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The concept of a cone b-metric space has been introduced recently as a generalization of a b-metric space and a cone metric space
in 2011. The aim of this paper is to establish some fixed point and common fixed point theorems on ordered cone b-metric spaces.
The proposed theorems expand and generalize several well-known comparable results in the literature to ordered cone b-metric
spaces. Some supporting examples are given.

1. Introduction

Fixed point theory has attracted many researchers since 1922
with the admired Banach fixed point theorem. This theorem
supplies a method for solving a variety of applied dilemma
in mathematical sciences and engineering. A large literature
on this subject exists, and this is a very active area of research
at present. Banach contraction principle has been generalized
in dissimilar directions in different spaces bymathematicians
over the years; for more details on this and related topics, we
refer to [1–6] and references therein.

In contemporary time, fixed point theory has evolved
speedily in partially ordered cone metric spaces; that is, cone
metric spaces equipped with a partial ordering, for some
new results in ordered metric spaces see [7]. A coming
early result in this bearing was constituted by Altun and
Durmaz [8] under the condition of normality for cones.Then,
Altun et al. [9] generalized the results of Altun and Durmaz
[8] by omitting the assumption of normality condition for
cones. Afterward, several authors have studied fixed point
and common fixed point problems in ordered cone metric
spaces; for more details see [10–17].

In 2011, Hussain and Shah [18] presented cone b-metric
spaces as a generalization of b-metric spaces and cone metric
spaces; for some new results in b-metric spaces see [19].They
not only constructed some topological properties in such

spaces but also ameliorated some current results about KKM
mappings in the setting of a cone b-metric space. After some
time,many authors have beenmotivated to demonstrate fixed
point theorems as well as common fixed point theorems
for two or more mappings on cone b-metric spaces by the
incipient work of Hussain and Shah [18] (see [20–23] and the
references therein).

In [8], Altun and Durmaz proved the following results
under the condition of normality for cones.

Theorem 1 (see [8]). Let (𝑋, ⊑) be a partially ordered set,
suppose that there exists a cone metric 𝑑 in 𝑋 such that the
cone metric space (𝑋, 𝑑) is complete, and let 𝑃 be a normal
cone with normal constant𝐾. Let 𝑓 : 𝑋 → 𝑋 be a continuous
and nondecreasingmapping with respect to ⊑. Suppose that the
following three assertions hold:

(i) there exists 𝑘 ∈ [0, 1) such that 𝑑(𝑓𝑥, 𝑓𝑦) ⪯ 𝑘𝑑(𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ⊑ 𝑥;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⊑ 𝑓x
0
.

Then 𝑓 has a fixed point in𝑋.

In [9], Altun et al. generalized the above theorem and
proved it without normality condition for cones.
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Theorem 2 (see [9]). Let (𝑋, ⊑) be a partially ordered set and
suppose that there exists a cone metric 𝑑 in 𝑋 such that the
cone metric space (𝑋, 𝑑) is complete over a solid cone 𝑃. Let
𝑓 : 𝑋 → 𝑋 be a continuous and nondecreasing mapping with
respect to ⊑. Suppose that the following two assertions hold:

(i) there exist 𝑘, 𝑙, 𝑟 ∈ [0, 1) with 𝑘 + 2𝑙 + 2𝑟 < 1 such that

𝑑 (𝑓𝑥, 𝑓𝑦) ⪯ 𝑘𝑑 (𝑥, 𝑦) + 𝑙 (𝑑 (𝑓𝑥, 𝑥) + 𝑑 (𝑓𝑦, 𝑦))

+ 𝑟 (𝑑 (𝑓𝑥, 𝑦) + 𝑑 (𝑓𝑦, 𝑥))
(1)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ⊑ 𝑥;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⊑ 𝑓𝑥
0
.

Then 𝑓 has a fixed point in𝑋.

Theorem 3 (see [9]). Let (𝑋, ⊑) be a partially ordered set and
suppose that there exists a cone metric 𝑑 in 𝑋 such that the
cone metric space (𝑋, 𝑑) is complete over a solid cone 𝑃. Let
𝑓 : 𝑋 → 𝑋 be a nondecreasing mapping with respect to ⊑.
Suppose that the following three assertions hold:

(i) there exist 𝑘, 𝑙, 𝑟 ∈ [0, 1) with 𝑘 + 2𝑙 + 2𝑟 < 1 such that

𝑑 (𝑓𝑥, 𝑓𝑦) ⪯ 𝑘𝑑 (𝑥, 𝑦) + 𝑙 (𝑑 (𝑓𝑥, 𝑥) + 𝑑 (𝑓𝑦, 𝑦))

+ 𝑟 (𝑑 (𝑓𝑥, 𝑦) + 𝑑 (𝑓𝑦, 𝑥))
(2)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ⊑ 𝑥;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⊑ 𝑓𝑥
0
;

(iii) if an increasing sequence {𝑥
𝑛
} converges to 𝑥 in𝑋, then

𝑥
𝑛
⊑ 𝑥 for all 𝑛.

Then 𝑓 has a fixed point in𝑋.

In the same paper, they also presented the following two
common fixed point results in ordered cone metric spaces.

Theorem 4 (see [9]). Let (𝑋, ⊑) be a partially ordered set and
suppose that there exists a cone metric 𝑑 in 𝑋 such that the
cone metric space (𝑋, 𝑑) is complete over a solid cone 𝑃. Let
𝑓, 𝑔 : 𝑋 → 𝑋 be two weakly increasing mappings with respect
to ⊑. Suppose that the following three assertions hold:

(i) there exist 𝑘, 𝑙, 𝑟 ∈ [0, 1) with 𝑘 + 2𝑙 + 2𝑟 < 1 such that

𝑑 (𝑓𝑥, 𝑔𝑦) ⪯ 𝑘𝑑 (𝑥, 𝑦) + 𝑙 (𝑑 (𝑥, 𝑓𝑥) + 𝑑 (𝑦, 𝑔𝑦))

+ 𝑟 (𝑑 (𝑦, 𝑓𝑥) + 𝑑 (𝑥, 𝑔𝑦))
(3)

for all comparative 𝑥, 𝑦 ∈ 𝑋;

(ii) 𝑓 or 𝑔 is continuous.

Then 𝑓 and 𝑔 have a common fixed point 𝑥∗ ∈ 𝑋.

Theorem 5 (see [9]). Let (𝑋, ⊑) be a partially ordered set and
suppose that there exists a cone metric 𝑑 in 𝑋 such that the
cone metric space (𝑋, 𝑑) is complete over a solid cone 𝑃. Let

𝑓, 𝑔 : 𝑋 → 𝑋 be two weakly increasing mappings with respect
to ⊑. Suppose that the following three assertions hold:

(i) there exist 𝑘, 𝑙, 𝑟 ∈ [0, 1) with 𝑘 + 2𝑙 + 2𝑟 < 1 such that

𝑑 (𝑓𝑥, 𝑔𝑦) ⪯ 𝑘𝑑 (𝑥, 𝑦) + 𝑙 (𝑑 (𝑥, 𝑓𝑥) + 𝑑 (𝑦, 𝑔𝑦))

+ 𝑟 (𝑑 (𝑦, 𝑓𝑥) + 𝑑 (𝑥, 𝑔𝑦))
(4)

for all comparative 𝑥, 𝑦 ∈ 𝑋;
(ii) if an increasing sequence {𝑥

𝑛
} converges to 𝑥 in𝑋, then

𝑥
𝑛
⊑ 𝑥 for all n.

Then 𝑓 and 𝑔 have a common fixed point 𝑥∗ ∈ 𝑋.

In this paper, we prove some fixed point and common
fixed point theorems on ordered cone b-metric spaces. Our
results extend and generalize several well-known comparable
results in the literature to ordered cone b-metric spaces.
Throughout this paper, we do not impose the normality
condition for the cones, but the only assumption is that the
cone 𝑃 is solid, that is, int𝑃 ̸= 0.

The following definitions and results shall be needed in
the sequel.

Let 𝐸 be a real Banach space and 𝜃 denotes the zero
element in 𝐸. A cone 𝑃 is a subset of 𝐸 such that

(1) 𝑃 is nonempty closed set and 𝑃 ̸= {𝜃};
(2) if 𝑎, 𝑏 are nonnegative real numbers and𝑥, 𝑦 ∈ 𝑃, then

𝑎𝑥 + 𝑏𝑦 ∈ 𝑃;
(3) 𝑥 ∈ 𝑃 and −𝑥 ∈ 𝑃 imply 𝑥 = 𝜃.

For any cone 𝑃 ⊂ 𝐸, the partial ordering ⪯ with respect to 𝑃
is defined by 𝑥 ⪯ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. The notation of ≺
stands for 𝑥 ⪯ 𝑦 but 𝑥 ̸= 𝑦. Also, we use 𝑥 ≪ 𝑦 to indicate that
𝑦 − 𝑥 ∈ int𝑃, where int𝑃 denotes the interior of 𝑃. A cone 𝑃
is called normal if there exists the number𝐾 such that

𝜃 ⪯ 𝑥 ⪯ 𝑦 ⇒ ‖𝑥‖ ≤ 𝐾
𝑦
 , (5)

for all 𝑥, 𝑦 ∈ 𝐸. The least positive number 𝐾 satisfying the
above condition is called the normal constant of 𝑃.

Definition 6 (see [18]). Let 𝑋 be a nonempty set and 𝐸 a
real Banach space equipped with the partial ordering ⪯ with
respect to the cone 𝑃. A vector-valued function 𝑑 : 𝑋×𝑋 →

𝐸 is said to be a cone b-metric function on𝑋with the constant
𝑠 ≥ 1 if the following conditions are satisfied:

(1) 𝜃 ⪯ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 𝜃 if and only
if 𝑥 = 𝑦;

(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑥, 𝑦) ⪯ 𝑠(𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then pair (𝑋, 𝑑) is called a cone b-metric space (or a cone
metric type space); we shall use the first mentioned term.

Observe that if 𝑠 = 1, then the ordinary triangle inequality
in a cone metric space is satisfied; however, it does not hold
true when 𝑠 > 1. Thus the class of cone b-metric spaces is
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effectively larger than that of the ordinary conemetric spaces.
That is, every cone metric space is a cone b-metric space, but
the converse need not be true. The following examples show
the above remarks.

Example 7. Let 𝑋 = {−1, 0, 1}, 𝐸 = R2, and𝑃 = {(𝑥, 𝑦) : 𝑥 ≥

0, 𝑦 ≥ 0}. Define 𝑑 : 𝑋 × 𝑋 → 𝑃 by 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑥) = 𝜃, 𝑥 ∈ 𝑋, and 𝑑(−1, 0) =

(3, 3), 𝑑(−1, 1) = 𝑑(0, 1) = (1, 1). Then (𝑋, 𝑑) is a complete
cone b-metric space but the triangle inequality is not satisfied.
Indeed, we have that 𝑑(−1, 1) + 𝑑(1, 0) = (1, 1) + (1, 1) =

(2, 2) ≺ (3, 3) = 𝑑(−1, 0). It is not hard to verify that 𝑠 = 3/2.

Example 8. Let 𝑋 = R, 𝐸 = R2, and 𝑃 = {(𝑥, 𝑦) ∈ 𝐸 :

𝑥 ≥ 0, 𝑦 ≥ 0}. Define 𝑑 : 𝑋 × 𝑋 → 𝐸 by 𝑑(𝑥, 𝑦) =

(|𝑥 − 𝑦|
2
, |𝑥 − 𝑦|

2
). Then, it is easy to see that (𝑋, 𝑑) is a cone

b-metric space with the coefficient 𝑠 = 2. But it is not a cone
metric spaces since the triangle inequality is not satisfied.

Definition 9 (see [18]). Let (𝑋, 𝑑) be a cone b-metric space,
{𝑥
𝑛
} a sequence in𝑋 and 𝑥 ∈ 𝑋.

(1) For all 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐, if there exists a positive
integer 𝑁 such that 𝑑(𝑥

𝑛
, 𝑥) ≪ 𝑐 for all 𝑛 > 𝑁, then

𝑥
𝑛
is said to be convergent and 𝑥 is the limit of {𝑥

𝑛
}.

One denotes this by 𝑥
𝑛
→ 𝑥.

(2) For all 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐, if there exists a positive
integer 𝑁 such that 𝑑(𝑥

𝑛
, 𝑥
𝑚
) ≪ 𝑐 for all 𝑛,𝑚 > 𝑁,

then {𝑥
𝑛
} is called a Cauchy sequence in𝑋.

(3) A cone metric space (𝑋, 𝑑) is called complete if every
Cauchy sequence in𝑋 is convergent.

The following lemma is useful in our work.

Lemma 10 (see [24]).

(1) If 𝐸 is a real Banach space with a cone 𝑃 and 𝑎 ⪯ 𝜆𝑎

where 𝑎 ∈ 𝑃 and 0 ≤ 𝜆 < 1, then 𝑎 = 𝜃.

(2) If 𝑐 ∈ int𝑃, 𝜃 ⪯ 𝑎
𝑛
, and 𝑎

𝑛
→ 𝜃, then there exists a

positive integer𝑁 such that 𝑎
𝑛
≪ 𝑐 for all 𝑛 ≥ 𝑁.

(3) If 𝑎 ⪯ 𝑏 and 𝑏 ≪ 𝑐, then 𝑎 ≪ 𝑐.

(4) If 𝜃 ⪯ 𝑢 ≪ 𝑐 for each 𝜃 ≪ 𝑐, then 𝑢 = 𝜃.

2. Fixed Point Results

In this section, we prove some fixed point theorems on
ordered cone b-metric space. We begin with a simple but a
useful lemma.

Lemma 11. Let {𝑥
𝑛
} be a sequence in a cone b-metric space

(𝑋, 𝑑) with the coefficient 𝑠 ≥ 1 relative to a solid cone 𝑃 such
that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ⪯ ℎ𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , (6)

where ℎ ∈ [0, 1/𝑠) and 𝑛 = 1, 2, . . .. Then {𝑥
𝑛
} is a Cauchy

sequence in (𝑋, 𝑑).

Proof. Let𝑚 > 𝑛 ≥ 1. It follows that

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) ⪯ 𝑠𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝑠
2
𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)

+ ⋅ ⋅ ⋅ + 𝑠
𝑚−𝑛

𝑑 (𝑥
𝑚−1

, 𝑥
𝑚
) .

(7)

Now, (6) and 𝑠ℎ < 1 imply that

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) ⪯ 𝑠𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝑠
2
𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

)

+ ⋅ ⋅ ⋅ + 𝑠
𝑚−𝑛

𝑑 (𝑥
𝑚−1

, 𝑥
𝑚
)

⪯ 𝑠ℎ
𝑛
𝑑 (𝑥
0
, 𝑥
1
) + 𝑠
2
ℎ
𝑛+1

𝑑 (𝑥
0
, 𝑥
1
)

+ ⋅ ⋅ ⋅ + 𝑠
𝑚−𝑛

ℎ
𝑚−1

𝑑 (𝑥
0
, 𝑥
1
)

= (𝑠ℎ
𝑛
+ 𝑠
2
ℎ
𝑛+1

+ ⋅ ⋅ ⋅ + 𝑠
𝑚−𝑛

ℎ
𝑚−1

) 𝑑 (𝑥
0
, 𝑥
1
)

= 𝑠ℎ
𝑛
(1 + 𝑠ℎ + (𝑠ℎ)

2
+ ⋅ ⋅ ⋅ + (𝑠ℎ)

𝑚−𝑛−1
) 𝑑 (𝑥

0
, 𝑥
1
)

⪯
𝑠ℎ𝑛

1 − 𝑠ℎ
𝑑 (𝑥
0
, 𝑥
1
) → 𝜃 as 𝑛 → ∞.

(8)

According to Lemma 10(2), and for any 𝑐 ∈ 𝐸 with 𝑐 ≫ 𝜃,
there exists 𝑁

0
∈ N such that for any 𝑛 > 𝑁

0
, (𝑠ℎ𝑛/(1 −

𝑠ℎ))𝑑(𝑥
0
, 𝑥
1
) ≪ 𝑐. Furthermore, from (8) and for any 𝑚 >

𝑛 > 𝑁
0
, Lemma 10(3) shows that

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) ≪ 𝑐. (9)

Hence, by Definition 9(2) {𝑥
𝑛
} is a Cauchy sequence in

𝑋.

Theorem 12. Let (𝑋, ⊑) be a partially ordered set and suppose
that there exists a cone b-metric 𝑑 in 𝑋 such that the cone
b-metric space (𝑋, 𝑑) is complete with the coefficient 𝑠 ≥ 1

relative to a solid cone 𝑃. Let 𝑓 : 𝑋 → 𝑋 be a continuous
and nondecreasingmapping with respect to ⊑. Suppose that the
following three assertions hold:

(i) there exist 𝑎
𝑖
, 𝑖 = 1, . . . , 5, such that 2𝑠𝑎

1
+ (𝑠 + 1)(𝑎

2
+

𝑎
3
) + (𝑠2 + 𝑠)(𝑎

4
+ 𝑎
5
) < 2 with ∑5

𝑖=1
𝑎
𝑖
< 1,

𝑑 (𝑓𝑥, 𝑓𝑦) ⪯ 𝑎
1
𝑑 (𝑥, 𝑦) + 𝑎

2
𝑑 (𝑓𝑥, 𝑥) + 𝑎

3
𝑑 (𝑓𝑦, 𝑦)

+ 𝑎
4
𝑑 (𝑓𝑥, 𝑦) + 𝑎

5
𝑑 (𝑓𝑦, 𝑥)

(10)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ⊑ 𝑥;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⊑ 𝑓𝑥
0
.

Then 𝑓 has a fixed point 𝑥∗ ∈ 𝑋.

Proof. If 𝑥
0
= 𝑓𝑥
0
, then the proof is finished. Suppose that

𝑥
0
̸= 𝑓𝑥
0
. Since 𝑥

0
⊑ 𝑓𝑥
0
and 𝑓 is nondecreasing with respect
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to ⊑, we obtain by induction that 𝑥
0
⊑ 𝑓𝑥
0
= 𝑥
1
⊑ 𝑓1𝑥

0
=

𝑥
2
⊑ ⋅ ⋅ ⋅ ⊑ 𝑓𝑛−1𝑥

0
= 𝑥
𝑛
⊑ 𝑓𝑛𝑥

0
= 𝑥
𝑛+1

⊑ ⋅ ⋅ ⋅ . Then we have,

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑑 (𝑓

𝑛
𝑥
0
, 𝑓
𝑛−1

𝑥
0
)

= 𝑑 (𝑓 (𝑓
𝑛−1

𝑥
0
) , 𝑓 (𝑓

𝑛−2
𝑥
0
))

⪯ 𝑎
1
𝑑 (𝑓
𝑛−1

𝑥
0
, 𝑓
𝑛−2

𝑥
0
) + 𝑎
2
𝑑 (𝑓
𝑛−1

𝑥
0
, 𝑓
𝑛−2

𝑥
0
)

+ 𝑎
3
𝑑 (𝑓
𝑛
𝑥
0
, 𝑓
𝑛−1

𝑥
0
)

+ 𝑎
4
𝑑 (𝑓
𝑛
𝑥
0
, 𝑓
𝑛−2

𝑥
0
) + 𝑎
5
𝑑 (𝑓
𝑛−1

𝑥
0
, 𝑓
𝑛−1

𝑥
0
)

= 𝑎
1
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝑎
2
𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) + 𝑎
3
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)

+ 𝑎
4
𝑑 (𝑥
𝑛+1

, 𝑥
𝑛−1

) + 𝑎
5
𝑑 (𝑥
𝑛
, 𝑥
𝑛
)

⪯ 𝑎
1
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝑎
2
𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) + 𝑎
3
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)

+ 𝑠𝑎
4
(𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛−1

)) .

(11)

Then, one can assert that

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ⪯ (𝑎

1
+ 𝑎
3
+ 𝑠𝑎
4
) 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)

+ (𝑎
2
+ 𝑠𝑎
4
) 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) .

(12)

On the other hand, we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑓
𝑛−1

𝑥
0
, 𝑓
𝑛
𝑥
0
)

= 𝑑 (𝑓 (𝑓
𝑛−2

𝑥
0
) , 𝑓 (𝑓

𝑛−1
𝑥
0
))

⪯ 𝑎
1
𝑑 (𝑓
𝑛−2

𝑥
0
, 𝑓
𝑛−1

𝑥
0
) + 𝑎
2
𝑑 (𝑓
𝑛−2

𝑥
0
, 𝑓
𝑛−1

𝑥
0
)

+ 𝑎
3
𝑑 (𝑓
𝑛−1

𝑥
0
, 𝑓
𝑛
𝑥
0
)

+ 𝑎
4
𝑑 (𝑓
𝑛−1

𝑥
0
, 𝑓
𝑛−1

𝑥
0
) + 𝑎
5
𝑑 (𝑓
𝑛
𝑥
0
, 𝑓
𝑛−2

𝑥
0
)

= 𝑎
1
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝑎
2
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝑎
3
𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
)

+ 𝑎
4
𝑑 (𝑥
𝑛
, 𝑥
𝑛
) + 𝑎
5
𝑑 (𝑥
𝑛+1

, 𝑥
𝑛−1

)

⪯ 𝑎
1
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝑎
2
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝑎
3
𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
)

+ 𝑠𝑎
5
(𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑛−1

)) .

(13)

Then, one can assert that

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ⪯ (𝑎

1
+ 𝑎
2
+ 𝑠𝑎
5
) 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)

+ (𝑎
3
+ 𝑠𝑎
5
) 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) .

(14)

Adding (12) and (14), we get

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ⪯

2𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑠𝑎
4
+ 𝑠𝑎
5

2 − (𝑎
2
+ 𝑎
3
+ 𝑠𝑎
4
+ 𝑠𝑎
5
)
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)

= 𝜆𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) ,

(15)

where 𝜆 = (2𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑠𝑎
4
+ 𝑠𝑎
5
)/(2 − (𝑎

2
+ 𝑎
3
+ 𝑠𝑎
4
+

𝑠𝑎
5
)) < 1/𝑠. According to Lemma 11, we have {𝑥

𝑛
} is a Cauchy

sequence in𝑋. Since𝑋 is complete, there exists 𝑥∗ ∈ 𝑋 such
that 𝑥

𝑛
→ 𝑥∗. Since 𝑓 is continuous, then 𝑥∗ = lim𝑥

𝑛+1
=

lim𝑓𝑛𝑥
0
= lim𝑓(𝑓𝑛−1𝑥

0
) = 𝑓(lim𝑓𝑛−1𝑥

0
) = 𝑓(lim𝑥

𝑛
) =

𝑓(𝑥∗). Therefore, 𝑥∗ is a fixed point of 𝑓.

If we use condition (iii) instead of the continuity of 𝑓 in
Theorem 12, we have the following result.

Theorem 13. Let (𝑋, ⊑) be a partially ordered set and suppose
that there exists a cone b-metric 𝑑 in 𝑋 such that the cone b-
metric space (𝑋, 𝑑) is complete with the coefficient 𝑠 ≥ 1 relative
to a solid cone 𝑃. Let 𝑓 : 𝑋 → 𝑋 be a nondecreasing mapping
with respect to ⊑. Suppose that the following three assertions
hold:

(i) there exist 𝑎
𝑖
, 𝑖 = 1, . . . , 5, such that 2𝑠𝑎

1
+ (𝑠 + 1)(𝑎

2
+

𝑎
3
) + (𝑠2 + 𝑠)(𝑎

4
+ 𝑎
5
) < 2 with ∑5

𝑖=1
𝑎
𝑖
< 1,

𝑑 (𝑓𝑥, 𝑓𝑦) ⪯ 𝑎
1
𝑑 (𝑥, 𝑦) + 𝑎

2
𝑑 (𝑓𝑥, 𝑥) + 𝑎

3
𝑑 (𝑓𝑦, 𝑦)

+ 𝑎
4
𝑑 (𝑓𝑥, 𝑦) + 𝑎

5
𝑑 (𝑓𝑦, 𝑥)

(16)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ⊑ 𝑥;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝑥

0
⊑ 𝑓𝑥
0
;

(iii) if an increasing sequence {𝑥
𝑛
} converges to 𝑥 in𝑋, then

𝑥
𝑛
⊑ 𝑥 for all 𝑛.

Then 𝑓 has a fixed point 𝑥∗ ∈ 𝑋.

Proof. As in the Theorem 12, we can construct an increasing
sequence {𝑥

𝑛
} and prove that there exists 𝑥∗ ∈ 𝑋 such that

𝑥
𝑛
→ 𝑥∗. Now, condition (iii) implies 𝑥

𝑛
⊑ 𝑥∗ for all 𝑛.

Therefore, we can use condition (i) and so

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
∗
) ⪯ 𝑎
1
𝑑 (𝑥
𝑛
, 𝑥
∗
) + 𝑎
2
𝑑 (𝑓𝑥
𝑛
, 𝑥
𝑛
) + 𝑎
3
𝑑 (𝑓𝑥
∗
, 𝑥
∗
)

+ 𝑎
4
𝑑 (𝑓𝑥
𝑛
, 𝑥
∗
) + 𝑎
5
𝑑 (𝑓𝑥
∗
, 𝑥
𝑛
) .

(17)

Taking 𝑛 → ∞, we have 𝑑(𝑥∗, 𝑓𝑥∗) ⪯ (𝑎
3
+ 𝑎
5
)𝑑(𝑥∗, 𝑓𝑥∗)

𝑑(𝑥∗, 𝑓𝑥∗). Since (𝑎
3
+ 𝑎
5
) < 1, Lemma 10(1) shows that

𝑑(𝑥∗, 𝑓𝑥∗) = 𝜃; that is, 𝑥∗ = 𝑓𝑥∗. Therefore 𝑥∗ is a fixed
point of 𝑓.

3. Common Fixed Point Results

Now, we give two common fixed point theorems on ordered
cone b-metric spaces. We need the following definition.

Definition 14 (see [9]). Let (𝑋, ⊑) be a partially ordered set.
Twomappings𝑓, 𝑔 : 𝑋 → 𝑋 are said to be weakly increasing
if 𝑓𝑥 ⊑ 𝑔𝑓𝑥 and 𝑔𝑥 ⊑ 𝑓𝑔𝑥 hold for all 𝑥 ∈ 𝑋.

Theorem 15. Let (𝑋, ⊑) be a partially ordered set and suppose
that there exists a cone b-metric 𝑑 in 𝑋 such that the cone b-
metric space (𝑋, 𝑑) is complete with the coefficient 𝑠 ≥ 1 relative
to a solid cone 𝑃. Let 𝑓, 𝑔 : 𝑋 → 𝑋 be two weakly increasing
mappings with respect to ⊑. Suppose that the following three
assertions hold:
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(i) there exist 𝑎
𝑖
, 𝑖 = 1, . . . , 5, such that 2𝑠𝑎

1
+ (𝑠 + 1)(𝑎

2
+

𝑎
3
) + (𝑠2 + 𝑠)(𝑎

4
+ 𝑎
5
) < 2 with ∑5

𝑖=1
𝑎
𝑖
< 1,

𝑑 (𝑓𝑥, 𝑔𝑦) ⪯ 𝑎
1
𝑑 (𝑥, 𝑦) + 𝑎

2
𝑑 (𝑥, 𝑓𝑥) + 𝑎

3
𝑑 (𝑦, 𝑔𝑦)

+ 𝑎
4
𝑑 (𝑦, 𝑓𝑥) + 𝑎

5
𝑑 (𝑥, 𝑔𝑦)

(18)

for all comparative 𝑥, 𝑦 ∈ 𝑋;

(ii) 𝑓 or 𝑔 is continuous.

Then 𝑓 and 𝑔 have a common fixed point 𝑥∗ ∈ 𝑋.

Proof. Let 𝑥
0
be an arbitrary point of𝑋 and define a sequence

{𝑥
𝑛
} in 𝑋 as follows: 𝑥

2𝑛+1
= 𝑓𝑥
2𝑛
and 𝑥

2𝑛+2
= 𝑔𝑥
2𝑛+1

for all
𝑛 > 0. Note that, since𝑓 and 𝑔 are weakly increasing, we have
𝑥
1
= 𝑓𝑥
0
⊑ 𝑔𝑓𝑥

0
= 𝑔𝑥
1
= 𝑥
2
and 𝑥

2
= 𝑔𝑥
1
⊑ 𝑓𝑔𝑥

1
= 𝑓𝑥
2
=

𝑥
3
, and continuing this process we have 𝑥

1
⊑ 𝑥
2
⊑ ⋅ ⋅ ⋅ ⊑ 𝑥

𝑛
⊑

𝑥
𝑛+1

⊑ ⋅ ⋅ ⋅ . That is, the sequence {𝑥
𝑛
} is nondecreasing. Now,

since 𝑥
2𝑛
and 𝑥
2𝑛+1

are comparative, we can use the inequality
(18), and then we have

𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) = 𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

)

⪯ 𝑎
1
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑎
2
𝑑 (𝑥
2𝑛
, 𝑓𝑥
2𝑛
)

+ 𝑎
3
𝑑 (𝑥
2𝑛+1

, 𝑔𝑥
2𝑛+1

)

+ 𝑎
4
𝑑 (𝑥
2𝑛+1

, 𝑓𝑥
2𝑛
) + 𝑎
5
𝑑 (𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

)

⪯ 𝑎
1
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑎
2
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)

+ 𝑎
3
𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)

+ 𝑎
4
𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

) + 𝑎
5
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+2

)

⪯ (𝑎
1
+ 𝑎
2
) 𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑎
3
𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)

+ 𝑠𝑎
5
(𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

))

= (𝑎
1
+ 𝑎
2
+ 𝑠𝑎
5
) 𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)

+ (𝑎
3
+ 𝑠𝑎
5
) 𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) .

(19)

Hence,

(1 − (𝑎
3
+ 𝑠𝑎
5
)) 𝑑 (𝑥

2𝑛+1
, 𝑥
2𝑛+2

)

⪯ (𝑎
1
+ 𝑎
2
+ 𝑠𝑎
5
) 𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) .
(20)

On the other hand and by symmetry we have

𝑑 (𝑥
2𝑛+2

, 𝑥
2𝑛+1

) = 𝑑 (𝑔𝑥
2𝑛+1

, 𝑓𝑥
2𝑛
)

⪯ 𝑎
1
𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛
) + 𝑎
2
𝑑 (𝑥
2𝑛+1

, 𝑔𝑥
2𝑛+1

)

+ 𝑎
3
𝑑 (𝑥
2𝑛
, 𝑓𝑥
2𝑛
)

+ 𝑎
4
𝑑 (𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

) + 𝑎
5
𝑑 (𝑥
2𝑛+1

, 𝑓𝑥
2𝑛
)

⪯ 𝑎
1
𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛
) + 𝑎
2
𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)

+ 𝑎
3
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)

+ 𝑎
4
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+2

) + 𝑎
5
𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

)

⪯ (𝑎
1
+ 𝑎
3
) 𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑎
2
𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)

+ 𝑠𝑎
4
(𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

))

= (𝑎
1
+ 𝑎
3
+ 𝑠𝑎
4
) 𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)

+ (𝑎
2
+ 𝑠𝑎
4
) 𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) .

(21)

Hence,
(1 − (𝑎

2
+ 𝑠𝑎
4
)) 𝑑 (𝑥

2𝑛+2
, 𝑥
2𝑛+1

)

⪯ (𝑎
1
+ 𝑎
3
+ 𝑠𝑎
4
) 𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) .
(22)

Adding inequalities (20) and (22), we get

𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) ⪯
(2𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑠𝑎
4
+ 𝑠𝑎
5
)

2 − (𝑎
2
+ 𝑎
3
+ 𝑠𝑎
4
+ 𝑠𝑎
5
)
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

)

= 𝜆𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) ,

(23)

where 𝜆 = (2𝑎
1
+𝑎
2
+𝑎
3
+𝑠𝑎
4
+𝑠𝑎
5
)/(2−(𝑎

2
+𝑎
3
+𝑠𝑎
4
+𝑠𝑎
5
)) <

1/𝑠. Similarly, it can be shown that

𝑑 (𝑥
2𝑛+3

, 𝑥
2𝑛+2

) ⪯ 𝜆𝑑 (𝑥
2𝑛+

, 𝑥
2𝑛+2

) . (24)

Therefore,

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) ⪯ 𝜆𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) . (25)

According to Lemma 11, we have {𝑥
𝑛
} is a Cauchy sequence in

𝑋. Since 𝑋 is complete, there exists 𝑥∗ ∈ 𝑋 such that 𝑥
𝑛
→

𝑥∗. Suppose that 𝑓 is continuous. Then, 𝑥∗ = lim𝑥
𝑛+1

=

lim𝑓𝑛𝑥
0
= lim𝑓(𝑓𝑛−1𝑥

0
) = 𝑓(lim𝑓𝑛−1𝑥

0
) = 𝑓(lim𝑥

𝑛
) =

𝑓(𝑥∗). Therefore, 𝑥∗ is a fixed point of 𝑓. Now, we need to
show that 𝑥∗ is a fixed point of 𝑔. Since 𝑥∗ ⊑ 𝑥∗, we can use
the inequality (18) for 𝑥 = 𝑦 = 𝑥∗. Then we have

𝑑 (𝑓𝑥
∗
, 𝑔𝑥
∗
) ⪯ 𝑎
1
𝑑 (𝑥
∗
, 𝑥
∗
) + 𝑎
2
𝑑 (𝑥
∗
, 𝑓𝑥
∗
) + 𝑎
3
𝑑 (𝑥
∗
, 𝑔𝑥
∗
)

+ 𝑎
4
𝑑 (𝑥
∗
, 𝑓𝑥
∗
) + 𝑎
5
𝑑 (𝑥
∗
, 𝑔𝑥
∗
)

= 𝑎
1
𝑑 (𝑥
∗
, 𝑥
∗
) + 𝑎
2
𝑑 (𝑥
∗
, 𝑥
∗
) + 𝑎
3
𝑑 (𝑥
∗
, 𝑔𝑥
∗
)

+ 𝑎
4
𝑑 (𝑥
∗
, 𝑥
∗
) + 𝑎
5
𝑑 (𝑥
∗
, 𝑔𝑥
∗
)

= 𝑎
3
𝑑 (𝑥
∗
, 𝑔𝑥
∗
) + 𝑎
5
𝑑 (𝑥
∗
, 𝑔𝑥
∗
)

= (𝑎
3
+ 𝑎
5
) 𝑑 (𝑥
∗
, 𝑔𝑥
∗
) .

(26)

Hence,

𝑑 (𝑥
∗
, 𝑔𝑥
∗
) ⪯ (𝑎

3
+ 𝑎
5
) 𝑑 (𝑥
∗
, 𝑔𝑥
∗
) . (27)

Since (𝑎
3
+ 𝑎
5
) < 1, Lemma 10(1) shows that 𝑑(𝑥∗, 𝑔𝑥∗) = 𝜃;

that is, 𝑥∗ = 𝑔𝑥∗.Therefore 𝑥∗ is a fixed point of 𝑔.Therefore,
𝑓 and𝑔have a commonfixed point.Theproof is similar when
𝑔 is a continuous mapping.
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Theorem 16. Let (𝑋, ⊑) be a partially ordered set and suppose
that there exists a cone b-metric 𝑑 in 𝑋 such that the cone b-
metric space (𝑋, 𝑑) is complete with the coefficient 𝑠 ≥ 1 relative
to a solid cone 𝑃. Let 𝑓, 𝑔 : 𝑋 → 𝑋 be two weakly increasing
mappings with respect to ⊑. Suppose that the following three
assertions hold:

(i) there exist 𝑎
𝑖
, 𝑖 = 1, . . . , 5 such that 2𝑠𝑎

1
+ (𝑠 + 1)(𝑎

2
+

𝑎
3
) + (𝑠2 + 𝑠)(𝑎

4
+ 𝑎
5
) < 2 with ∑5

𝑖=1
𝑎
𝑖
< 1,

𝑑 (𝑓𝑥, 𝑔𝑦) ⪯ 𝑎
1
𝑑 (𝑥, 𝑦) + 𝑎

2
𝑑 (𝑥, 𝑓𝑥)

+ 𝑎
3
𝑑 (𝑦, 𝑔𝑦) + 𝑎

4
𝑑 (𝑦, 𝑓𝑥) + 𝑎

5
𝑑 (𝑥, 𝑔𝑦) ,

(28)

for all comparative 𝑥, 𝑦 ∈ 𝑋;
(ii) if an increasing sequence {𝑥

𝑛
} converges to 𝑥 in𝑋, then

𝑥
𝑛
⊑ 𝑥 for all 𝑛.

Then 𝑓 and 𝑔 have a common fixed point 𝑥∗ ∈ 𝑋.

Proof. As in Theorem 15, we can construct an increasing
sequence {𝑥

𝑛
} and prove that there exists 𝑥∗ ∈ 𝑋 such that

𝑥
𝑛
→ 𝑥∗, also; by the construction of 𝑥

𝑛
, 𝑔𝑥
𝑛
→ 𝑥∗. Now,

condition (iii) implies 𝑥
𝑛
⊑ 𝑥∗ for all 𝑛. Putting 𝑥 = 𝑥∗ and

𝑦 = 𝑥
𝑛
in (28), we get

𝑑 (𝑓𝑥
∗
, 𝑔𝑥
𝑛
) ⪯ 𝑎
1
𝑑 (𝑥
∗
, 𝑥
𝑛
) + 𝑎
2
𝑑 (𝑥
∗
, 𝑓𝑥
∗
)

+ 𝑎
3
𝑑 (𝑥
𝑛
, 𝑔𝑥
𝑛
)

+ 𝑎
4
𝑑 (𝑥
𝑛
, 𝑓𝑥
∗
) + 𝑎
5
𝑑 (𝑥
∗
, 𝑔𝑥
𝑛
)

= 𝑎
1
𝑑 (𝑥
𝑛
, 𝑥
∗
) + 𝑎
2
𝑑 (𝑓𝑥
∗
, 𝑥
∗
)

+ 𝑎
3
𝑑 (𝑥
𝑛
, 𝑔𝑥
𝑛
)

+ 𝑎
4
𝑑 (𝑥
𝑛
, 𝑓𝑥
∗
) + 𝑎
5
𝑑 (𝑔𝑥
𝑛
, 𝑥
∗
)

⪯ 𝑎
1
𝑑 (𝑥
𝑛
, 𝑥
∗
)

+ 𝑎
2
(𝑑 (𝑓𝑥

∗
, 𝑔𝑥
𝑛
) + 𝑑 (𝑔𝑥

𝑛
, 𝑥
∗
))

+ 𝑎
3
(𝑑 (𝑥
𝑛
, 𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑔𝑥
𝑛
))

+ 𝑎
4
(𝑑 (𝑥
𝑛
, 𝑥
∗
) + 𝑑 (𝑥

∗
, 𝑔𝑥
𝑛
)

+𝑑 (𝑔𝑥
𝑛
, 𝑓𝑥
∗
))

+ 𝑎
5
𝑑 (𝑔𝑥
𝑛
, 𝑥
∗
)

= (𝑎
1
+ 𝑎
3
+ 𝑎
4
) 𝑑 (𝑥
𝑛
, 𝑥
∗
)

+ (𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5
) 𝑑 (𝑔𝑥

𝑛
, 𝑥
∗
)

+ (𝑎
2
+ 𝑎
4
) 𝑑 (𝑓𝑥

∗
, 𝑔𝑥
𝑛
) .

(29)

Hence,

𝑑 (𝑓𝑥
∗
, 𝑔𝑥
𝑛
) ⪯

𝑎
1
+ 𝑎
3
+ 𝑎
4

1 − (𝑎
2
+ 𝑎
4
)
𝑑 (𝑥
𝑛
, 𝑥
∗
)

+
𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5

1 − (𝑎
2
+ 𝑎
4
)

𝑑 (𝑔𝑥
𝑛
, 𝑥
∗
) .

(30)

Since 𝑥
𝑛
→ 𝑥∗ and 𝑔𝑥

𝑛
→ 𝑥∗, then by Definition 9(1)

and for 𝑐 ≫ 𝜃 there exists 𝑁
0
∈ N such that for all 𝑛 > 𝑁

0
,

𝑑(𝑥
𝑛
, 𝑥∗) ≪ 𝑐(1− (𝑎

2
+𝑎
4
))/2(𝑎

1
+𝑎
3
+𝑎
4
), and 𝑑(𝑔𝑥

𝑛
, 𝑥∗) ≪

𝑐(1 − (𝑎
2
+ 𝑎
4
))/2(𝑎

2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5
). Then we have

𝑑 (𝑔𝑥
𝑛
, 𝑓𝑥
∗
) = 𝑑 (𝑓𝑥

∗
, 𝑔𝑥
𝑛
)

⪯
𝑎
1
+ 𝑎
3
+ 𝑎
4

1 − (𝑎
2
+ 𝑎
4
)
𝑑 (𝑥
𝑛
, 𝑥
∗
)

+
𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5

1 − (𝑎
2
+ 𝑎
4
)

𝑑 (𝑔𝑥
𝑛
, 𝑥
∗
)

≪
𝑎
1
+ 𝑎
3
+ 𝑎
4

1 − (𝑎
2
+ 𝑎
4
)

𝑐 (1 − (𝑎
2
+ 𝑎
4
))

2 (𝑎
1
+ 𝑎
3
+ 𝑎
4
)

+
𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5

1 − (𝑎
2
+ 𝑎
4
)

𝑐 (1 − (𝑎
2
+ 𝑎
4
))

2 (𝑎
2
+ 𝑎
3
+ 𝑎
4
+ 𝑎
5
)

=
𝑐

2
+
𝑐

2

= 𝑐.

(31)

Now again, according to Definition 9(1) it follows that
𝑔𝑥
𝑛
→ 𝑓𝑥∗. It follows that 𝑓𝑥∗ = 𝑥∗. In a similar way and

using that 𝑥∗ ⊑ 𝑥∗, we can prove that 𝑔𝑥∗ = 𝑥∗. Therefore, 𝑓
and 𝑔 have a common fixed point.

Now, we present two examples to illustrate our results. In
the first example (the case of a normal cone), the conditions
of Theorem 12 are fulfilled, but Theorem 2 of Altun et al. [9,
Theorem 12] cannot be applied. In the second example (the
case of a nonnormal cone), the conditions of Theorem 12 are
fulfilled, butTheorem 3 of Altun et al. [9,Theorem 13] cannot
be applied.

Example 17. Let 𝑋 = [0, 1] endowed with the standard order
and 𝐸 = R2 and let 𝑃 = {(𝑥, 𝑦) : 𝑥, 𝑦 ≥ 0}. Define
𝑑 : 𝑋 × 𝑋 → 𝐸 as in Example 8. Define 𝑓 : 𝑋 → 𝑋

by 𝑓(𝑥) = 𝑥2/6. Then 𝑓 is a continuous and nondecreasing
mapping with respect to ⊑. Then we have

𝑑 (𝑓𝑥, 𝑓𝑦) = 𝑑(
𝑥
2

6
,
𝑦2

6
)

= (



𝑥2

6
−
𝑦2

6



2

,



𝑥2

6
−
𝑦2

6



2

)

=
1

36

𝑥 + 𝑦

2
(
𝑥 − 𝑦


2
,
𝑥 − 𝑦


2
)

⪯
4

36
(
𝑥 − 𝑦


2
,
𝑥 − 𝑦


2
)

⪯
4

36
𝑑 (𝑥, 𝑦) ,

(32)

where 𝑎
1
= 4/36, 𝑎

2
= 𝑎
3
= 𝑎
4
= 𝑎
5
= 0. It is clear that

the conditions of Theorem 12 are satisfied. Therefore, 𝑓 has a
fixed point 𝑥 = 0.
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Example 18. Let𝑋 = [0,∞) endowedwith the standard order
and 𝐸 = 𝐶1R[0, 1] with ‖𝑢‖ = ‖𝑢‖

∞
+ ‖𝑢‖

∞
, 𝑢 ∈ 𝐸 and let

𝑃 = {𝑢 ∈ 𝐸 : 𝑢(𝑡) ≥ 0 on [0, 1]}. It is well known that this
cone is solid, but it is not normal. Define a conemetric 𝑑 : 𝑋×
𝑋 → 𝐸 by 𝑑(𝑥, 𝑦)(𝑡) = |𝑥 − 𝑦|

2
𝑒𝑡. Then (𝑋, 𝑑) is a complete

cone b-metric space with the coefficient 𝑠 = 2. Let us define
𝑓 : 𝑋 → 𝑋 by 𝑓(𝑥) = 𝑥/2. Then 𝑓 is a continuous and
nondecreasing mapping with respect to ⊑. Then we have 𝑓 is
an increasing mapping; also we have

𝑑 (𝑓𝑥, 𝑓𝑦) (𝑡) =


1

2
𝑥 −

1

2
𝑦


2

𝑒
𝑡

=
1

4

𝑥 − 𝑦

2
𝑒
𝑡

⪯
1

4

𝑥 − 𝑦

2
𝑒
𝑡
+
1

5



𝑥

2



2

𝑒
𝑡

⪯
1

4
𝑑 (𝑥, 𝑦) (𝑡) +

1

5
𝑑 (𝑓𝑥, 𝑥) (𝑡) ,

(33)

where 𝑎
1
= 1/4, 𝑎

2
= 1/5, 𝑎

3
= 𝑎
4
= 𝑎
5
= 0. It is clear that

the conditions of Theorem 12 are satisfied. Therefore, 𝑓 has a
fixed point 𝑥 = 0.
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