠) ,

𝑠 ≥ 𝑡,

𝑋
𝑢

𝑡
= 𝑥,

(1)

where

𝑋
𝑢

𝑠
(𝑙) = 𝑋

𝑢

(𝑠 + 𝑙) , 𝑙 ∈ [−𝜏, 0] , 𝑥 ∈ 𝐶 ([−𝜏, 0] ,𝐻) . (2)

𝑢 is the control process in a measurable space (𝑈,U),and
𝑊 is a cylindrical Wiener process in a Hilbert space Ξ. 𝐴
is the generator of a strongly continuous semigroup of
bounded linear operator in another Hilbert space 𝐻, and
the coefficients 𝐹 and 𝐺, defined on [0,∞) × 𝐶 ([−𝜏, 0],𝐻),
are assumed to satisfy Lipschitz conditions with respect to
appropriate norms. We introduce the cost function

𝐽 (𝑢) = 𝐸∫

∞

𝑡

𝑒
−𝜆𝑠

𝑔 (𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠)) 𝑑𝑠. (3)

Here, 𝑔 is a given real function, 𝜆 is large enough, and the
control problem is understood in the weak sense. We wish to
minimize the cost function over all admissible controls.

The particular form of the control system is essential
for our results, but it covers numerous interesting cases. For
example, in the particular cases𝑈 = 𝐻 and 𝑅(𝑡, 𝑥, 𝑢) = 𝑢, the
term 𝑢(𝑡)𝑑𝑡 + 𝑑𝑊(𝑡) in the state equation can be considered
as a control affected by noise.

The stochastic optimal control problem was considered
in 1977 by Bismut [1]. The optimal control problem for
stochastic partial differential equations in the framework of
a compact control state space has been studied in [2–5].
Buckdahn and Raşcanu [6] considered an optimal control
problem for a semilinear parabolic stochastic differential
equation with a nonlinear diffusion coefficient, and the
existence of a quasioptimal (nonrelaxed) control is showed
without assuming convexity of the coefficients. In [7–11], the
authors provided a direct (classical or mild) solution of the
Hamilton-Jacobi-Bellman equation for the value function,
which is then used to prove that the optimal control is
related to the corresponding optimal trajectory by a feedback
law. In Gozzi [10, 11], the existence and uniqueness of a
mild solution of the associated Hamilton-Jacobi-Bellman
equation are proved, when the diffusion term only satisfies
weak nondegeneracy conditions. The proofs are based on



2 Abstract and Applied Analysis

the corresponding regularity properties of the transition
semigroup of the associated Ornstein-Uhlenbeck process.

The main tools for the control problem are techniques
from the theory of backward stochastic differential equations
(BSDEs) in the sense of Pardoux and Peng, first considered
in the nonlinear case in [12]; see [13, 14] as general references.
BSDEs have been successfully applied to control problems;
see, for example, [15, 16] and we also refer the reader to
[17–20]. Fuhrman and Tessiture [19] considered the optimal
control problem for stochastic differential equation in the
strong form, assuming Lipschitz conditions and allowing
degeneracy of the diffusion coefficient, under some structural
constraint on the state equation. Existence of an optimal
control for stochastic systems in infinite dimensional spaces
also has been obtained in [21–27]. In [21], Fuhrman and Tes-
sitore showed the regularity with respect to parameters and
the regularity in the Malliavin spaces for the solution of the
backward-forward system and defined the feedback law by
Malliavin calculus. Finally, the optimal control is obtained by
the feedback. Appealing to the Malliavin calculus, compared
with Fuhrman et al. [23], the existence of optimal control
for stochastic differential equations with delay is proved by
the feedback law. Fuhrman and Tessiture [24] dealt with an
infinite horizon optimal control problem for the stochas-
tic evolution equation in Hilbert space, and the optimal
control is showed by means of infinite horizon backward
stochastic differential equation in infinite dimensional spaces
and Malliavin calculus. In Masiero [25], the infinite horizon
optimal control problem for stochastic evolution equation
is also studied by means of the Hamilton-Jacobi-Bellman
equation. In Fuhrman [26], a class of optimal control prob-
lems governed by stochastic evolution equations in Hilbert
spaces which includes state constraints is considered, and
the optimal control is obtained by the Fleming logarithmic
transformation. Masiero [27] studied stochastic evolution
equations evolving in a Banach space where 𝐺 is a constant
and characterized the optimal control via a feedback law by
avoiding use of Malliavin calculus. Since there is a lack of
regularity of 𝐹 and 𝐺, Malliavin calculus is not available in
this case; the method in [27] also cannot be used as 𝐺 is
not a constant, but we can prove a theorem similar to [26,
Proposition 3.2], which will be used to define the feedback
law.

In the present paper, we study the infinite horizon optimal
control problem for stochastic delay evolution equations in
Hilbert spaces, and by usingTheorem 10, the optimal control
is obtained. Since we do not relate the optimal feedback law
with the gradient of the value function and do not consider
the associated Hamilton-Jacobi-Bellman equation, we can
drop the Gâteaux differentiability of the drift term and the
diffusion term.

The plan of the paper is as follows. In the next section,
some notations are fixed, and the stochastic delay evolution
equations are considered with an infinite horizon; in particu-
lar, continuous dependence on initial value (𝑡, 𝑥) is proved. In
Section 3, we give the proof of Theorem 10, which is the key
of many subsequent results. The addressed optimal control
problem is considered, and the fundamental relation between
the optimal control problem and BSDEs is established in

Section 4. Section 5 is devoted to proving the existence and
uniqueness of optimal control in the weak sense. Finally, an
application is given in Section 6.

2. Preliminaries

We list some notations that are used in this paper. We use
the symbol | ⋅ | to denote the norm in a Banach space 𝐹,
with a subscript if necessary. Let Ξ, 𝐻, and 𝐾 denote real
separable Hilbert spaces, with scalar products (⋅, ⋅)

Ξ
, (⋅, ⋅)

𝐻
,

and (⋅, ⋅)
𝐾
, respectively. For fixed 𝜏 > 0, C = 𝐶([−𝜏, 0],𝐻)

denotes the space of continuous functions from [−𝜏, 0] to𝐻,
endowed with the usual norm |𝑓|

𝐶
= sup

𝜃∈[−𝜏,0]
|𝑓(𝜃)|

𝐻
. Let

Ξ
∗ denote the dual space of Ξ, with scalar product (⋅, ⋅)

Ξ
∗ , and

let 𝐿(Ξ,𝐻) denote the space of all bounded linear operators
from Ξ into 𝐻; the subspace of Hilbert-Schmidt operators,
with the Hilbert-Schmidt norm, is denoted by 𝐿

2
(Ξ,𝐻).

Let (Ω,F, 𝑃) be a complete space with a filtration {F
𝑡
}
𝑡≥0

which satisfies the usual condition. By a cylindrical Wiener
process with values in aHilbert spaceΞ, defined on (Ω,F, 𝑃),
we mean a family {𝑊(𝑡), 𝑡 ≥ 0} of linear mappings Ξ →

𝐿
2

(Ω) such that for every 𝜉, 𝜂 ∈ Ξ, {𝑊(𝑡)𝜉, 𝑡 ≥ 0} is a
real Wiener process and 𝐸(𝑊(𝑡)𝜉 ⋅ 𝑊(𝑡)𝜂) = (𝜉, 𝜂)

Ξ
. In

the following, {𝑊(𝑡), 𝑡 ≥ 0} is a cylindrical Wiener process
adapted to the filtration {F

𝑡
}
𝑡≥0

.
In this section and the next section, {F

𝑡
}
𝑡≥0

will denote
the natural filtration of 𝑊, augmented with the family N
of 𝑃-null of F. The filtration {F

𝑡
, 𝑡 ≥ 0} satisfies the usual

conditions. For [𝑎, 𝑏], [𝑎,∞) ⊂ [0,∞), we also use the
following notations:

F
[𝑎,𝑏]

= 𝜎 (𝑊 (𝑠) − 𝑊 (𝑎) : 𝑠 ∈ [𝑎, 𝑏]) ∨N,

F
[𝑎,∞)

= 𝜎 (𝑊 (𝑠) − 𝑊 (𝑎) : 𝑠 ∈ [a,∞)) ∨N.

(4)

By P we denote the predictable 𝜎-algebra, and by B(Λ) we
denote the Borel 𝜎-algebra of any topological space Λ.

Similar to [24], we define several classes of stochastic
processes with values in a Banach space 𝐹 as follows.

(i) 𝐿2P(Ω × [𝑡,∞); 𝐹) denotes the space of equivalence
classes of processes 𝑌 ∈ 𝐿

2

(Ω × [𝑡,∞); 𝐹), admitting
a predictable version. 𝐿2P(Ω × [𝑡,∞); 𝐹) is endowed
with the norm

|𝑌|
2

= 𝐸∫

∞

𝑡

|𝑌(𝑠)|
2

𝑑𝑠. (5)

(ii) 𝐿𝑝
P
(Ω; 𝐿

𝑞

𝛽
([𝑡,∞); 𝐹)), defined for 𝛽 ∈ 𝑅 and 𝑝, 𝑞 ∈

[1,∞), denotes the space of equivalence classes of
processes {𝑌(𝑠), 𝑠 ≥ 𝑡}, with values in 𝐹, such that the
norm

|𝑌|
𝑝

= 𝐸(∫

∞

𝑡

𝑒
𝑞𝛽𝑠

|𝑌 (𝑠)|
𝑞

𝑑𝑠)

𝑝/𝑞

(6)

is finite and 𝑌 admits a predictable version.
(iii) K𝑝

𝛽
(𝑡) denotes the space 𝐿

𝑝

P
(Ω; 𝐿

2

𝛽
([𝑡,∞); 𝐹)) ×

𝐿
𝑝

P
(Ω; 𝐿

2

𝛽
([𝑡,∞); 𝐿

2
(Ξ, 𝐹))). The norm of an element
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(𝑌, 𝑍) ∈K
𝑝

𝛽
is |(𝑌, 𝑍)| = |𝑌|+ |𝑍|. Here, 𝐹 is a Hilbert

space.
(iv) 𝐿𝑝

P
(Ω; 𝐶([𝑡, 𝑇]; 𝐹)), defined for 𝑇 > 𝑡 ≥ 0 and

𝑝 ∈ [1,∞), denotes the space of predictable processes
{𝑌(𝑠), 𝑠 ∈ [𝑡, 𝑇]}with continuous paths in 𝐹, such that
the norm

|𝑌|
𝑝

= 𝐸 sup
𝑠∈[𝑡,𝑇]

|𝑌 (𝑠)|
𝑝

(7)

is finite. Elements of 𝐿𝑝
P
(Ω; 𝐶([𝑡, 𝑇]; 𝐹)) are identified

up to indistinguishability.

(v) 𝐿𝑞
P
(Ω; 𝐶

𝜂
([𝑡,∞); 𝐹)), defined for 𝜂 ∈ 𝑅 and 𝑞 ∈

[1,∞), denotes the space of predictable processes
{𝑌(𝑠), 𝑠 ≥ 𝑡} with continuous paths in 𝐹, such that the
norm

|𝑌|
𝑞

= 𝐸 sup
𝑠≥𝑡

𝑒
𝜂𝑞𝑠

|𝑌 (𝑠)|
𝑞

(8)

is finite. Elements of 𝐿𝑞
P
(Ω; 𝐶

𝜂
(𝐹)) are identified up

to indistinguishability.
(vi) Finally, for 𝜂 ∈ 𝑅 and 𝑞 ∈ [1,∞), we

defined Hq
𝜂
(𝑡) as the space 𝐿𝑞

P
(Ω; 𝐿

𝑞

𝜂
([𝑡,∞); 𝐹)) ∩

𝐿
𝑞

P
(Ω; 𝐶

𝜂
([𝑡,∞); 𝐹)), endowed with the norm

|𝑌|H
𝑞

𝜂

= |𝑌|
𝐿
𝑞

P
(Ω;𝐿
𝑞

𝜂
([𝑡,∞);𝐹))

+ |𝑌|
𝐿
𝑞

P
(Ω;𝐶
𝜂
([𝑡,∞);𝐹))

. (9)

For simplicity, we denote 𝐿
𝑝

P
(Ω; 𝐿

𝑞

𝛽
([0,∞); 𝐹)), 𝐿𝑞

P
(Ω;

𝐶
𝜂
([0,∞); 𝐹)), H𝑞

𝜂
(0), and K

𝑝

𝛽
(0) by 𝐿𝑝

P
(Ω; 𝐿

𝑞

𝛽
(𝐹)), 𝐿𝑞

P
(Ω;

𝐶
𝜂
(𝐹)),H𝑞

𝜂
, andK

𝑝

𝛽
, respectively.

Now, for every fixed 𝑡 ≥ 0, we consider the following
stochastic delay evolution equation:

𝑑𝑋 (𝑠) = 𝐴𝑋 (𝑠) 𝑑𝑠 + 𝐹 (𝑡, 𝑋
𝑠
) 𝑑𝑠 + 𝐺 (𝑠, 𝑋

𝑠
) 𝑑𝑊 (𝑠) ,

𝑠 ∈ [𝑡,∞) ,

𝑋
𝑡
= 𝑥 ∈ C.

(10)

We make the following assumptions.

Hypothesis 1. (i)The operator𝐴 is the generator of a strongly
continuous semigroup {𝑒

𝑡𝐴

, 𝑡 ≥ 0} of bounded linear
operators in the Hilbert space𝐻. We denote by𝑀 and 𝜔 two
constants such that |𝑒𝑡𝐴| ≤ 𝑀𝑒𝜔𝑡, for 𝑡 ≥ 0.

(ii) The mapping 𝐹: [0,∞) ×C → 𝐻 is measurable and
satisfies, for some constant 𝐿 > 0 and 0 ≤ 𝜃 < 1,

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑠𝐴

𝐹 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐿𝑒

𝜔𝑠

𝑠
−𝜃

(1 + |𝑥|
𝐶
) ,

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑠𝐴

𝐹 (𝑡, 𝑥) − 𝑒
𝑠𝐴

𝐹 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐿𝑒

𝜔𝑠

𝑠
−𝜃󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨𝐶,

𝑠 > 0, 𝑡 ∈ [0, +∞) , 𝑥, 𝑦 ∈ C.

(11)

(iii) 𝐺 is a mapping [0,∞) ×C → 𝐿(Ξ,𝐻) such that for
every 𝑣 ∈ Ξ, the map 𝐺𝑣: [0,∞) × C → 𝐻 is measurable,

𝑒
𝑠𝐴

𝐺(𝑡, 𝑥) ∈ 𝐿
2
(Ξ,𝐻) for every s > 0, 𝑡 ∈ [0,∞) and 𝑥 ∈ C,

and

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑠𝐴

𝐺 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨𝐿
2
(Ξ,𝐻)

≤ 𝐿𝑒
𝜔𝑠

𝑠
−𝛾

(1 + |𝑥|
𝐶
) ,

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑠𝐴

𝐺 (𝑡, 𝑥) − 𝑒
𝑠𝐴

𝐺 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨󵄨𝐿
2
(Ξ,𝐻)

≤ 𝐿𝑒
𝜔𝑠

𝑠
−𝛾

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨𝐶) ,

𝑠 > 0, 𝑡 ∈ [0, +∞) , 𝑥, 𝑦 ∈ C,

(12)

for some constants 𝐿 > 0 and 𝛾 ∈ [0, 1/2).
We say that𝑋 is amild solution of (10) if it is a continuous,

{F
𝑡
}
𝑡≥0

-predictable process with values in 𝐻, and it satisfies
𝑃-a.s.,

𝑋 (𝑠) = 𝑒
(𝑠−𝑡)𝐴

𝑥 (0) + ∫

𝑠

𝑡

𝑒
(𝑠−𝜎)𝐴

𝐹 (𝜎,𝑋
𝜎
) 𝑑𝜎

+ ∫

𝑠

𝑡

𝑒
(𝑠−𝜎)𝐴

𝐺 (𝜎,𝑋
𝜎
) 𝑑𝑊 (𝜎) , 𝑠 ∈ [𝑡,∞) ,

𝑋
𝑡
= 𝑥 ∈ C.

(13)

To stress dependence on initial data, we denote the solution
by 𝑋(𝑠, 𝑡, 𝑥). Note that 𝑋(𝑠, 𝑡, 𝑥) is F

[𝑡,𝑠]
measurable, hence,

independent ofF
𝑡
.

We first recall a well-known result on solvability of (10)
on bounded interval.

Theorem 1. Assume that Hypothesis 1 holds. Then, for all
𝑞 ∈ [2,∞) and 𝑇 > 0, there exists a unique process 𝑋 ∈

𝐿
𝑞

P
(Ω, 𝐶([𝑡, 𝑇];𝐻)) as mild solution of (10). Moreover,

𝐸 sup
𝑠∈[𝑡,𝑇]

|𝑋 (𝑠)|
𝑞

≤ 𝐶(1 + |𝑥|
𝐶
)
𝑞

, (14)

for some constant C depending only on 𝑞, 𝛾, 𝜃,T, 𝜏, L, 𝜔, and
M.

By Theorem 1 and the arbitrariness of 𝑇 in its statement,
the solution is defined for every 𝑠 ≥ 𝑡. We have the following
result.

Theorem 2. Assume that Hypothesis 1 holds and the process
𝑋(⋅, 𝑡, 𝑥) is mild solution of (10) with initial value (𝑡, 𝑥) ∈

[0,∞) ×C. Then, for every 𝑞 ∈ [1,∞), there exists a constant
𝜂(𝑞) such that the process 𝑋

⋅
(𝑡, 𝑥) ∈ H

𝑞

𝜂(𝑞)
(𝑡). Moreover, for a

suitable constant 𝐶 > 0, one has

𝐸sup
s≥t
𝑒
𝜂(𝑞)𝑞𝑠󵄨󵄨󵄨󵄨𝑋𝑠

󵄨󵄨󵄨󵄨
𝑞

𝐶
+ 𝐸∫

∞

𝑡

𝑒
𝜂(𝑞)𝑞𝑠󵄨󵄨󵄨󵄨𝑋𝑠

󵄨󵄨󵄨󵄨
𝑞

𝐶
𝑑𝑠 ≤ 𝐶(1 + |𝑥|

𝐶
)
𝑞

,

(15)

with the constant 𝜂(𝑞) depending only on 𝑞, 𝛾, 𝜃, 𝜏, 𝐿, 𝜔, and
𝑀.
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Proof. We define a mapping Φ from H𝑞

𝜂
(𝑡) × [0,∞) × C to

H𝑞

𝜂
(𝑡) by the formula

Φ(𝑋
⋅
, 𝑡, 𝑥)

𝑠
(𝑙) = 𝑒

(𝑠+𝑙−𝑡)𝐴

𝑥 (0) + ∫

𝑠+𝑙

𝑡

𝑒
(𝑠+𝑙−𝜎)𝐴

𝐹 (𝜎,𝑋
𝜎
) 𝑑𝜎

+ ∫

𝑠+𝑙

𝑡

𝑒
(𝑠+𝑙−𝜎)𝐴

𝐺 (𝜎,𝑋
𝜎
) 𝑑𝑊 (𝜎) ,

𝑠 ∈ [𝑡,∞) , 𝑙 ∈ [−𝜏, 0] , 𝑠 + 𝑙 ≥ 𝑡,

Φ(𝑋
⋅
, 𝑡, 𝑥)

𝑠
(𝑙) = 𝑥 (𝑠 + 𝑙 − 𝑡) ,

𝑠 ∈ [𝑡,∞) , 𝑙 ∈ [−𝜏, 0] , 𝑠 + 𝑙 < 𝑡.

(16)

We are going to show that, provided 𝜂 is suitably chosen,
Φ(⋅, 𝑡, 𝑥) is well defined and that it is a contraction inH𝑞

𝜂
(𝑡);

that is, there exists 𝑐 < 1 such that
󵄨󵄨󵄨󵄨󵄨
Φ (𝑋

1

⋅
, 𝑡, 𝑥) − Φ (𝑋

1

⋅
, 𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨H
𝑞

𝜂
(𝑡)

≤ 𝑐
󵄨󵄨󵄨󵄨󵄨
𝑋
1

⋅
− 𝑋

2

⋅

󵄨󵄨󵄨󵄨󵄨H
𝑞

𝜂
(𝑡)

, 𝑋
1

⋅
, 𝑋

2

⋅
∈H

𝑞

𝜂
(𝑡) .

(17)

For simplicity, we set 𝑡 = 0, and we treat only the case 𝐹 = 0,
the general case being handled in a similar way. We will use
the so called factorization method; see [28, Theorem 5.2.5].
Let us take 𝑞 > 1 and 𝛼 ∈ (0, 1) such that 1/𝑞 < 𝛼 < (1/2) −
𝛾, and let 𝑐−1

𝛼
= ∫

s
𝜎

(𝑠 − 𝑟)
𝛼−1

(𝑟 − 𝜎)
−𝛼

𝑑𝑟.
By the stochastic Fubini theorem,

Φ(𝑋
⋅
, 0, 𝑥)

𝑠
(𝑙) = 𝑒

(𝑠+𝑙)𝐴

𝑥 (0)

+ 𝑐
𝛼
∫

𝑠+𝑙

0

∫

𝑠+𝑙

𝜎

(𝑠 + 𝑙 − 𝑟)
𝛼−1

(𝑟 − 𝜎)
−𝛼

× 𝑒
(𝑠+𝑙−𝑟)𝐴

𝑒
(𝑟−𝜎)𝐴

𝑑𝑟𝐺 (𝜎,𝑋
𝜎
) 𝑑𝑊 (𝜎)

= 𝑒
(𝑠+𝑙)𝐴

𝑥 (0) + Φ
󸀠

(𝑋
𝑠
) (𝑙) ,

𝑠 ∈ [0,∞) , 𝑙 ∈ [−𝜏, 0] , 𝑠 + 𝑙 ≥ 0,

Φ(𝑋
⋅
, 0, 𝑥)

𝑠
(𝑙) = 𝑥 (𝑠 + 𝑙) ,

𝑠 ∈ [0,∞) , 𝑙 ∈ [−𝜏, 0] , 𝑠 + 𝑙 < 0,

(18)

where

Φ
󸀠

(𝑋
⋅
)
𝑠
(𝑙) = 𝑐

𝛼
∫

𝑠+𝑙

0

(𝑠 + 𝑙 − 𝑟)
𝛼−1

𝑒
(𝑠+𝑙−𝑟)𝐴

𝑌 (𝑟) 𝑑𝑟,

𝑌 (𝑟) = ∫

𝑟

0

(𝑟 − 𝜎)
−𝛼

𝑒
(𝑟−𝜎)𝐴

𝐺 (𝜎,𝑋
𝜎
) 𝑑𝑊 (𝜎) .

(19)

Since sup
−𝜏≤𝑙≤0

|𝑒
(𝑠+𝑙)𝐴

𝑥(0)| ≤ 𝑀𝑒
𝜔𝑠

|𝑥|
𝐶
, the process 𝑒(𝑠+⋅)𝐴

𝑥(0), 𝑠 ≥ 0, belongs to H𝑞

𝜂
provided 𝜔 + 𝜂 < 0. Next, we

estimate Φ󸀠

(𝑋
⋅
), where

󵄨󵄨󵄨󵄨󵄨
Φ
󸀠

(𝑋
⋅
)
𝑠
(𝑙)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

𝛼
∫

𝑠+𝑙

0

(𝑠 + 𝑙 − 𝑟)
𝛼−1

𝑀𝑒
(𝑠+𝑙−𝑟)𝜔

|𝑌 (𝑟)| 𝑑𝑟,

(20)

setting 𝑞󸀠 = 𝑞/(𝑞 − 1), so that

𝑒
𝑞𝜂𝑠
󵄨󵄨󵄨󵄨󵄨
Φ
󸀠

(𝑋
⋅
)
𝑠

󵄨󵄨󵄨󵄨󵄨

𝑞

≤ 𝑐
𝑞

𝛼
𝑀

𝑞 sup
−𝜏≤𝑙≤0

𝑒
𝑞𝜂𝑠

(∫

𝑠+𝑙

0

(𝑠+𝑙− 𝑟)
𝛼−1

𝑒
𝜔(𝑠+𝑙−𝑟)

|𝑌 (𝑟)| 𝑑𝑟)

𝑞

≤ 𝑐
𝑞

𝛼
𝑀

𝑞 sup
−𝜏≤𝑙≤0

(∫

𝑠+𝑙

0

(𝑠 + 𝑙 − 𝑟)
𝛼−1

𝑒
((𝜔+𝜂)/𝑞

󸀠

)(𝑠+𝑙−𝑟)

×𝑒
((𝜔+𝜂)/𝑞)(𝑠−𝑟)

𝑒
𝜂𝑟

|𝑌 (𝑟)| 𝑑𝑟)

𝑞

≤ 𝑐
𝑞

𝛼
𝑀

𝑞 sup
−𝜏≤𝑙≤0

(∫

𝑠+𝑙

0

𝑒
(𝜂+𝜔)(𝑠+𝑙−𝑟)

(𝑠 + 𝑙 − 𝑟)
(𝛼−1)𝑞

󸀠

𝑑𝑟)

𝑞/𝑞
󸀠

× ∫

𝑠+𝑙

0

𝑒
(𝜂+𝜔)(𝑠−𝑟)

𝑒
𝑞𝜂𝑟

|𝑌 (𝑟)|
𝑞

𝑑𝑟

≤ 𝑐
𝑞

𝛼
𝑀

𝑞

(∫

𝑠

0

𝑒
(𝜂+𝜔)𝑟

𝑟
𝑞
󸀠

(𝛼−1)

𝑑𝑟)

𝑞/𝑞
󸀠

× ∫

𝑠

0

𝑒
(𝜂+𝜔)(𝑠−𝑟)

𝑒
𝑞𝜂𝑟

|𝑌 (𝑟)|
𝑞

𝑑𝑟.

(21)

Applying the Young inequality for convolutions, we have

∫

∞

0

𝑒
𝑞𝜂𝑠
󵄨󵄨󵄨󵄨󵄨
Φ
󸀠

(𝑋
⋅
)
𝑠

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑠 ≤ 𝑐
𝑞

𝛼
𝑀

𝑞

(∫

∞

0

𝑒
(𝜂+𝜔)𝑠

𝑠
𝑞
󸀠

(𝛼−1)

𝑑𝑠)

𝑞/𝑞
󸀠

× ∫

∞

0

𝑒
(𝜂+𝜔)𝑠

𝑑𝑠∫

∞

0

𝑒
𝑞𝜂𝑠

|𝑌 (𝑠)|
𝑞

𝑑𝑠,

(22)

and we conclude that
󵄨󵄨󵄨󵄨󵄨
Φ
󸀠

(𝑋
⋅
)
󵄨󵄨󵄨󵄨󵄨𝐿
𝑞

P
(Ω;𝐿
𝑞

𝜂
(C))

≤ 𝑐
𝛼
𝑀|𝑌|

𝐿
𝑞

P
(Ω;𝐿
𝑞

𝜂
(𝐻))

× (∫

∞

0

𝑒
(𝜂+𝜔)𝑠

𝑠
𝑞
󸀠

(𝛼−1)

𝑑𝑠)

1/𝑞
󸀠

× (∫

∞

0

𝑒
(𝜂+𝜔)𝑠

𝑑𝑠)

1/𝑞

.

(23)

If we start again from (20) and apply theHölder inequality, we
obtain

󵄨󵄨󵄨󵄨󵄨
𝑒
𝜂(𝑠+𝑙)

Φ
󸀠

(𝑋
⋅
)
𝑠
(𝑙)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

𝛼
𝑀(∫

𝑠+𝑙

0

𝑟
(𝛼−1)𝑞

󸀠

𝑒
(𝜔+𝜂)𝑟𝑞

󸀠

𝑑𝑟)

1/𝑞
󸀠

× (∫

𝑠+𝑙

0

𝑒
𝜂𝑟𝑞

|𝑌 (𝑟)|
𝑞

𝑑𝑟)

1/𝑞

,

󵄨󵄨󵄨󵄨󵄨
𝑒
𝜂𝑠

Φ
󸀠

(𝑋
⋅
)
𝑠

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

𝛼
𝑀(∫

𝑠

0

𝑟
(𝛼−1)𝑞

󸀠

𝑒
(𝜔+𝜂)𝑟𝑞

󸀠

𝑑𝑟)

1/𝑞
󸀠

× (∫

𝑠

0

𝑒
𝜂𝑟𝑞

|𝑌(𝑟)|
𝑞

𝑑𝑟)

1/𝑞

.

(24)
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So, we conclude that
󵄨󵄨󵄨󵄨󵄨
Φ
󸀠

(𝑋
⋅
)
󵄨󵄨󵄨󵄨󵄨𝐿
𝑞

P
(Ω;𝐶
𝜂
(C))

≤ 𝑐
𝛼
𝑀|𝑌|

𝐿
𝑞

P
(Ω;𝐿
𝑞

𝜂
(𝐻))

× (∫

∞

0

𝑟
(𝛼−1)𝑞

󸀠

𝑒
(𝜔+𝜂)𝑟𝑞

󸀠

𝑑𝑟)

1/𝑞
󸀠

.

(25)

On the other hand, by the Burkholder-Davis-Gundy inequal-
ities, for some constant 𝑐

𝑞
depending only on 𝑞, we have

𝐸|𝑌 (𝑟)|
𝑞

≤ 𝑐
𝑞
𝐸(∫

𝑟

0

(𝑟 − 𝜎)
−2𝛼
󵄨󵄨󵄨󵄨󵄨
𝑒
(𝑟−𝜎)𝐴

𝐺 (𝜎,𝑋
𝜎
)
󵄨󵄨󵄨󵄨󵄨

2

𝐿
2
(Ξ,𝐻)

𝑑𝜎)

𝑞/2

≤ 𝐿
𝑞

𝑐
𝑞
𝐸

× (∫

𝑟

0

(𝑟 − 𝜎)
−2𝛼−2𝛾

𝑒
2𝜔(𝑟−𝜎)

(1 +
󵄨󵄨󵄨󵄨𝑋𝜎

󵄨󵄨󵄨󵄨
2

𝐶
) 𝑑𝜎)

𝑞/2

,

(26)

which implies that

[𝐸|𝑌 (𝑟)|
𝑞

]
2/𝑞

≤ 𝐿
2

𝑐
2/𝑞

𝑞
∫

𝑟

0

(𝑟 − 𝜎)
−2𝛼−2𝛾

× 𝑒
2𝜔(𝑟−𝜎)

[𝐸(1 +
󵄨󵄨󵄨󵄨𝑋𝜎

󵄨󵄨󵄨󵄨𝐶)
𝑞

]
2/𝑞

𝑑𝜎,

(27)

so that

𝑒
2𝜂𝑟

[𝐸|𝑌 (𝑟)|
𝑞

]
2/𝑞

≤ 𝐶
1
∫

𝑟

0

(𝑟 − 𝜎)
−2𝛼−2𝛾

𝑒
2(𝜔+𝜂)(𝑟−𝜎)

𝑒
2𝜂𝜎

𝑑𝜎

+ 𝐶
2
∫

𝑟

0

(𝑟 − 𝜎)
−2𝛼−2𝛾

𝑒
2(𝜔+𝜂)(𝑟−𝜎)

× 𝑒
2𝜂𝜎

[𝐸
󵄨󵄨󵄨󵄨𝑋𝜎

󵄨󵄨󵄨󵄨
𝑞

𝐶
]
2/𝑞

𝑑𝜎,

(28)

for suitable constants 𝐶
1
, 𝐶

2
. Applying the Young inequality

for convolutions, we obtain

∫

∞

0

𝑒
𝑞𝜂𝑟

𝐸|𝑌 (𝑟)|
𝑞

𝑑𝑠≤ 𝐶
1
(∫

∞

0

𝑠
−2𝛼−2𝛾

𝑒
2(𝜔+𝜂)𝑠

𝑑𝑠)

𝑞/2

∫

∞

0

𝑒
𝑞𝜂𝑠

𝑑𝑠

+ 𝐶
2
(∫

∞

0

𝑠
−2𝛼−2𝛾

𝑒
2(𝜔+𝜂)𝑠

𝑑𝑠)

𝑞/2

× ∫

∞

0

𝑒
𝑞𝜂𝑠

𝐸
󵄨󵄨󵄨󵄨𝑋𝑠

󵄨󵄨󵄨󵄨
𝑞

𝐶
𝑑𝑠.

(29)

This shows that |𝑌|
𝐿
𝑞

P
(Ω;𝐿
𝑞

𝜂
(𝐻))

is finite provided we assume
that 𝜂 < 0 and 𝜔 + 𝜂 < 0; so, the map is well defined.

If 𝑋1

⋅
, 𝑋

2

⋅
are processes belonging to H𝑞

𝜂
and 𝑌1, 𝑌2 are

defined accordingly, the entirely analogous passages show
that
󵄨󵄨󵄨󵄨󵄨
𝑌
1

− 𝑌
2
󵄨󵄨󵄨󵄨󵄨𝐿
𝑞

P
(Ω;𝐿
𝑞

𝜂
(𝐻))

≤ 𝐿𝑐
1/𝑞

𝛼

󵄨󵄨󵄨󵄨󵄨
𝑋
1

⋅
− 𝑋

2

⋅

󵄨󵄨󵄨󵄨󵄨𝐿
𝑞

P
(Ω;𝐿
𝑞

𝜂
(C))

× (∫

∞

0

𝑠
−2𝛼−2𝛾

𝑒
2(𝜔+𝜂)𝑠

𝑑𝑠)

1/2

.

(30)

Recalling the inequalities (23) and (25) and noting that the
map Y → Φ

󸀠

(X
⋅
) is linear, we obtain an explicit expression

for the constant 𝑐 in (17), and it is immediate to verify that
𝑐 < 1 provided 𝜂 < 0 is chosen sufficiently large. We fix
such a value of 𝜂(𝑞). The first result is a consequence of the
contraction principle. The estimate (15) also follows from the
contraction property ofΦ(⋅, 𝑡, 𝑥).

For investigating the dependence of the solution𝑋(𝑠, 𝑡, 𝑥)
on the initial data 𝑥 and 𝑡, we reformulate (13) as an equation
on [0,∞). We set

𝑆 (𝑠) = 𝑒
𝑠𝐴

, for 𝑠 ≥ 0, 𝑆 (𝑠) = 𝐼, for 𝑠 < 0, (31)

and we consider the equation

𝑋(𝑠) = 𝑆 (𝑠 − 𝑡) 𝑥 ((0 ∧ (𝑠 − 𝑡)) ∨ (−𝜏))

+ ∫

𝑠

0

𝐼
[𝑡,∞)

(𝜎) 𝑆 (𝑠 − 𝜎) 𝐹 (𝜎,𝑋
𝜎
) 𝑑𝜎

+ ∫

𝑠

0

𝐼
[𝑡,∞)

(𝜎) 𝑆 (𝑠 − 𝜎)

× 𝐺 (𝜎,𝑋
𝜎
) 𝑑𝑊 (𝜎) , 𝑠 ∈ [0,∞) ,

𝑋
0
(𝜃) = 𝑥 ((−𝑡 + 𝜃) ∨ (−𝜏)) , 𝜃 ∈ [−𝜏, 0] .

(32)

Under the assumptions of Hypothesis 1, by Theorem 2, it is
easy to prove that equation (32) has a unique solution 𝑋 and
𝑋
⋅
∈ H

𝑞

𝜂(𝑞)
for every 𝑞 ∈ [2,∞). It clearly satisfies 𝑋(𝑠) =

𝑥((𝑠 − 𝑡) ∨ (−𝜏)) for 𝑠 ∈ [−𝜏, 𝑡), and its restriction to the time
internal [𝑡,∞) is the unique mild solution of (10). From now
on, we denote by𝑋(𝑠, 𝑡, 𝑥), 𝑠 ∈ [0,∞), the solution of (32).

We need the following parameter-depending contraction
principle, which is stated in the following lemma and proved
in [29, Theorems 10.1 and 10.2].

Lemma3 (ParameterDependingContraction Principle). Let
𝐵,𝐷 denote Banach spaces. Let ℎ : 𝐵×𝐷 → 𝐵 be a continuous
mapping satisfying

󵄨󵄨󵄨󵄨ℎ (𝑥1, 𝑦) − ℎ (𝑥2, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝛼

󵄨󵄨󵄨󵄨𝑥1 − 𝑥2
󵄨󵄨󵄨󵄨 , (33)

for some 𝛼 ∈ [0, 1) and every 𝑥
1
, 𝑥

2
∈ 𝐵, y ∈ 𝐷. Let 𝜙(𝑦)

denote the unique fixed point of the mapping ℎ(⋅, 𝑦) : 𝐵 → 𝐵.
Then, 𝜙 : 𝐷 → 𝐵 is continuous.

Theorem 4. Assume that Hypothesis 1 holds true. Then, for
every 𝑞 ∈ [1,∞), the map (𝑡, 𝑥) → 𝑋

⋅
(𝑡, 𝑥) is continuous

from [0,∞) ×C toHq
𝜂(q).

Proof. Clearly, it is enough to prove the claim for 𝑞 large. Let
us consider the map Φ defined in the proof of Theorem 2. In
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our present notation,Φ can be seen as a mapping fromH𝑞

𝜂
×

[0,∞) ×C toH𝑞

𝜂
as follows:

Φ(𝑋
⋅
, 𝑡, 𝑥)

𝑠
(𝑙) = 𝑆 (𝑠 + 𝑙 − 𝑡) 𝑥 (0)

+ ∫

𝑠+𝑙

0

𝐼
[𝑡,∞)

(𝜎) 𝑆 (𝑠 + 𝑙 − 𝜎) 𝐹 (𝜎,𝑋
𝜎
) 𝑑𝜎

+ ∫

𝑠+𝑙

0

𝐼
[𝑡,∞)

(𝜎) 𝑆 (𝑠 + 𝑙 − 𝜎)

× 𝐺 (𝜎,𝑋
𝜎
) 𝑑𝑊 (𝜎) ,

𝑠 ∈ [0,∞) , 𝑙 ∈ [−𝜏, 0] , 𝑠 + 𝑙 ≥ 𝑡,

Φ(𝑋
⋅
, 𝑡, 𝑥)

𝑠
(𝑙) = 𝑥 ((𝑠 + 𝑙 − 𝑡) ∨ (−𝜏)) ,

𝑠 ∈ [0,∞) , 𝑙 ∈ [−𝜏, 0] , 𝑠 + 𝑙 ≤ 𝑡.

(34)

By the arguments of the proof of Theorem 2, Φ(⋅, 𝑡, 𝑥)
is a contraction in H𝑞

𝜂
uniformly with respect to 𝑡, 𝑥.

The process 𝑋
⋅
(𝑡, 𝑥) is the unique fixed point of Φ(⋅, 𝑡, 𝑥).

So, by the parameter-depending contraction principle
(Lemma 3), it suffices to show that Φ is continuous from
H𝑞

𝜂
× [0,∞) × C to H𝑞

𝜂
. From the contraction property

of Φ(⋅, 𝑡, 𝑥) mentioned earlier, we have that Φ(⋅, 𝑡, 𝑥) is
continuous, uniformly in 𝑡, 𝑥. Moreover, for fixed 𝑋

⋅
, it is

easy to verify that Φ(𝑋
⋅
, ⋅, ⋅) is continuous from [0,∞) × C

toH𝑞

𝜂
. The proof is finished.

Remark 5. By similar passages, we can show that, for fixed
𝑡, Theorem 4 still holds true for 𝑞 large enough if the spaces
[0,∞) × C and H𝑞

𝜂
are replaced by the spaces 𝐿𝑞(Ω,C,F

𝑡
)

and H𝑞

𝜂
(𝑡) respectively, where 𝐿𝑞(Ω,C,F

𝑡
) denotes that the

space of F
𝑡
-measurable function with value in C, such that

the norm

|𝑥|
𝑞

= 𝐸|𝑥|
𝑞

𝐶
, (35)

is finite.

3. The Backward-Forward System

In this section, we consider the system of stochastic differen-
tial equations, 𝑃-a.s.,

𝑋 (𝑠) = 𝑒
(𝑠−𝑡)𝐴

𝑥 (0) + ∫

𝑠

𝑡

𝑒
(𝑠−𝜎)𝐴

𝐹 (𝜎,𝑋
𝜎
) 𝑑𝜎

+ ∫

𝑠

𝑡

𝑒
(𝑠−𝜎)𝐴

𝐺 (𝜎,𝑋
𝜎
) 𝑑𝑊 (𝜎) , 𝑠 ∈ [𝑡,∞) ,

𝑋
𝑡
= 𝑥 ∈ C,

𝑌 (𝑠) − 𝑌 (𝑇) + ∫

𝑇

𝑠

𝑍 (𝜎) 𝑑𝑊 (𝜎) + 𝜆∫

𝑇

𝑠

𝑌 (𝜎) 𝑑𝜎

= ∫

𝑇

𝑠

𝜓 (𝜎,𝑋
𝜎
, 𝑌 (𝜎) , 𝑍 (𝜎)) 𝑑𝜎, 0 ≤ 𝑠 ≤ 𝑇 < ∞,

(36)

for 𝑠 varying on the time interval [𝑡,∞) ⊂ [0,∞). As
in Section 2, we extend the domain of the solution setting
𝑋(𝑠, 𝑡, 𝑥) = 𝑥((𝑠 − 𝑡) ∨ (−𝜏)) for 𝑠 ∈ [−𝜏, 𝑡).

We make the following assumptions.

Hypothesis 2. Themapping 𝜓 : [0,∞)×C×𝐾×𝐿
2
(Ξ, 𝐾) →

𝐾 is Borelmeasurable such that, for all 𝑡 ∈ [0,∞),𝜓(𝑡, ⋅) : C×
𝐾 × 𝐿

2
(Ξ, 𝐾) → 𝐾 is continuous, and for some 𝐿

𝑦
, 𝐿

𝑧
> 0,

𝜇 ∈ 𝑅, and𝑚 ≥ 1,
󵄨󵄨󵄨󵄨𝜓 (𝑠, 𝑥, 𝑦1, 𝑧1) − 𝜓 (𝑠, 𝑥, 𝑦2, 𝑧2)

󵄨󵄨󵄨󵄨

≤ 𝐿
𝑦

󵄨󵄨󵄨󵄨𝑦1 − 𝑦2
󵄨󵄨󵄨󵄨 + 𝐿𝑧

󵄨󵄨󵄨󵄨𝑧1 − 𝑧2
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝜓 (𝑠, 𝑥, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨 ≤ 𝐿 (1 + |𝑥|

𝑚

𝐶
+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 + |𝑧|) ,

⟨𝜓 (𝑠, 𝑥, 𝑦
1
, 𝑧) − 𝜓 (𝑠, 𝑥, 𝑦

2
, 𝑧) , 𝑦

1
− 𝑦

2
⟩
𝐾
≥ 𝜇

󵄨󵄨󵄨󵄨𝑦1 − 𝑦2
󵄨󵄨󵄨󵄨
2

,

(37)

for every 𝑠 ∈ [0,∞), 𝑥 ∈ C, 𝑦, 𝑦
1
, 𝑦

2
∈ 𝐾, 𝑧, 𝑧

1
, and 𝑧

2
∈

𝐿
2
(Ξ, 𝐾).
We note that the third inequality in (37) follows from the

first one taking 𝜇 = −𝐿
𝑦
but that the third inequalitymay also

hold for different values of 𝜇.
Firstly, we consider the backward stochastic differential

equation

𝑌 (𝑠) − 𝑌 (𝑇) + ∫

𝑇

𝑠

𝑍 (𝜎) 𝑑𝑊 (𝜎) + 𝜆∫

𝑇

𝑠

𝑌 (𝜎) 𝑑𝜎

= ∫

𝑇

𝑠

𝜓 (𝜎,𝑋
𝜎
, 𝑌 (𝜎) , 𝑍 (𝜎)) 𝑑𝜎, 0 ≤ 𝑠 ≤ 𝑇 < ∞.

(38)

𝐾 is a Hilbert space, the mapping 𝜓 : [0,∞) × C × 𝐾 ×

𝐿
2
(Ξ, 𝐾) → 𝐾 is a given measurable function, 𝑋

⋅
is a

predictable process with values in another Banach space C,
and 𝜆 is a real number.

Theorem 6. Assume that Hypothesis 2 holds. Let 𝑝 > 2 and
𝛿 < 0 be given, and choose

𝑞 ≥ 𝑚𝑝, 𝜂 >
𝛿

𝑚
. (39)

Then, the following hold.

(i) For 𝑋
⋅
∈ 𝐿

𝑞

P
(Ω; 𝐿

𝑞

𝜂
(C)) and 𝜆 > −(𝛿 + 𝜇 − (𝐿

2

𝑧
/2)),

(38) has a unique solution in K
p
𝛿
that will be denoted

by (𝑌(𝑋
⋅
)(𝑠), 𝑍(𝑋

⋅
)(𝑠)), 𝑠 ≥ 0.

(ii) The estimate

𝐸sup
𝑠≥0

(𝑌 (𝑋
⋅
) (𝑠))

𝑝

𝑒
𝑝𝛿𝑠

+ 𝐸(∫

∞

0

𝑒
2𝛿𝜎󵄨󵄨󵄨󵄨𝑌(𝑋⋅

)(𝜎)
󵄨󵄨󵄨󵄨
2

𝑑𝜎)

𝑝/2

+ 𝐸(∫

∞

0

𝑒
2𝛿𝜎󵄨󵄨󵄨󵄨𝑍 (𝑋⋅

) (𝜎)
󵄨󵄨󵄨󵄨
2

𝑑𝜎)

𝑝/2

≤ 𝑐(1 +
󵄨󵄨󵄨󵄨𝑋⋅

󵄨󵄨󵄨󵄨
𝑚

𝐿
𝑞

P(Ω;𝐿
𝑞

𝜂
(C))

)
𝑝

(40)
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holds for a suitable constant 𝑐. In particular, 𝑌(𝑋
⋅
) ∈

𝐿
𝑝

P
(Ω; 𝐶

𝛿
(𝐾)).

(iii) The map 𝑋
⋅
→ (𝑌(𝑋

⋅
), 𝑍(𝑋

⋅
)) is continuous from

𝐿
𝑞

P
(Ω; 𝐿

𝑞

𝜂
(C)) toK𝑝

𝛿
, and 𝑋

⋅
→ 𝑌(𝑋

⋅
) is continuous

from 𝐿
𝑞

P
(Ω; 𝐿

𝑞

𝜂
(C)) to 𝐿𝑝

P
(Ω; 𝐶

𝛿
(𝐾)).

(iv) The statements of points (i), (ii), and (iii) still hold
true if the space 𝐿𝑞

P
(Ω; 𝐿

𝑞

𝜂
(C)) is replaced by the space

𝐿
𝑞

P
(Ω; 𝐶

𝜂
(C)).

Proof. The theorem is very similar to Proposition 3.11 in [24].
The only minor difference is that the mapping 𝜓 : [0,∞) ×

C×𝐾×𝐿
2
(Ξ, 𝐾) → 𝐾 is a givenmeasurable function, while

in [24], the measurable function 𝜓 is from𝐻 ×𝐾 × 𝐿
2
(Ξ, 𝐾)

to 𝐾; however, the same arguments apply.

Theorem 7. Assume that Hypothesis 1 holds and that
Hypothesis 2 holds true in the particular case 𝐾 = 𝑅. Then,
for every 𝑝 > 2, 𝑞, 𝛿 < 0 satisfying (39) with 𝜂 = 𝜂(𝑞),
and for every 𝜆 > 𝜆

󸀠

= −(𝛿 + 𝜇 − (𝐿
2

𝑧
/2)), there exists a

unique solution in H
𝑞

𝜂(𝑞)
× K

𝑝

𝛿
of (36) that will be denoted

by (𝑋(⋅, 𝑡, 𝑥), 𝑌(⋅, 𝑡, 𝑥), 𝑍(⋅, 𝑡, 𝑥)). Moreover, 𝑌(⋅, 𝑡, 𝑥) ∈

𝐿
𝑝

P
(Ω; 𝐶

𝛿
(𝑅)). The map (𝑡, 𝑥) → (𝑌(⋅, 𝑡, 𝑥), 𝑍(⋅, 𝑡, 𝑥)) is con-

tinuous from [0,∞)×C toK𝑝

𝛿
, and themap (𝑡, 𝑥) → 𝑌(⋅, 𝑡, 𝑥)

is continuous from [0,∞) ×C to 𝐿𝑝
P
(Ω; 𝐶

𝛿
(𝑅)).

Proof. We first notice that the system is decoupled; the first
does not contain the solution (𝑌, 𝑍) of the second one.There-
fore, under the assumption of Hypothesis 1 by Theorem 2,
there exists a unique solution 𝑋(⋅, 𝑡, 𝑥) and 𝑋

⋅
(𝑡, 𝑥) ∈ H

𝑞

𝜂(𝑞)

of the first equation. Moreover, from Theorem 4, it follows
that the map (𝑡, 𝑥) → 𝑋

⋅
(𝑡, 𝑥) is continuous from [0,∞)×C

toH𝑞

𝜂(𝑞)
.

Let 𝐾 = 𝑅; from Theorem 6, we have that there
exists a unique solution (𝑌(⋅, 𝑡, 𝑥), 𝑍(⋅, 𝑡, 𝑥)) ∈ K

𝑝

𝛿
of the

second equation, and the map 𝑋
⋅
→ (𝑌(𝑋

⋅
), 𝑍(𝑋

⋅
)) is

continuous from H
𝑞

𝜂(𝑞)
to K

𝑝

𝛿
while X

⋅
→ (Y(X

⋅
)) is

continuous fromH
𝑞

𝜂(𝑞)
to𝐿𝑝

P
(Ω; 𝐶

𝛿
(𝑅)).We have proved that

(𝑋(⋅, 𝑡, 𝑥), 𝑌(⋅, 𝑡, 𝑥), 𝑍(⋅, 𝑡, 𝑥)) ∈ H
𝑞

𝜂(𝑞)
× K

𝑝

𝛿
is the unique

solution of (36), and the other assertions follow from com-
position.

Remark 8. From Remark 5, by similar passages, we can show
that for fixed 𝑡 and for 𝑞 large enough, under the assumptions
of Theorem 7, the map 𝑥 → (𝑌(⋅, 𝑡, 𝑥), 𝑍(⋅, 𝑡, 𝑥)) is continu-
ous from 𝐿

𝑞

(Ω,C,F
𝑡
) toK𝑝

𝛿
(𝑡).

We also remark that the process 𝑋(⋅, 𝑡, 𝑥) is F
[𝑡,∞)

measurable, since C is separable Banach space, we have that
𝑋
⋅
(𝑡, 𝑥) is F

[𝑡,∞)
measurable; So that 𝑌(𝑡) is measurable

with respect to both F
[𝑡,∞)

and F
𝑡
, it follows that 𝑌(𝑡) is

deterministic.
For later use, we notice three useful identities; for 𝑡 ≤ 𝑠 <

∞, the equality, 𝑃-a.s.,

𝑋
𝑙
(𝑠, 𝑋

𝑠
(𝑡, 𝑥)) = 𝑋

𝑙
(𝑡, 𝑥) , 𝑙 ∈ [𝑠,∞) (41)

is a consequence of the uniqueness of the solution of (13).
Since the solution of the backward equation is uniquely

determined on an interval [𝑠,∞) by the values of the process
𝑋
⋅
on the same interval, for 𝑡 ≤ 𝑠 < ∞, we have, 𝑃-a.s.,

𝑌 (𝑙, 𝑠, 𝑋
𝑠
(𝑡, 𝑥)) = 𝑌 (𝑙, 𝑡, 𝑥) , for 𝑙 ∈ [𝑠,∞) ,

𝑍 (𝑙, 𝑠, 𝑋
𝑠
(𝑡, 𝑥)) = 𝑍 (𝑙, 𝑡, 𝑥) , for a.a. 𝑙 ∈ [𝑠,∞) .

(42)

Lemma 9 (see [30]). Let 𝐸 be a metric space with metric 𝑑,
and let 𝑓 : Ω → 𝐸 be strongly measurable. Then, there
exists a sequence 𝑓

𝑛
, 𝑛 ∈ 𝑁, of simple 𝐸-valued functions

(i.e., 𝑓
𝑛
isF/B(E)measurable and takes only a finite number

of values) such that for arbitrary 𝜔 ∈ Ω, the sequence
𝑑(𝑓

𝑛
(𝜔), 𝑓(𝜔)), 𝑛 ∈ 𝑁, is monotonically decreasing to zero.

Let now 𝑓 ∈ 𝐿
𝑞

(Ω,C). By Lemma 9 we get the existence
of a sequence of simple function 𝑓

𝑛
, 𝑛 ∈ 𝑁, such that

󵄨󵄨󵄨󵄨𝑓𝑛 (𝜔) − 𝑓 (𝜔)
󵄨󵄨󵄨󵄨 ↓ 0 for all 𝜔 ∈ Ω as 𝑛 → ∞. (43)

Hence, 𝑓
𝑛

→ 𝑓 in | ⋅ |
𝐿
𝑞
(Ω,C) by Lebesgue’s dominated

convergence theorem.
We are now in a position of showing the main result in

this section.

Theorem 10. Assume that Hypothesis 1 holds true and that
Hypothesis 2 holds in the particular case 𝐾 = 𝑅. Then, there
exist two Borel measurable deterministic functions 𝜐 : [t,∞) ×

C → 𝑅 and 𝜁 : [𝑡,∞) × C → Ξ
∗

= 𝐿(Ξ, 𝑅) =

𝐿
2
(Ξ, 𝑅), such that for 𝑡 ∈ [0,∞) and x ∈ C, the solution

(𝑋(𝑡, 𝑥), 𝑌(𝑡, 𝑥), 𝑍(𝑡, 𝑥)) of (36) satisfies

𝑌 (𝑠, 𝑡, 𝑥) = 𝜐 (𝑠, 𝑋
𝑠
(𝑡, 𝑥)) , 𝑍 (𝑠, 𝑡, 𝑥) = 𝜁 (𝑠, 𝑋

𝑠
(𝑡, 𝑥)) ,

𝑃-a.s., for a.a. 𝑠 ∈ [𝑡,∞) .

(44)

Proof. We apply the techniques introduced in [26, Proposi-
tion 3.2]. Let {𝑒

𝑖
} be a basis of Ξ∗, and let us define 𝑍𝑖,𝑁

=

((𝑍, 𝑒
𝑖
)
Ξ
∗ ∧𝑁) ∨ (−𝑁). Then, for every 0 ≤ 𝑡

1
< 𝑡

2
< ∞, Δ >

0, and 𝑥
1
, 𝑥

2
∈ C, we have that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸 ∫

𝑡
1
+Δ

𝑡
1

𝑍
𝑖,𝑁

(𝑠, 𝑡
1
, 𝑥

1
) 𝑑𝑠 − 𝐸∫

𝑡
2
+Δ

𝑡
2

𝑍
𝑖,𝑁

(𝑠, 𝑡
2
, 𝑥

2
) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐸∫

𝑡
2

𝑡
1

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑖,𝑁

(𝑠, 𝑡
1
, 𝑥

1
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ 𝐸∫

𝑡
1
+Δ

𝑡
2

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑖,𝑁

(𝑠, 𝑡
1
, 𝑥

1
) − 𝑍

𝑖,𝑁

(𝑠, 𝑡
2
, 𝑥

2
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ 𝐸∫

𝑡
2
+Δ

𝑡
1
+Δ

󵄨󵄨󵄨󵄨󵄨
𝑍
𝑖,𝑁

(𝑠, 𝑡
2
, 𝑥

2
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠
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≤ 2𝑁
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨 + Δ
1/2

𝑒
−𝛿(𝑡
1
+Δ)

×(𝐸(∫

∞

0

𝑒
2𝛿𝑠
󵄨󵄨󵄨󵄨󵄨
𝑍
𝑖,𝑁

(𝑠, 𝑡
1
, 𝑥

1
)−𝑍

𝑖,𝑁

(𝑠, 𝑡
2
, 𝑥

2
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠)

𝑝/2

)

1/𝑝

≤ 2𝑁
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨 + Δ
1/2

𝑒
−𝛿(𝑡
1
+Δ)

× (𝐸(∫

∞

0

𝑒
2𝛿𝑠󵄨󵄨󵄨󵄨𝑍 (𝑠, 𝑡1, 𝑥1)−𝑍 (𝑠, 𝑡2, 𝑥2)

󵄨󵄨󵄨󵄨
2

𝑑𝑠)

𝑝/2

)

1/𝑝

.

(45)

From Theorem 7, we have that the map (𝑡, 𝑥) → ∫
𝑡+Δ

𝑡

𝑍
𝑖,𝑁

(𝑠, 𝑡, 𝑥)𝑑𝑠 is continuous from [0,∞) × C to 𝑅. By
Remark 8, we also have that, for fixed 𝑡, the map 𝑥 →

𝐸∫
𝑡+Δ

𝑡

𝐸𝑍
𝑖,𝑁

(𝑠, 𝑡, 𝑥)𝑑𝑠 is continuous from 𝐿
𝑞

(Ω,C,F
𝑡
) to 𝑅

for 𝑞 large enough. Let us define

𝜁
𝑖,𝑁

(𝑡, 𝑥) = lim inf
𝑛→∞

𝑛𝐸∫

𝑡+(1/𝑛)

𝑡

𝑍
𝑖,𝑁

(𝑠, 𝑡, 𝑥) 𝑑𝑠,

𝑡 ∈ [0,∞) , 𝑥 ∈ C.

(46)

It is clear that 𝜁𝑖,𝑁 : [0,∞) ×C → 𝑅 is a Borel function.
We fix 𝑥 and 0 ≤ 𝑡 ≤ 𝑠 < ∞. For 𝑙 ∈ [𝑠,∞), we

denote 𝐸[𝑍𝑖,𝑁

(𝑙, 𝑠, 𝑦)]|
𝑦=𝑋
𝑠
(𝑡,𝑥)

, the random variable obtained
by composing𝑋

𝑠
(𝑡, 𝑥) with the map 𝑦 → 𝐸[𝑍

𝑖,𝑁

(𝑙, 𝑠, 𝑦)].
By Lemma 9, there exists a sequence of C-valued F

𝑠
-

measurable simple functions

𝑓
𝑚
: Ω 󳨀→ C, 𝑓

𝑚
=

𝑁
𝑚

∑

𝑘=1

ℎ
(𝑚)

𝑘
𝐼
{𝑓
𝑚
=ℎ
(𝑚)

𝑘
}
, 𝑁

𝑚
∈ 𝑁, (47)

where ℎ(𝑚)
1
, . . . , ℎ

(𝑚)

𝑚
are pairwise distinct andΩ = ⋃

𝑁
𝑚

𝑘=1
{𝑓

𝑚
=

ℎ
(𝑚)

𝑘
}, such that

󵄨󵄨󵄨󵄨𝑓𝑚 (𝜔) − 𝑋𝑠
(𝜔)

󵄨󵄨󵄨󵄨 ↓ 0 for all 𝜔 ∈ Ω as 𝑛 󳨀→ ∞. (48)

For any 𝐵 ∈ F
𝑠
, we have

∫
𝐵

∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑡, 𝑥) 𝑑𝑙𝑑𝑃

= ∫
𝐵

∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑠, 𝑋
𝑠
) 𝑑𝑙𝑑𝑃

= 𝐸𝐼
𝐵
∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑠, 𝑋
𝑠
) 𝑑𝑙

= lim
𝑚→∞

𝐸(𝐼
𝐵
∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑠, 𝑓
𝑚
) 𝑑𝑙)

= lim
𝑚→∞

𝑁
𝑚

∑

𝑘=1

𝐸(𝐼
𝐵
𝐼
{𝑓
𝑚
=ℎ
(𝑚)

𝑘
}
∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑠, ℎ
(𝑚)

𝑘
) 𝑑𝑙)

= lim
𝑚→∞

𝐸(𝐼
𝐵

𝑁
𝑚

∑

𝑘=1

𝐼
{𝑓
𝑚
=ℎ
(𝑚)

𝑘
}
)𝐸∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑠, ℎ
(𝑚)

𝑘
) 𝑑𝑙

= lim
𝑚→∞

𝐸𝐼
𝐵
(𝐸∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑠, 𝑦) 𝑑𝑙|
𝑦=𝑓
𝑚

)

= lim
𝑚→∞

∫
𝐵

(𝐸∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑠, 𝑦) 𝑑𝑙|
𝑦=𝑓
𝑚

)𝑑𝑃

= ∫
𝐵

(𝐸∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑠, 𝑦) 𝑑𝑙|
𝑦=𝑋
𝑠

)𝑑𝑃.

(49)

and we get that

𝜁
𝑖,𝑁

(𝑠, 𝑋
𝑠
(𝑡, 𝑥)) = lim inf

𝑛→∞

𝑛

× [𝐸∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑠, 𝑦) 𝑑𝑙|
𝑦=𝑋
𝑠
(𝑡,𝑥)

]

= lim inf
𝑛→∞

𝑛𝐸[∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑡, 𝑥) 𝑑𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

F
𝑠
] ,

𝑃-a.s.
(50)

Fix 𝑡 and 𝑥. Recalling that |𝑍𝑖,𝑁

| ≤ 𝑁, by the Lebesgue
theorem on differentiation, it follows that 𝑃-a.s.

lim
𝑛→∞

𝑛∫

𝑠+(1/𝑛)

𝑠

𝑍
𝑖,𝑁

(𝑙, 𝑡, 𝑥) 𝑑𝑙 = 𝑍
𝑖,𝑁

(𝑠, 𝑡, 𝑥) ,

for a.a. 𝑠 ∈ [𝑡,∞) .

(51)

By the boundedness of 𝑍𝑖,𝑁, applying the dominated conver-
gence theorem, we get that

𝜁
𝑖,𝑁

(𝑠, 𝑋
𝑠
(𝑡, 𝑥)) = 𝐸 [𝑍

𝑖,𝑁

(𝑠, 𝑡, 𝑥)
󵄨󵄨󵄨󵄨󵄨
F

𝑠
] = 𝑍

𝑖,𝑁

(𝑠, 𝑡, 𝑥) ,

𝑃-a.s., for a.a. 𝑠 ∈ [𝑡,∞) .

(52)

Now, we have proved that for every 𝑡, 𝑥,

𝜁
𝑖,𝑁

(𝑠, 𝑋
𝑠
(𝑡, 𝑥)) = 𝑍

𝑖,𝑁

(𝑠, 𝑡, 𝑥) ,

𝑃-a.s. for a.a. 𝑠 ∈ [𝑡,∞) ,

(53)

for every 𝑖, 𝑁. Let 𝐶 ⊂ [0,∞) × C denote the set of
pairs (𝑡, 𝑥) such that lim

𝑁→∞
𝜁
𝑖,𝑁

(𝑡, 𝑥) exists and the series
∑
∞

𝑖=1
(lim

𝑁→∞
𝜁
𝑖,𝑁

(𝑡, 𝑥))𝑒
𝑖
converges in Ξ∗. We define

𝜁 (𝑡, 𝑥) =

∞

∑

𝑖=1

( lim
𝑁→∞

𝜁
𝑖,𝑁

(𝑡, 𝑥)) 𝑒
𝑖
, (𝑡, 𝑥) ∈ 𝐶,

𝜁 (𝑡, 𝑥) = 0, (𝑡, 𝑥) ∉ 𝐶.

(54)
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Since 𝑍 satisfies

𝑍 (𝜔, 𝑠, 𝑡, 𝑥) =

∞

∑

𝑖=1

( lim
𝑁→∞

𝑍
𝑖,𝑁

(𝜔, 𝑠, 𝑡, 𝑥)) 𝑒
𝑖
, (55)

for every 𝜔, 𝑠, 𝑡, 𝑥. From (53), it follows that for every 𝑡, 𝑥, we
have (𝑠, 𝑋

𝑠
(𝜔, 𝑡, 𝑥)) ∈ 𝐶, 𝑃-a.s., for almost all 𝑠 ∈ [𝑡,∞), and

𝑍(𝑠, 𝑡, 𝑥) = 𝜁(𝑠, 𝑋
𝑠
(𝑡, 𝑥)) 𝑃-a.s., for a.a. 𝑠 ∈ [𝑡,∞).

We define 𝜐(𝑡, 𝑥) = 𝑌(𝑡, 𝑡, 𝑥); since 𝑌(𝑡, 𝑡, 𝑥) is deter-
ministic, so the map (𝑡, 𝑥) → 𝜐(𝑡, 𝑥) can be written as a
composition 𝜐(𝑡, 𝑥) = Γ

3
(Γ
2
(𝑡, Γ

1
(𝑡, 𝑥))) with

Γ
1
: [0,∞) ×C 󳨀→ 𝐿

𝑝

P
(Ω; 𝐶

𝛿
(𝑅)) ,

Γ
1
(𝑡, 𝑥) = 𝑌 (⋅, 𝑡, 𝑥) ,

Γ
2
: [0,∞) × 𝐿

𝑝

P
(Ω; 𝐶

𝛿
(𝑅)) 󳨀→ 𝐿

𝑝

(Ω, 𝑅) ,

Γ
2
(𝑡, 𝑉) = 𝑉 (𝑡) ,

Γ
3
: 𝐿

𝑝

(Ω, 𝑅) 󳨀→ 𝑅, Γ
3
𝜉 = 𝐸𝜉.

(56)

FromTheorem 7, it follows that Γ
1
is continuous. By

|𝑉(𝑡) − 𝑈(𝑠)|
𝐿
𝑝
(Ω,𝑅)

≤ |𝑉 (𝑡) − 𝑉 (𝑠)|
𝐿
𝑝
(Ω,𝑅)

+ 𝑒
−𝛿𝑝𝑠

|𝑉 − 𝑈|
|
𝐿

𝑝

P
(Ω;𝐶
𝛿
(𝑅))

,
(57)

we have that Γ
2
is continuous. It is clear that Γ

3
is continuous.

Then, themap (𝑡, 𝑥) → 𝜐(𝑡, 𝑥) is continuous from [0,∞)×C
to 𝑅; therefore, 𝜐(𝑡, 𝑥)is a Borel measurable function. From
uniqueness of the solution of (36), it follows that 𝑌(𝑠, 𝑡, 𝑥) =
𝜐(𝑠, 𝑋

𝑠
(𝑡, 𝑥)), 𝑃-a.s., for a.a. 𝑠 ∈ [𝑡,∞).

4. The Fundamental Relation

Let (Ω,F, 𝑃) be a given complete probability space with a
filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions. {𝑊(𝑡), 𝑡 ≥ 0}

is a cylindrical Wiener process in Ξ with respect to {F
𝑡
}
𝑡≥0

.
We will say that an {F}

𝑡≥0
-predictable process 𝑢 with values

in a given measurable space (𝑈,U) is an admissible control.
The function 𝑅 : [0,∞) × C × 𝑈 → Ξ is measurable
and bounded. We consider the following controlled state
equation:

𝑑𝑋
𝑢

(𝑠) = 𝐴𝑋
𝑢

(𝑠) 𝑑𝑠 + 𝐹 (𝑠, 𝑋
𝑢

𝑠
) 𝑑𝑠

+ 𝐺 (𝑠, 𝑋
𝑢

𝑠
) 𝑅 (𝑠, 𝑋

𝑢

𝑠
, 𝑢 (𝑠)) 𝑑𝑠 + 𝐺 (𝑠, 𝑋

𝑢

𝑠
) 𝑑𝑊 (𝑠) ,

𝑠 ∈ [𝑡,∞) ,

𝑋
𝑢

𝑡
= 𝑥.

(58)

Here, we assume that there exists a mild solution of (58)
which will be denoted by 𝑋𝑢

(𝑠, 𝑡, 𝑥) or simply by 𝑋𝑢

(𝑠). We
consider a cost function of the form:

𝐽 (𝑢) = 𝐸∫

∞

𝑡

𝑒
−𝜆𝑠

𝑔 (𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠)) 𝑑𝑠. (59)

Here, 𝑔 is function on [0,∞) × C × 𝑈 with real values. Our
purpose is to minimize the function 𝐽 over all admissible
controls.

We define in a classical way the Hamiltonian function
relative to the previous problem; for all 𝑡 ∈ [0,∞), 𝑥 ∈

C, and 𝑧 ∈ Ξ∗,

𝜓 (𝑡, 𝑥, 𝑧) = inf {𝑔 (𝑡, 𝑥, 𝑢) + 𝑧𝑅 (𝑡, 𝑥, 𝑢) : 𝑢 ∈ 𝑈} .

(60)

and the corresponding, possibly empty, set of minimizers

Γ (𝑡, 𝑥, 𝑧) = {𝑢 ∈ 𝑈, 𝑔 (𝑡, 𝑥, 𝑢) + 𝑧𝑅 (𝑡, 𝑥, 𝑢) = 𝜓 (𝑡, 𝑥, 𝑧)} .

(61)

We are now ready to formulate the assumptions we need.

Hypothesis 3. (i) 𝐴, 𝐹, and G verify Hypothesis 1.
(ii) (𝑈,U) is ameasurable space.Themap 𝑔 : [0,∞)×C×

𝑈 → 𝑅 is continuous and satisfies |𝑔(𝑡, 𝑥, 𝑢)| ≤ 𝐾
𝑔
(1+|𝑥|

𝑚
𝑔

𝐶
)

for suitable constants 𝐾
𝑔
> 0, 𝑚

𝑔
> 0 and all 𝑥 ∈ C,𝑢 ∈

𝑈. The map 𝑅 : [0,∞) × C × 𝑈 → Ξ is measurable, and
|𝑅(𝑡, 𝑠, 𝑢)| ≤ 𝐿

𝑅
for a suitable constant 𝐾

𝑅
> 0 and all 𝑥 ∈

C,𝑢 ∈ 𝑈, and𝑧 ∈ Ξ∗.

(iii)TheHamiltonian𝜓 defined in (60) satisfies the requi-
rements of Hypothesis 2 (with𝐾 = 𝑅).

(iv) We fix here 𝑝 > 2, q and 𝛿 < 0 satisfying (39) with
𝜂 = 𝜂(𝑞) and such that 𝑞 > 𝑚

𝑔
.

We are in a position to prove the main result of this
section.

Theorem11. Assume thatHypothesis 3 holds, and suppose that
𝜆 verifies

𝜆 > (−𝛿 − 𝜇 +
𝐿
2

𝑧

2
) ∨ (−𝛿 +

𝐿
2

𝑅

2 (𝑝 − 1)
)

∨ (
𝐿
2

𝑅
𝑚
𝑔

2 (𝑞 − 𝑚
𝑔
)
− 𝜂 (𝑞)𝑚

𝑔
) .

(62)

Let 𝜐, 𝜁 denote the function in the statement of Theorem 10.
Then, for every admissible control 𝑢 and for the corresponding
trajectory𝑋 starting at (𝑡, 𝑥), one has

𝐽 (𝑢) = 𝜐 (𝑡, 𝑥) + 𝐸∫

∞

𝑡

𝑒
−𝜆𝑠

[−𝜓 (𝑠, 𝑋
𝑢

𝑠
, 𝜁 (𝑠, 𝑋

𝑢

𝑠
)) + 𝜁 (𝑠, 𝑋

𝑢

𝑠
)

× 𝑅 (𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠)) + 𝑔 (𝑠, 𝑋

𝑢

𝑠
, 𝑢 (𝑠))] 𝑑𝑠.

(63)

Proof. Consider (58) in the probability space (Ω,F, 𝑃) with
filtration {F

𝑡
}
𝑡≥0

and with an {F
𝑡
}
𝑡≥0

-cylindrical Wiener
process {𝑊(𝑡), 𝑡 ≥ 0}. Let us define

𝑊
𝑢

(𝑠) = 𝑊 (𝑠) + ∫

𝑠

𝑡∧𝑠

𝑅 (𝜎,𝑋
𝑢

𝜎
, 𝑢 (𝜎)) 𝑑𝜎, 𝑠 ∈ [0,∞) ,

𝜌 (𝑇) = exp(∫
𝑇

𝑡

−𝑅
∗

(𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠)) 𝑑𝑊 (𝑠)

−
1

2
∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑅 (𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨
2

𝑑𝑠) .

(64)
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Let 𝑃𝑢 be the unique probability onF
[0,∞)

such that

𝑃
𝑢

|F
𝑇

= 𝜌 (𝑇) 𝑃|F
𝑇

. (65)

We notice that under 𝑃𝑢, the process𝑊𝑢 is aWiener process.
Let us denote by {F𝑢

𝑡
}
𝑡≥0

the filtration generated by𝑊𝑢, and
completed in the usual way. Relatively to 𝑊𝑢 (58) can be
rewritten as

𝑑𝑋
𝑢

(𝑠) = 𝐴𝑋
𝑢

(𝑠) 𝑑𝑠 + 𝐹 (𝑠, 𝑋
𝑢

𝑠
) 𝑑𝑠

+ 𝐺 (𝑠, 𝑋
𝑢

𝑠
) 𝑑𝑊

𝑢

(𝑠) , 𝑠 ∈ [𝑡,∞) ,

𝑋
𝑢

𝑡
= 𝑥.

(66)

In the space (Ω,F
[0,∞)

, {F𝑢

𝑡
}
𝑡≥0
, 𝑃

𝑢

), we consider the follow-
ing system of forward-backward equations:

𝑋
𝑢

(𝑠) = 𝑒
(𝑠−𝑡)𝐴

𝑥 (0) + ∫

𝑠

𝑡

𝑒
(𝑠−𝜎)𝐴

𝐹 (𝜎,𝑋
𝑢

𝜎
) 𝑑𝜎

+ ∫

𝑠

𝑡

𝑒
(𝑠−𝜎)𝐴

𝐺 (𝜎,𝑋
𝑢

𝜎
) 𝑑𝑊

𝑢

(𝜎) , 𝑠 ∈ [𝑡,∞) ,

𝑋
𝑢

𝑡
= 𝑥 ∈ C,

𝑌
𝑢

(𝑠) − 𝑌
𝑢

(𝑇) + ∫

𝑇

𝑠

𝑍
𝑢

(𝜎) 𝑑𝑊
𝑢

(𝜎) + 𝜆∫

𝑇

𝑠

𝑌
𝑢

(𝜎) 𝑑𝜎

= ∫

𝑇

𝑠

𝜓 (𝜎,𝑋
𝑢

𝜎
, 𝑍

𝑢

(𝜎)) 𝑑𝜎, 0 ≤ 𝑠 ≤ 𝑇 < ∞.

(67)

Applying the Itô formula to 𝑒−𝜆𝑠𝑌𝑢(𝑠) and writing the back-
ward equation in (67) with respect to the process𝑊, we get

𝑌
𝑢

(𝑠) + ∫

𝑇

𝑠

𝑒
−𝜆𝜎

𝑍
𝑢

(𝜎) 𝑑𝑊 (𝜎)

= ∫

𝑇

𝑠

𝑒
−𝜆𝜎

[𝜓 (𝜎,𝑋
𝑢

𝜎
, 𝑍

𝑢

(𝜎))

−𝑍
𝑢

(𝜎) 𝑅 (𝜎,𝑋
𝑢

𝜎
, 𝑢 (𝜎))] 𝑑𝜎

+ 𝑒
−𝜆𝑇

𝑌
𝑢

(𝑇) .

(68)

Recalling that 𝑅 is bounded, we get, for all 𝑟 ≥ 1 and some
constant 𝐶,

𝐸
𝑢

[𝜌(𝑇)
−𝑟

] = 𝐸
𝑢

[exp 𝑟 (∫
𝑇

𝑡

𝑅
∗

(𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠)) 𝑑𝑊

𝑢

(𝑠)

−
1

2
∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑅 (𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨
2

𝑑𝑠)]

= 𝐸
𝑢

[exp(∫
𝑇

𝑡

𝑟𝑅
∗

(𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠)) 𝑑𝑊

𝑢

(𝑠)

−
1

2
∫

𝑇

𝑡

𝑟
2󵄨󵄨󵄨󵄨𝑅 (𝑠, 𝑋

𝑢

𝑠
, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨
2

𝑑𝑠)

× exp 𝑟 (𝑟 − 1)
2

∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑅 (𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨
2

𝑑𝑠]

≤ 𝑒
(1/2)𝑟(𝑟−1)𝑇𝐿

2

𝑅𝐸
𝑢

× exp(∫
𝑇

𝑡

2𝑅
∗

(𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠)) 𝑑𝑊

𝑢

(𝑠)

−
1

2
∫

𝑇

𝑡

4
󵄨󵄨󵄨󵄨𝑅 (𝑠, 𝑋

𝑢

𝑠
, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨
2

𝑑𝑠)

= 𝑒
(1/2)𝑟(𝑟−1)𝑇𝐿

2

𝑅 .

(69)

It follows that

𝐸(∫

𝑇

𝑡

|𝑒
−𝜆𝑠

𝑍
𝑢

(𝑠)|
2

𝑑𝑠)

1/2

= 𝐸
𝑢

[(∫

𝑇

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜆𝑠

𝑍
𝑢

(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠)

1/2

𝜌
−1

]

≤ (𝐸
𝑢

∫

𝑇

𝑡

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜆𝑠

𝑍
𝑢

(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑠)

1/2

× (𝐸
𝑢

𝜌
−2

)
1/2

< ∞.

(70)

We conclude that the stochastic integral in (68) has zero
expectation. If we set 𝑠 = 𝑡 in (68) and we take expectation
with respect to 𝑃, we obtain

𝑒
−𝜆𝑇

𝐸𝑌
𝑢

(𝑇) − 𝑌
𝑢

(𝑡)

= 𝐸∫

𝑇

𝑡

𝑒
−𝜆𝜎

[−𝜓 (𝜎,𝑋
𝑢

𝜎
, 𝑍

𝑢

(𝜎))

+𝑍
𝑢

(𝜎) 𝑅 (𝜎,𝑋
𝑢

𝜎
, 𝑢 (𝜎))] 𝑑𝜎.

(71)

ByTheorem 7, 𝑌𝑢(⋅, 𝑡, 𝑥) ∈ 𝐿𝑝
P
(Ω; 𝐶

𝛿
(𝑅)), so that

𝐸
𝑢

|𝑌(𝑇, 𝑡, 𝑥)|
𝑝

≤ 𝐶 exp (−𝑝𝛿𝑇) . (72)

By the Hölder inequality, we have that for suitable constant
𝐶 > 0,

𝐸 |𝑌 (𝑇, 𝑡, 𝑥)| = 𝐸
𝑢

(𝜌
−1

(𝑇) |𝑌 (𝑇, 𝑡, 𝑥)|)

≤ 𝐸(𝜌
−𝑝/(𝑝−1)

)
(𝑝−1)/𝑝

𝐸(|𝑌 (𝑇, 𝑡, 𝑥)|
𝑝

)
1/𝑝

≤ 𝐶𝑒
((𝐿
2

𝑅
/2(𝑝−1))−𝛿))𝑇

.

(73)

From Theorem 2, we obtain 𝐸𝑢sup
𝑠≥𝑡
𝑒
𝜂𝑞𝑠

|𝑋
𝑢

𝑠
|
𝑞

< ∞; by the
similar process, we get that

𝐸
󵄨󵄨󵄨󵄨𝑋

𝑢

𝑇

󵄨󵄨󵄨󵄨
𝑚
𝑔

≤ 𝐶𝑒
(𝐿
2

𝑅
𝑚
𝑔
(2𝑞−2𝑚

𝑔
)
−1

−𝜂(𝑞)𝑚
𝑔
)𝑇

, (74)
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for suitable constant 𝐶 > 0 and

𝐸∫

∞

𝑡

𝑒
−𝜆𝜎 󵄨󵄨󵄨󵄨𝑔 (𝜎,𝑋

𝑢

𝜎
, 𝑢 (𝜎))

󵄨󵄨󵄨󵄨 𝑑𝜎 < ∞. (75)

Since 𝑌𝑢(𝑡, 𝑡, 𝑥) = 𝜐(𝑡, 𝑥) and 𝑍𝑢

(𝑠, 𝑡, 𝑥) = 𝜁(𝑠, 𝑋
𝑢

𝑠
(𝑡, 𝑥)), 𝑃-

a.s., for a.a. 𝑠 ∈ [𝑡,∞), we have that

𝑒
−𝜆𝑇

𝐸𝑌
𝑢

(𝑇) − 𝑣 (𝑡, 𝑥)

= 𝐸∫

𝑇

𝑡

𝑒
−𝜆𝜎

[−𝜓 (𝜎,𝑋
𝑢

𝜎
, 𝜁 (𝜎, 𝑋

𝑢

𝜎
))

+𝜁 (𝜎,𝑋
𝑢

𝜎
) 𝑅 (𝜎,𝑋

𝑢

𝜎
, 𝑢 (𝜎))] 𝑑𝜎.

(76)

Thus, adding and subtracting𝐸∫∞
𝑡

𝑒
−𝜆𝜎

𝑔(𝜎,𝑋
𝑢

𝜎
, 𝑢(𝜎))𝑑𝜎 and

letting 𝑇 → ∞, we conclude that

𝐽 (𝑢) = 𝜐 (𝑡, 𝑥)

+ 𝐸∫

∞

𝑡

𝑒
−𝜆𝑠

[−𝜓 (𝑠, 𝑋
𝑢

𝑠
, 𝜁 (𝑠, 𝑋

𝑢

𝑠
)) + 𝜁 (𝑠, 𝑋

𝑢

𝑠
) 𝑅

× (𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠)) + 𝑔 (𝑠, 𝑋

𝑢

𝑠
, 𝑢 (𝑠))] 𝑑𝑠.

(77)

The proof is finished.

We immediately deduce the following consequences.

Theorem 12. Let 𝑡 ∈ [0,∞) and 𝑥 ∈ C be fixed, assume
that the set-valued map Γ has nonempty values and it admits
a measurable selection Γ

0
: [0,∞)×C×Ξ∗ → 𝑈, and assume

that a control 𝑢(⋅) satisfies

𝑢 (𝑠) = Γ
0
(𝑠, 𝑋

𝑢

𝑠
, 𝜁 (𝑠, 𝑋

𝑢

𝑠
)) ,

𝑃-a.s., for almost every 𝑠 ∈ [𝑡,∞) .

(78)

Then, 𝐽(𝑡, 𝑥, 𝑢) = 𝜐(𝑡, 𝑥), and the pair (𝑢(⋅), 𝑋) is optimal for
the control problem starting from 𝑥 at time 𝑡.

Such a control can be shown to exist if there exists a solution
for the so-called closed-loop equation as follows:

𝑑𝑋 (𝑠)=𝐴𝑋 (𝑠) 𝑑𝑠 + 𝐹 (𝑠, 𝑋
𝑠
) 𝑑𝑠+𝐺 (𝑠, 𝑋

𝑠
)

×(𝑅 (𝑠, 𝑋
𝑠
, Γ

0
(𝑠, 𝑋

𝑠
, 𝜁 (𝑠, 𝑋

𝑠
))) 𝑑𝑠 + 𝑑𝑊 (𝑠)) ,

𝑠 ∈ [𝑡,∞) ,

𝑋
𝑡
= 𝑥,

(79)

since in this case, we can define an optimal control setting

𝑢 (𝑠) = Γ
0
(𝑠, 𝑋

𝑠
, 𝜁 (𝑠, 𝑋

𝑠
)) . (80)

However, under the present assumptions, we cannot guarantee
that the closed-loop equation has a solution in the mild
sense. To circumvent this difficulty, we will revert to a weak
formulation of the optimal control problem.

5. Existence of Optimal Control

We formulate the optimal control problem in the weak sense
following the approach of [31].Themain advantage is that we
will be able to solve the closed-loop equation in a weak sense,
and, hence, to find an optimal control, even if the feedback
law is nonsmooth.

We call (Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃,𝑊) an admissible setup, if

(Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃) is a filtered probability space satisfying the

usual conditions, and 𝑊 is a cylindrical 𝑃-Wiener process
with values in Ξ, with respect to the filtration {F

𝑡
}
𝑡≥0

.
By an admissible control system, we mean (Ω,F,

{F
𝑡
}
𝑡≥0
, 𝑃,𝑊, 𝑢,𝑋

𝑢

), where (Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃, 𝑊) is an

admissible setup, 𝑢 is an F
𝑡
-predictable process with values

in𝑈, and𝑋𝑢 is a mild solution of (58). An admissible control
system will be briefly denoted by (𝑊, 𝑢,𝑋𝑢

) in the following.
Our purpose is to minimize the cost functional

𝐽 (𝑢) = 𝐸∫

∞

𝑡

𝑒
−𝜆𝑠

𝑔 (𝑠, 𝑋
𝑢

𝑠
, 𝑢 (𝑠)) 𝑑𝑠, (81)

over all the admissible control system.
Our main result in this section is based on the solvability

of the closed-loop equation

𝑑𝑋 (𝑠) = 𝐴𝑋 (𝑠) 𝑑𝑠 + 𝐹 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + 𝐺 (𝑠, 𝑋

𝑠
)

× (𝑅 (𝑠, 𝑋
𝑠
, Γ

0
(𝑠, 𝑋

𝑠
, 𝜁 (𝑠, 𝑋

𝑠
))) 𝑑𝑠 +𝑑𝑊 (𝑠)) ,

𝑠 ∈ [𝑡,∞) ,

𝑋
𝑡
= 𝑥.

(82)

In the following sense, we say that 𝑋 is a weak solution of
(82) if there exists an admissible setup (Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃,𝑊)

and anF
𝑡
-adapted continuous process𝑋(𝑡)with values in𝐻,

which solves the equation in the mild sense; namely, 𝑃-a.s.,

𝑋 (𝑠) = 𝑒
(𝑠−𝑡)𝐴

𝑥 (0) + ∫

𝑠

𝑡

𝑒
(𝑠−𝜎)𝐴

𝐹 (𝜎,𝑋
𝜎
) 𝑑𝜎

+ ∫

𝑠

𝑡

𝑒
(𝑠−𝜎)𝐴

𝐺 (𝜎,𝑋
𝜎
) 𝑅

× (𝜎,𝑋
𝜎
, Γ

0
(𝜎,𝑋

𝜎
, 𝜁 (𝜎, 𝑋

𝜎
))) 𝑑𝜎

+ ∫

𝑠

𝑡

𝑒
(𝑠−𝜎)𝐴

𝐺 (𝜎,𝑋
𝜎
) 𝑑𝑊

𝜎
, 𝑠 ∈ [𝑡,∞) ,

(83)

𝑋
𝑡
= 𝑥. (84)

Theorem 13. Assume that Hypothesis 3 holds. Then, there
exists a weak solution of the closed-loop equation (82) which
is unique in law.



12 Abstract and Applied Analysis

Proof (uniqueness). Let 𝑋 be a weak solution of (82) in an
admissible setup (Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃,𝑊).We define

𝜌 (𝑇) = exp(∫
𝑇

𝑡

−𝑅
∗

(𝜎, 𝑋
𝜎
, Γ

0
(𝜎, 𝑋

𝜎
, 𝜁 (𝜎, 𝑋

𝜎
))) 𝑑𝑊 (𝜎)

−
1

2
∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑅 (𝜎,𝑋𝜎
, Γ

0
(𝜎, 𝑋

𝜎
, 𝜁 (𝜎, 𝑋

𝜎
)))
󵄨󵄨󵄨󵄨
2

𝑑𝜎) .

(85)

Since 𝑅 is bounded, the Girsanov theorem ensures that there
exists a probability measure 𝑃0 such that the process

𝑊
0

(𝑠) = 𝑊 (𝑠) + ∫

𝑠

𝑡∧𝑠

𝑅 (𝜎,𝑋
𝜎
, Γ

0
(𝜎, 𝑋

𝜎
, 𝜁 (𝜎, 𝑋

𝜎
))) 𝑑𝜎,

𝑠 ∈ [0,∞) ,

(86)

is a 𝑃0-Wiener process and

𝑃
0

|F
𝑇

= 𝜌 (𝑇) 𝑃|F
𝑇

. (87)

Let us denote by {F0

𝑡
}
𝑡≥0

the filtration generated by𝑊0 and
completed in the usual way. In (Ω,F

[0,∞)
, {F0

𝑡
}
𝑡≥0
, 𝑃

0

), 𝑋 is
a mild solution of

𝑑𝑋 (𝑠) = 𝐴𝑋 (𝑠) 𝑑𝑠 + 𝐹 (𝑡, 𝑋
𝑠
) 𝑑𝑠

+ 𝐺 (𝑠, 𝑋
𝑠
) 𝑑𝑊

0

(𝑠) , 𝑠 ∈ [𝑡,∞) ,

𝑋
𝑡
= 𝑥,

𝜌 (𝑇) = exp(∫
𝑇

𝑡

−𝑅
∗

(𝜎,𝑋
𝜎
, Γ

0
(𝜎, 𝑋

𝜎
, 𝜁 (𝜎, 𝑋

𝜎
)) 𝑑𝑊

0

(𝜎)

+ 1
2
∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝑅 (𝜎,𝑋𝜎
, Γ

0
(𝜎, 𝑋

𝜎
, 𝜁 (𝜎, 𝑋

𝜎
)))
󵄨󵄨󵄨󵄨
2

𝑑𝜎) .

(88)

By Hypothesis 3, the joint law of 𝑋 and 𝑊
0 is uniquely

determined by 𝐴, 𝐹, 𝐺, and 𝑥. Taking into account the last
displayed formula, we conclude that the joint law of 𝑋 and
𝜌(𝑇) under𝑃0 is also uniquely determined, and consequently
so is the law of 𝑋 under 𝑃. This completes the proof of the
uniqueness part.

Proof (existence). Let (Ω,F, 𝑃) be a given complete probabil-
ity space. {𝑊(𝑡), 𝑡 ≥ 0} is a cylindrical Wiener process on
(Ω,F, 𝑃)with values inΞ, and {F

𝑡
}
𝑡≥0

is the natural filtration
of {𝑊(𝑡), 𝑡 ≥ 0}, augmented with the family of𝑃-null sets. Let
𝑋(⋅) be the mild solution of

𝑑𝑋 (𝑠) = 𝐴𝑋 (𝑠) 𝑑𝑠 + 𝐹 (𝑠, 𝑋
𝑠
) 𝑑𝑠

+ 𝐺 (𝑠, 𝑋
𝑠
) 𝑑𝑊 (𝑠) , 𝑠 ∈ [𝑡,∞) ,

𝑋
𝑡
= 𝑥,

(89)

and by the Girsanov theorem, let 𝑃1 be the probability on Ω
under which

𝑊
1

(𝑠) = 𝑊 (𝑠) − ∫

𝑠

𝑡∧𝑠

𝑅 (𝜎,𝑋
𝜎
, Γ

0
(𝜎, 𝑋

𝜎
, 𝜁 (𝜎, 𝑋

𝜎
))) 𝑑𝜎

(90)

is aWiener process (notice that 𝑅 is bounded).Then,𝑋 is the
weak solution of (82) relatively to the probability 𝑃1 and the
Wiener process𝑊1.

Now, we can state the main result of this section.

Corollary 14. Assume that Hypothesis 3 holds true and 𝜆

verifies (62) Also, assume that the set-valued map Γ has
nonempty values and it admits a measurable selection Γ

0
:

[0,∞) ×C × Ξ
∗

→ 𝑈. Then, for every 𝑡 ∈ [0,∞) and x ∈ C
and for all admissible control system (𝑊, 𝑢,𝑋

𝑢

), one has

𝐽 (𝑢, 𝑡, 𝑥) ≥ 𝜐 (𝑡, 𝑥) , (91)

and the equality holds if

𝑢 (𝑠) = Γ
0
(𝑠, 𝑋

𝑢

𝑠
, 𝜁 (𝑠, 𝑋

𝑢

𝑠
)) ,

𝑃 − 𝑎.𝑠. 𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒𝑣𝑒𝑟𝑦 𝑠 ∈ [𝑡,∞) .

(92)

Moreover, from Theorem 13, it follows that the closed-
loop equation (82) admits a weak solution (Ω,F,
{F

𝑡
}
𝑡≥0
, 𝑃,𝑊,𝑋) which is unique in law, and setting

𝑢 (𝑠) = Γ
0
(𝑠, 𝑋

𝑠
, 𝜁 (𝑠, 𝑋

𝑠
)) , (93)

we obtain an optimal admissible control system (𝑊, 𝑢,𝑋).

6. Applications

In this section, we present a simple application of the previous
results. We consider the stochastic delay partial differential
equation in the bounded domain 𝐵 ⊂ 𝑅

𝑛 with smooth
boundary 𝜕𝐵 as follows:

𝑑𝑧
𝑢

(𝑡, 𝜉) = Δ𝑧
𝑢

(𝑡, 𝜉) 𝑑𝑡 + 𝑓 (𝑡, 𝑧
𝑢

𝑡
(𝜉)) 𝑑𝑡

+

𝑑

∑

𝑖=1

𝑔
𝑖
(𝑡, 𝑧

𝑢

𝑡
(𝜉)) [𝑟

𝑖

(𝜉) 𝑢
𝑖

(𝑡) 𝑑𝑡 + 𝑑𝑊
𝑖

(𝑡)] ,

𝑧
𝑢

0
(𝜃, 𝜉) = 𝑥 (𝜃, 𝜉) , 𝜉 ∈ 𝐵, 𝜃 ∈ [−1, 0] ,

𝑧
𝑢

(𝑡, 𝜉) = 0, 𝑡 ∈ [0,∞) , 𝜉 ∈ 𝜕𝐵.

(94)

Here,𝑊 = (𝑊
1

,𝑊
2

, . . . ,𝑊
𝑑

) is a standardWiener process in
𝑅
𝑑, and the functions 𝑓 : [0, +∞) × 𝐶([−1, 0], 𝑅) → 𝑅 and
𝑔
𝑖
: [0, +∞) × 𝐶([−1, 0], 𝑅) → 𝑅 are Lipschitz continuous

and bounded. Setting 𝑈 as a bounded subset of 𝑅𝑑, Ξ = 𝑅
𝑑,

𝐻 = 𝐿
2

(𝐵), and 𝑥 ∈ 𝐶([−1, 0],𝐻). We define 𝐹 and 𝐺 as
following:

𝐹 (𝑡, 𝑥) (𝜉) = 𝑓 (𝑡, 𝑥 (𝜉)) ,

(𝐺 (𝑡, 𝑥) 𝑧) (𝜉) =

𝑑

∑

𝑖=1

𝑔
𝑖
(𝑡, 𝑥 (𝜉)) 𝑧

𝑖

(𝜉) ,

𝜉 ∈ 𝐵, 𝑥 ∈ 𝐶 ([−1, 0] ,𝐻) , 𝑧 ∈ 𝐿 (Ξ,𝐻) ,

(95)

and let 𝐴 denote the Laplace operator Δ in 𝐿
2

(𝐵); with
domain𝑊2,2

(𝐵)⋂𝑊
1,2

0
(𝐵) then, (94) has the form (58) and

Hypothesis 1 holds.
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Let us consider the optimal control problem associated
with the cost

𝐽 (𝑢) = 𝐸∫

∞

0

𝑒
−𝜆𝑡

[∫
𝐵

𝜎 (𝜉, 𝑧
𝑢

𝑡
(𝜉)) 𝑑𝜉 + 𝑢

2

(𝑡)] 𝑑𝑡, (96)

where 𝜆 verifies (62) and 𝜎 : 𝐶([−1, 0], 𝑅) × 𝑈 → [0,∞) is
a bounded measurable function. Define 𝑔 : 𝐶([−1, 0],𝐻) ×

𝑈 → [0,∞) and 𝑅 : 𝐶([−1, 0],𝐻) × 𝑈 → Ξ by
𝑔(𝑦, 𝑢) = ∫

𝐵

𝜎(𝑡, 𝑦(𝜉), 𝑢)𝑑𝜉 + 𝑢
2 and 𝑅(𝑦, 𝑢) = (∫

𝐵

𝑟
1

(𝜉)𝑢
1

𝑑𝜉,

∫
𝐵

𝑟
2

(𝜉)𝑢
2

𝑑𝜉, . . . , ∫
𝐵

𝑟
𝑑

(𝜉)𝑢
𝑑

𝑑𝜉) for 𝑦 ∈ 𝐶([−1, 0],𝐻), 𝑢 =

(𝑢
1

, 𝑢
2

, . . . , 𝑢
𝑑

) ∈ 𝑈, respectively. It can be easily verified
that Hypothesis 3 holds true, and the set-valued map Γ has
nonempty values and it admits a measurable selection Γ

0
:

[0,∞) × C × Ξ
∗

→ 𝑈. Then, the closed-loop equation
(82) admits a weak solution (Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃,𝑊, 𝑢, 𝑧

⋅
(⋅)), and

setting

𝑢 (𝑠) = Γ
0
(𝑠, 𝑧

𝑠
(⋅) , 𝜁 (𝑠, 𝑧

𝑠
(⋅))) , (97)

we obtain an optimal admissible control system (𝑊, 𝑢, 𝑧(⋅)).
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pactification methods in the control of degenerate diffusions,”
Stochastics, vol. 20, pp. 169–219, 1987.

[4] M. Nisio, “Optimal control for stochastic partial differential
equations and viscosity solutions of Bellman equations,”Nagoya
Mathematics Journal, vol. 123, pp. 13–37, 1991.

[5] M. Nisio, “On sensitive control for stochastic partial differential
equations,” in Stochastic Analysis on Infinite Dimensional Spaces
Proceedings of the U.S. Japan Bilateral Seminar, H. Kunita et al.,
Ed., vol. 310 of Pitman Research Notes Mathematical Series, pp.
231–241, Longman Scientific and Technical, Baton Rouge, La,
USA, January 1994.
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