
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 804964, 11 pages
http://dx.doi.org/10.1155/2013/804964

Research Article
Generation and Modified Projective Synchronization for
a Class of New Hyperchaotic Systems

Nuo Jia and Tao Wang

School of Mathematical Sciences, Harbin Normal University, Harbin 150025, China

Correspondence should be addressed to Tao Wang; wangtaohrb@gmail.com

Received 24 November 2012; Revised 7 March 2013; Accepted 13 March 2013

Academic Editor: Tianshou Zhou

Copyright © 2013 N. Jia and T. Wang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A class of new hyperchaotic systems with different nonlinear terms is proposed, and the existence of hyperchaos is exhibited by
calculating their Lyapunov exponent spectrums. Then the universal theories on modified projective synchronization (MPS) of
the systems with general form which linearly depends on unknown parameters or time-varying parameters, are investigated by
presenting an adaptive control strategy together with parameter update laws and a nonlinear control scheme based on Lyapunov
stability theory. Subsequently, the presented control methods are applied to achieve MPS of the new hyperchaotic systems, and
their effectiveness is illustrated by numerical simulations.

1. Introduction

Since the pioneer work by Pecora and Corroll in 1990 [1],
chaos synchronization, which refers to a process wherein two
(or many) chaotic systems (either equivalent or nonequiva-
lent) adjust a given property of their motion to a common
behavior due to a coupling or to a forcing (periodical or
noisy) [2], has become an active research subject for its exten-
sive potential application in physics, secure communication,
chemical reactor, biological networks, and so on. Up to now,
many different types of synchronization have been presented
such as complete synchronization [1], phase synchronization
[3], lag synchronization [4], generalized synchronization [5],
and projective synchronization [6]. Among them, projective
synchronization is the most noticeable one with the essence
that the drive and response systems could be synchronized
up to a scaling factor 𝛼 (a proportional relation), because it
has some topological invariants, such as Lyapunov exponents
(LEs) and fractional dimensions which is understood well,
and it could be used to extend binary digital to variety M-
ary digital communications for gettingmore secure and faster
communications. By the way, generalized projective synchro-
nization is its extension in general classes of chaotic systems
including nonpartially linear systems [7]. Recently, a new
synchronization termed as modified projective synchroniza-
tion (MPS) [8] was presented, of which the different scaling

factors in a scaling matrix 𝐻 can be arbitrarily designed to
different state variables. It can be seen that MPS encompasses
the complete synchronization, antisynchronization, and pro-
jective synchronization when scaling matrix 𝐻 equals to 𝐼,
−𝐼, and 𝛼𝐼 (𝛼 is a constant), respectively. Consequently, it has
more broad prospect in practical applications.

A lot of work has been done around these different chaos
synchronization phenomena, which can be summarized to
two aspects as generation of chaotic systems and synchro-
nization schemes to achieve chaos synchronization. On the
one hand, since Rössler first introduced the hyperchaotic
dynamical system in 1979 [9], some hyperchaotic systems are
constructed by adding state feedback to 3D chaotic systems
such as Lorenz system, Chen system, and Lü system, and have
been investigated to some degree [10–13]. In comparisonwith
low-dimensional chaotic system, hyperchaotic system with
higher than or equal to four dimension has two or more pos-
itive Lyapunov exponents, richer andmore complex dynami-
cal behaviors which appears inmore directional separation of
phase orbits, andmuchwider application. So, from a practical
point of view, some scholars devote to applying hyperchaotic
system to generate more unpredictable and noise-like chaotic
signals and considering synchronization between two hyper-
chaotic systems or between chaotic system and hyperchaotic
system [14–20].However, it is still an interesting task to derive
4D or higher-dimensional hyperchaotic systems.
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On the other hand, various synchronization schemes
have been proposed such as linear and nonlinear feedback
synchronization method [21–24], adaptive synchronization
method [25–31], time-delay feedback method [32, 33], back-
stepping control method [34, 35], sliding mode control
method [36, 37], and impulsive synchronization method [38,
39]. Among them, adaptive control and nonlinear control
methods are often used to solve the problems on synchroniza-
tion of systems with unknown parameters or time-varying
parameters, which are usually encountered in practical appli-
cations. However, most of them mentioned above have con-
centrated on achieving complete synchronization of low-
dimensional and identical chaotic systems, while synchro-
nization schemes for identical or nonidentical hyperchaotic
systems have not been investigated extensively enough. As far
as we know within our range, there is few literatures on MPS
of nonidentical hyperchaotic systems. Therefore, designing
effective control schemes to achieve MPS of two hyperchao-
tic systems with unknown parameters or time-varying para-
meters is an interesting and challenging job for both theory
and practical applications.

Motivated by the aforementioned aspects, we first pro-
pose a class of new systemswith different nonlinear terms and
show the existence of hyperchaos in certain parameter ranges
by calculating their Lyapunov exponent spectrums. After
that, by presenting an adaptive control strategy and a nonlin-
ear control scheme based on Lyapunov stability theory, the
theories on MPS of the systems with general form which lin-
early depends on unknown parameters or time-varying para-
meters, respectively, are investigated. Finally, the presented
controlmethods are applied to achieveMPSof the newhyper-
chaotic systems, and their effectiveness is illustrated by num-
erical simulations. The organization of this paper is as fol-
lows. In Section 2, a class of new hyperchaotic systems is con-
structed and the existence of hyperchaos is shown. In Section
3, theories onMPS of the systemswith general form are given.
At last, MPS of our presented hyperchaotic systems together
with numerical simulations is shown in Section 4.

2. The Description of a Class of
New Hyperchaotic Systems

There are two important requisites to obtain hyperchaos. One
that is theminimal dimension of the phase space that embeds
a hyperchaotic attractor should be at least four, and the other
that is the number of terms in the coupled equations giving
rise to instability should be at least two, of which at least one
should have a nonlinear function [9]. According to the two
points, a class of new 4D hyperchaotic systems is proposed
by modifying the nonlinear terms of the Lorenz system and
adding state feedback to it. They are described as
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Table 1: New hyperchaotic systems.
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linear continuous function, which can be set to obtain differ-
ent hyperchaotic systems. We set 𝑇, 𝑅 as nonlinear quadratic
functions and 𝑄 as 𝑥
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to show systems with

relatively simple forms. Subsequently, six different nonlinear
systems are listed in Table 1.
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In case of 𝑎 = 20, 𝑏 = 35, 𝑐 = 3, and 𝑑 = 10, it has
four equilibrium points, and the types of which can be deter-
mined by calculating the eigenvalues of the Jacobianmatrices,
respectively. The detailed descriptions are shown in Table 2,
whereUSNPandUSFPmeanunstable saddle-node point and
unstable saddle-focus point, respectively.

Furthermore, the chaotic attractor is shown in Figure 1.
Combined with calculated Lyapunov Exponents (LEs) 𝜆

1
=

1.0677, 𝜆
2
= 0.0994, 𝜆

3
= 0, 𝜆

4
= −23.1526, and Lyapunov

Dimension (LD) 3.0498, respectively, we can say that system
(2) is hyperchaotic. These analyses suggest that system (2)
has rich dynamics with fixed parameters. In order to give
the existence of chaos and hyperchaos in different parameter
ranges, the Lyapunov exponent spectrum versus parameters
𝑎, 𝑏, 𝑐, and 𝑑 for the first three LEs 𝜆

1
, 𝜆
2
, and 𝜆

3
is shown,

respectively, in Figure 2, where it can be clearly seen how it
evolves from negative to positive values. It is noted that the
system (2) is hyperchaotic when 𝑏 ∈ (12, 75) and chaotic
when 𝑏 ∈ (75, 2000). The Largest Lyapunov exponent is 𝜆 =

10.105 when 𝑏 = 2000, which suggests it has a big chaotic
range and complex dynamics.

The similar analyses for the other five systems can also be
gotten naturally. To highlight the existence of hyperchaos, we
only exhibit the Lyapunov exponent spectrums of the systems
(b)–(f) versus 𝑏 for 𝜆

1
, 𝜆
2
, and 𝜆

3
when 𝑎 = 20, 𝑐 = 3, and

𝑑 = 10 in Figure 3. It can be concluded from Figures 2 and 3
that the six new different systems are all hyperchaotic when
𝑏 ∈ (20, 60).
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Figure 1: The chaotic attractor of system (2) with 𝑎 = 20, 𝑏 = 35, 𝑐 = 3, and 𝑑 = 10.
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Figure 2: The Lyapunov exponent spectrum of system (2) versus parameters 𝑎, 𝑏, 𝑐, and 𝑑 for the first three LEs.



4 Abstract and Applied Analysis

Table 2: The related descriptions on the equilibrium points of system (2) with 𝑎 = 20, 𝑏 = 35, 𝑐 = 3, and 𝑑 = 10.

Equilibrium points Eigenvalues of Jacobian matrices Equilibrium point types
𝑃
0
(0, 0, 0, 0) −37.8819, 18.5980, 0.2839, −3 USNP

𝑃
1
(1.1573, 1.1573, 4.4641, 10) −23.0754, 0.5377 ± 15.9483𝑖, 1.1573 USFP

𝑃
2
(−0.3037, −0.3037, 0.3075, 10) −37.0605, 17.5330, −2.4725, −0.3037 USNP

𝑃
3
(−0.8535, −0.8535, 2.4284, 10) −30.2706, 4.1353 ± 7.4791𝑖, −0.8535 USFP
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Figure 3: The Lyapunov exponent spectrum of system (b)–(f) versus 𝑏 for 𝜆
1
, 𝜆
2
, and 𝜆

3
when 𝑎 = 20, 𝑐 = 3, and 𝑑 = 10.

3. Modified Projective Synchronization of
General Chaotic Systems with the Same
Structure to the New Hyperchaotic Systems

3.1.The Preliminaries. Consider the following drive-response
systems
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Definition 1. For the drive system (3) and the response system
(4), they are said to be modified projective synchronization
(MPS) if there exists a nonzero constant matrix 𝐻 =
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scaling matrixand ℎ
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2
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𝑛
are nonzero scaling factors

which could be a predefined value or any desired value to be
directed by a feedback control.

Remark 2. When the scaling matrix𝐻 equals to 𝐼, −𝐼, and 𝛼𝐼

(𝛼 is a constant), respectively, itmeans complete synchroniza-
tion, antisynchronization, and projective synchronization,
respectively.

Aiming at considering MPS between two of the systems
(a)–(f), we first investigate the theories on MPS of general
chaotic systems with the same structure to them in this
part. Consider an 𝑛-dimensional continuous chaotic (hyper-
chaotic) system as drive system in the form of
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vector. It can be seen that the nonlinear dynamical system (5)
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linearly depends on the parameter vector, and systems (a)–
(f) all have the same system structure, so do many well-
known hyperchaotic systems, such as hyperchaotic Lorenz,
Lü systems, and Rössler system. Accompanied with the drive
system (5), a controlled response system is given by

̇𝑦 = 𝑔 (𝑦) + 𝐺 (𝑦) 𝜃
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tor, and 𝑢 ∈ 𝑅
𝑛 is the control vector to be determined. Let

𝑒 = 𝑦−𝐻𝑥denote the error state vector, thus the error dynam-
ical system has the form
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where 𝑄(𝑒, 𝑥) = 𝑔(𝑒 + 𝐻𝑥) − 𝐻𝑓(𝑥) and 𝐻 = diag(ℎ
1
, ℎ
2
,

. . . , ℎ
𝑛
). So the global and asymptotical stability of system (7)

means that systems (5) and (6) achieve MPS.

3.2. MPS between Systems (5) and (6) with Unknown or
Time-Varying Parameters. Usually, the system parameters
are partially or entirely unknown in advance in practical
applications, and adaptive controller is often used to solve the
problem for its adaptive ability. So one of our objects is to
design an adaptive synchronization scheme with parameter
update laws
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Theorem 3. For given nonzero scaling factors ℎ
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namely, �̇� is negative definite. It results in that the drive-
response systems (5) and (6) achieve MPS according to
Lyapunov stability theorem.

The other object is to achieve MPS between chaotic sys-
tems with time-varying parameters which are also frequently
encountered in practical applications. Suppose parameter
vectors 𝜃
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In addition, since as far as we know, most hyperchaotic
systems in the existing literatures such as hyperchaotic
Lorenz system, hyperchaotic Lü system, and Rössler system,
as well as the class of new systems (1) proposed here have
the vectorial form (5) with diagonal 𝐹(𝑥), MPS of this kind
of general hyperchaotic systems is discussed in the following
theorem. It is noted that 𝐴 = (|𝑎

𝑖𝑗
|)
𝑛×𝑛

denotes a matrix,
each element of which is the absolute value of corresponding
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Theorem 4. For given nonzero scaling factors ℎ
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1, 2, . . . , 𝑛), the drive-response systems (5) and (6) with time-
varying parameters and diagonal 𝐹(𝑥) and𝐺(𝑒, 𝑥) can achieve
MPS if the nonlinear control strategy is designed as
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where 𝑃 is a known positive definite matrix and sgn(𝑒) denote
a vector with elements sgn(𝑒

𝑖
), 𝑖 = 1, 2, . . . , 𝑛.

Proof. According to (16), we rewrite the error system (7) as

̇𝑒 = − 𝑃𝑒 − 𝐻𝐹 (𝑥) (𝜃
1
−

̃
𝜃
1
) + 𝐺 (𝑒, 𝑥) (𝜃

2
−

̃
𝜃
2
)

− 𝐺 (𝑒, 𝑥)Θ
2
sgn (𝑒) − 𝐻𝐹 (𝑥)Θ

1
sgn (𝑒) .

(17)
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Constructing a Lyapunov function 𝑉 = 𝑒
𝑇
𝑒/2 and differenti-

ate 𝑉 with respect to time along the solution of (17), we have

�̇� (𝑡) = 𝑒
𝑇

̇𝑒

= 𝑒
𝑇
(−𝑃𝑒 − 𝐻𝐹 (𝑥) (𝜃

1
−

̃
𝜃
1
) + 𝐺 (𝑒, 𝑥) (𝜃

2
−

̃
𝜃
2
)

−𝐺 (𝑒, 𝑥)Θ
2
sgn (𝑒) − 𝐻𝐹 (𝑥)Θ

1
sgn (𝑒))

= − 𝑒
𝑇
𝑃𝑒 − 𝑒

𝑇
𝐻𝐹 (𝑥) (𝜃

1
−

̃
𝜃
1
) + 𝑒
𝑇
𝐺 (𝑒, 𝑥) (𝜃

2
−

̃
𝜃
2
)

− 𝑒
𝑇
𝐺 (𝑒, 𝑥)Θ

2
sgn (𝑒) − 𝑒

𝑇
𝐻𝐹 (𝑥)Θ

1
sgn (𝑒)

≤ − 𝑒
𝑇
𝑃𝑒 +






𝑒
𝑇
𝐻𝐹 (𝑥) (𝜃

1
−

̃
𝜃
1
)






− 𝑒
𝑇
𝐻𝐹 (𝑥)Θ

1
sgn (𝑒)

+






𝑒
𝑇
𝐺 (𝑒, 𝑥) (𝜃

2
−

̃
𝜃
2
)






− 𝑒
𝑇
𝐺 (𝑒, 𝑥)Θ

2
sgn (𝑒)

≤ − 𝑒
𝑇
𝑃𝑒 + 𝑒

𝑇
𝐻𝐹 (𝑥)Θ

1

− 𝑒
𝑇
𝐻𝐹 (𝑥)Θ

1
sgn (𝑒) + 𝑒

𝑇
𝐺 (𝑒, 𝑥)Θ

2

− 𝑒
𝑇
𝐺 (𝑒, 𝑥)Θ

2
sgn (𝑒) .

(18)

It results in �̇� = −𝑒
𝑇
𝑃𝑒 ≤ 0 because

𝑒
𝑇
𝐻𝐹 (𝑥)Θ

1
sgn (𝑒) = Θ

1

𝑛

∑

𝑖=1

𝐻
𝑖𝑖
𝐹(𝑥)
𝑖𝑖
𝑒
𝑖
sgn (𝑒)

= Θ
1

𝑛

∑

𝑖=1

𝐻
𝑖𝑖
𝐹(𝑥)
𝑖𝑖





𝑒
𝑖





= 𝑒
𝑇
𝐻𝐹 (𝑥)Θ

1
,

𝑒
𝑇
𝐺 (𝑒, 𝑥)Θ

2
sgn (𝑒) = Θ

2

𝑛

∑

𝑖=1

𝐺(𝑒, 𝑥)
𝑖𝑖
𝑒
𝑖
sgn (𝑒

𝑖
)

= Θ
2

𝑛

∑

𝑖=1

𝐺(𝑒, 𝑥)
𝑖𝑖





𝑒
𝑖





= 𝑒
𝑇
𝐺 (𝑒, 𝑥)Θ

2
.

(19)

Based on Lyapunov stability theory, the system (17) converges
to 𝑂(0, 0, 0, 0) as 𝑡 → ∞, which means that the two hyper-
chaotic systems achieve MPS asymptotically. This completes
the proof.

4. MPS of the New Hyperchaotic Systems and
Numerical Simulations

The presented theories are applied to MPS between two of
the new hyperchaotic systems in this part. Set system (c) and
system (f) as drive-response systems, which have the forms

�̇�
1
= 𝑎
1
(𝑥
2
− 𝑥
1
) ,

�̇�
2
= 𝑏
1
𝑥
1
− 10𝑥

1
𝑥
3
+ 𝑥
4
+ 𝑥
2
,

�̇�
3
= −𝑐
1
𝑥
3
+ 10𝑥

1
𝑥
2
,

�̇�
4
= −𝑑
1
𝑥
2
+ 𝑥
2
𝑥
4
,

(20)

̇𝑦
1
= 𝑎
2
(𝑦
2
− 𝑦
1
) + 𝑢
1
,

̇𝑦
2
= 𝑏
2
𝑦
1
− 10𝑦

1
𝑦
3
+ 𝑦
4
+ 𝑦
2
+ 𝑢
2
,

̇𝑦
3
= −𝑐
2
𝑦
3
+ 10𝑦

1
𝑦
2
+ 𝑢
3
,

̇𝑦
4
= −𝑑
2
𝑦
1
+ 𝑦
1
𝑦
3
+ 𝑢
4
,

(21)

where 𝑎
1
, 𝑏
1
, 𝑐
1
, and 𝑑

1
and 𝑎

2
, 𝑏
2
, 𝑐
2
, and 𝑑

2
are unknown

system parameters which need to be estimated. Their vector
forms can be, respectively, described as

(

�̇�
1

�̇�
2

�̇�
3

�̇�
4

) = (

0

−10𝑥
1
𝑥
3
+ 𝑥
4
+ 𝑥
2

10𝑥
1
𝑥
2

𝑥
2
𝑥
4

)

+ (

𝑥
2
− 𝑥
1

0 0 0

0 𝑥
1

0 0

0 0 −𝑥
3

0

0 0 0 −𝑥
2

)(

𝑎
1

𝑏
1

𝑐
1

𝑑
1

),

(22)

(

̇𝑦
1

̇𝑦
2

̇𝑦
3

̇𝑦
4

) = (

0

−10𝑦
1
𝑦
3
+ 𝑦
4
+ 𝑦
2

10𝑦
1
𝑦
2

𝑦
1
𝑦
3

)

+ (

𝑦
2
− 𝑦
1

0 0 0

0 𝑦
1

0 0

0 0 −𝑦
3

0

0 0 0 −𝑦
1

)(

𝑎
2

𝑏
2

𝑐
2

𝑑
2

)

+ (

𝑢
1

𝑢
2

𝑢
3

𝑢
4

),

(23)

where (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
)
𝑇 is the controller to be determined. Let

positive definite matrix𝑀 be

𝑀 = (

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

) , (24)

then according to (9), (10), and (11), we get the controller

𝑢
1
= −𝑒
1
−

̇
�̂�
2
(𝑒
2
− 𝑒
1
+ ℎ
2
𝑥
2
− ℎ
1
𝑥
1
) +

̇
�̂�
1
ℎ
1
(𝑥
2
− 𝑥
1
) ,

𝑢
2
= − 2𝑒

2
− 𝑒
4
+ 10 (𝑒

1
+ ℎ
1
𝑥
1
) (𝑒
3
+ ℎ
3
𝑥
3
)

− (𝑒
4
+ ℎ
4
𝑥
4
) − 10ℎ

2
𝑥
1
𝑥
3

+ ℎ
2
𝑥
4
−

̇
̂
𝑏
2
(𝑒
1
+ ℎ
1
𝑥
1
) +

̇
̂
𝑏
1
ℎ
2
𝑥
1
,
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𝑢
3
= − 𝑒

3
− 10 (𝑒

1
+ ℎ
1
𝑥
1
) (𝑒
2
+ ℎ
2
𝑥
2
)

+ 10ℎ
3
𝑥
1
𝑥
2
+

̇
�̂�
2
(𝑒
3
+ ℎ
3
𝑥
3
) −

̇
�̂�
1
ℎ
3
𝑥
3
,

𝑢
4
= − 𝑒

4
− (𝑒
1
+ ℎ
1
𝑥
1
) (𝑒
3
+ ℎ
3
𝑥
3
)

+ ℎ
4
𝑥
2
𝑥
4
+

̇
̂
𝑑
2
(𝑒
1
+ ℎ
1
𝑥
1
) −

̇
̂
𝑑
1
ℎ
4
𝑥
2
,

(25)

with the parameter update laws

̇
𝑎
1
= −𝑎
1
+ ℎ
1
(𝑥
2
− 𝑥
1
) 𝑒
1
,

̇
𝑏
1
= −𝑏
1
+ ℎ
2
𝑥
1
𝑒
2
,

̇
𝑐
1
= −𝑐
1
− ℎ
3
𝑥
3
𝑒
3
,

̇
𝑑
1
= −𝑑
1
− ℎ
4
𝑥
2
𝑒
4
,

(26)

̇
𝑎
2
= −𝑎
2
− (𝑒
2
− 𝑒
1
+ ℎ
2
𝑥
2
− ℎ
1
𝑥
1
) 𝑒
1
,

̇
𝑏
2
= −𝑏
2
− (𝑒
1
+ ℎ
1
𝑥
1
) 𝑒
2
,

̇
𝑐
2
= −𝑐
2
+ (𝑒
3
+ ℎ
3
𝑥
3
) 𝑒
3
,

̇
𝑑
2
= −𝑑
2
+ (𝑒
1
+ ℎ
1
𝑥
1
) 𝑒
4
,

(27)

where 𝑎
𝑖
= 𝑎
𝑖
−𝑎
𝑖
, 𝑏
𝑖
= 𝑏
𝑖
−
̂
𝑏
𝑖
, 𝑐
𝑖
= 𝑐
𝑖
−𝑐
𝑖
,𝑑
𝑖
= 𝑑
𝑖
−
̂
𝑑
𝑖
, and 𝑖 = 1, 2.

Let 𝑎
1
= 𝑎
2
= 20, 𝑏

1
= 𝑏
2
= 35, 𝑐

1
= 𝑐
2
= 3, and 𝑑

1
= 𝑑
2
= 10,

then the drive-response systems are hyperchaotic. In addi-
tion, set the initial states of the drive-response systems to be
𝑥
1
(0) = 1, 𝑥

2
(0) = 1, 𝑥

3
(0) = 1, and 𝑥

4
(0) = 1 and 𝑦

1
(0) = 4,

𝑦
2
(0) = 5,𝑦

3
(0) = 6, and𝑦

4
(0) = 7, respectively, set the initial

states of the estimated parameter errors to be 𝑎
1
(0) = 𝑎

2
(0) =

1, 𝑏
1
(0) = 𝑏

2
(0) = 1, 𝑐

1
(0) = 𝑐

2
(0) = 1, and𝑑

1
(0) = 𝑑

2
(0) = 1,

and set the scaling matrix to be 𝐻 = diag(−1, 0.5, 1, 4). Then
the time response of the errors is shown in Figure 4. For
further observations, the state trajectories of the two systems
are depicted in Figure 5. It is exhibited that 𝑥

1
and 𝑦

1
display

an antisynchronization phenomenon, 𝑦
2
finally converges

to half the value of 𝑥
2
, 𝑥
3
and 𝑦

3
show synchronization

behavior, and 𝑦
4
converges four times the value of 𝑥

4
, just as

we intended. Moreover, the curves of estimated parameters
are also shown in Figure 6. It can be concluded that the two
systems achieve MPS successfully.

Furthermore, suppose that the parameters are time vary-
ing, remain the drive system (20) and set system (𝑒) to be
response system which is expressed as

̇𝑦
1
= 𝑎
2
(𝑦
2
− 𝑦
1
) + 𝑢
1
,

̇𝑦
2
= 𝑏
2
𝑦
1
− 10𝑦

1
𝑦
3
+ 𝑦
4
+ 𝑦
2
+ 𝑢
2
,

̇𝑦
3
= −𝑐
2
𝑦
3
+ 10𝑦

2

1
+ 𝑢
3
,

̇𝑦
4
= −𝑑
2
𝑦
1
+ 𝑦
1
𝑦
3
+ 𝑢
4
,

(28)

0 2 4 6 8 10
−5

0
5

𝑡

0 2 4 6 8 10
−5

0
5

𝑡

0 2 4 6 8 10
−5

0
5

𝑡

0 2 4 6 8 10
−5

0
5

𝑡

𝑒 1
𝑒 2

𝑒 3
𝑒 4

Figure 4: The MPS errors 𝑒
1
, 𝑒
2
, 𝑒
3
, and 𝑒

4
between the drive-

response systems (20) and (21).

with the vector form

(

̇𝑦
1

̇𝑦
2

̇𝑦
3

̇𝑦
4

) = (

0

−10𝑦
1
𝑦
3
+ 𝑦
4
+ 𝑦
2

10𝑦
2

1

𝑦
1
𝑦
3

)

+ (

𝑦
2
− 𝑦
1

0 0 0

0 𝑦
1

0 0

0 0 −𝑦
3

0

0 0 0 −𝑦
1

)(

𝑎
2

𝑏
2

𝑐
2

𝑑
2

)

+ (

𝑢
1

𝑢
2

𝑢
3

𝑢
4

),

(29)

where (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
)
𝑇 is the controller to be determined. Set

nominal values of 𝑎, 𝑏, 𝑐, and 𝑑 to be 𝑎 = 20, 𝑏 = 35, 𝑐 = 3, and
𝑑 = 10, set time-varying parameters of the drive-response
systems to be 𝑎

1
= 20+ sin(𝑡), 𝑏

1
= 35+ sin(𝑡), 𝑐

1
= 3+ sin(𝑡),

and 𝑑
1
= 10 + sin(𝑡) and 𝑎

2
= 20 + cos(𝑡), 𝑏

2
= 35 + cos(𝑡),

𝑐
2
= 3+cos(𝑡), and 𝑑

2
= 10+cos(𝑡), respectively, set the upper

bound to be Θ
1
= Θ
2
= 2, set positive definite matrix to be

𝑃 = 𝑀, set the initial states of the drive-response systems
to be 𝑥

1
(0) = 1, 𝑥

2
(0) = 1, 𝑥

3
(0) = 1, and 𝑥

4
(0) = 1 and

𝑦
1
(0) = 4, 𝑦

2
(0) = 5, 𝑦

3
(0) = 6, 𝑦

4
(0) = 7, respectively,
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𝑡

0 5 10
−5

0

5

𝑡
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𝑡
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𝑥
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,𝑦
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𝑥
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𝑥
4
,𝑦
4

Figure 5: State trajectories of the drive-response systems (20) and (21), 𝑥
1
and 𝑦

1
with ℎ

1
= −1, 𝑥

2
and 𝑦

2
with ℎ

2
= 0.5, 𝑥

3
and 𝑦

3
with

ℎ
3
= 1, and 𝑥

4
and 𝑦

4
with ℎ

4
= 4.

and set the scaling matrix to be 𝐻 = diag(−1, 0.5, 1, 4), then
according to (16), the controller can be described as

𝑢
1
= − 𝑒

1
− 20 (𝑦

2
− 𝑦
1
) + 20ℎ

1
(𝑥
2
− 𝑥
1
)

−




𝑦
2
− 𝑦
1





sgn (𝑒

1
) −





ℎ
1










𝑥
2
− 𝑥
1





sgn (𝑒

1
) ,

𝑢
2
= − 2𝑒

2
− 𝑒
4
− 10𝑦

1
𝑦
3
+ 10ℎ

2
𝑥
1
𝑥
3
− ℎ
2
𝑥
4
− ℎ
2
𝑥
2
− 35𝑦

1

+ 35ℎ
2
𝑥
1
−




𝑦
1





sgn (𝑒

2
) −





ℎ
2










𝑥
1





sgn (𝑒

2
) ,

𝑢
3
= − 𝑒

3
− 10𝑦

1
𝑦
2
+ 10ℎ

3
𝑥
1
𝑥
2
+ 3𝑦
3
− 3ℎ
3
𝑥
3

+




𝑦
3





sgn (𝑒

3
) −





ℎ
3










𝑥
3





sgn (𝑒

3
) ,

𝑢
4
= − 𝑒

4
− 𝑦
1
𝑒
3
+ ℎ
4
𝑥
2
𝑥
4
+ 10𝑦

1
− 10ℎ

4
𝑥
1

+




𝑦
1





sgn (𝑒

4
) −





ℎ
4










𝑥
2





sgn (𝑒

4
) .

(30)

Subsequently, the time response of the error systems is given
in Figure 7, which suggests, the error vector converges to zero
asymptotically and the control strategy for MPS is successful.

5. Conclusions

Generation and MPS for a class of new hyperchaotic systems
are both considered in this paper. First, six new hyperchaotic
systems with different nonlinear terms are derived and the
existence of hyperchaos is exhibited by calculating their Lya-
punov exponent spectrums. Second, the universal theories on
MPS of general chaotic systems with the structure like that
are investigated by presenting an adaptive control strategy
together with parameter update laws and a nonlinear control
scheme based on Lyapunov stability theory. Finally, the
methods are applied to our proposed hyperchaotic systems,
and numerical simulations demonstrate the effectiveness of
the proposed synchronization schemes.
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