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We present a simple way to produce good weights for several types of ergodic theorem including theWiener-Wintner type multiple
return time theorem and themultiple polynomial ergodic theorem.These weights are deterministic and come from orbits of certain
bounded linear operators on Banach spaces.This extends the known results for nilsequences and return time sequences of the form
(g(S𝑛y)) for a measure preserving system (Y, S) and 𝑔 ∈ 𝐿

∞

(𝑌), avoiding in the latter case the problem of finding the full measure
set of appropriate points y.

1. Introduction

The classical mean and pointwise ergodic theorems due to
von Neumann and Birkhoff, respectively, take their origin in
questions from statistical physics and found applications in
quite different areas of mathematics such as number theory,
stochastics, and harmonic analysis. Over the years, they were
extended and generalised inmanyways. For example, tomul-
tiple ergodic theorems, see Furstenberg [1], Bergelson et al.
[2], Host and Kra [3], Ziegler [4], and Tao [5], to theWiener-
Wintner theorem, see Assani [6], Lesigne [7], Frantzikinakis
[8], Host and Kra [9], and Eisner and Zorin-Kranich [10], to
the return time theorem and its generalisations, see Bourgain
et al. [11], Demeter et al. [12], Rudolph [13], Assani and Presser
[14, 15], and Zorin-Kranich [16], and to further weighted,
modulated, and subsequential ergodic theorems, see Berend
et al. [17], Below and Losert [18], Bourgain [19, 20], and
Wierdl [21].

The return time theorem due to Bourgain, solving a
quite long standing open problem, is a classical example of
a weighted pointwise ergodic theorem. It states that for every
measure preserving system (𝑌, 𝜇, 𝑆) and 𝑔 ∈ 𝐿

∞

(𝑌, 𝜇), the
sequence (𝑔(𝑆

𝑛

𝑦)) is for 𝜇-almost every 𝑦 a good weight for
the pointwise ergodic theorem. This means that for every
other system (𝑌

1
, 𝜇
1
, 𝑆
1
) and every 𝑔

1
∈ 𝐿
∞

(𝑌
1
, 𝜇
1
), the

weighted ergodic averages
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converge almost everywhere in𝑦
1
.The proof due to Bourgain

et al. [11], see also Lesigne et al. [22] and Zorin-Kranich [23],
is descriptive and gives conditions on 𝑦 to produce a good
weight. However, these conditions can be quite difficult to
check in a concrete situation. Later, Rudolph [13], see also
Assani and Presser [14] and Zorin-Kranich [16], gave a gener-
alisation of the return time theorem and showed that (in the
previous notation) the sequence (𝑔(𝑆

𝑛

𝑦)) is for almost every
𝑦 a universally good weight for multiple ergodic averages; see
Definition 4 later. However, the conditions on the point 𝑦 did
not become easier to check.

The most general class of systems for which the conver-
gence in the multiple return time theorem is known to hold
everywhere, hence, leading to good weights which are easy
to construct, are nilsystems, that is, systems of the form
𝑌 = 𝐺/Γ for a nilpotent Lie group 𝐺, a discrete cocompact
subgroup Γ, the Haarmeasure 𝜇 on𝐺/Γ, and the rotation 𝑆 by
some element of 𝐺. For such system (𝑌, 𝜇, 𝑆), 𝑔 ∈ 𝐶(𝑌) and
𝑦 ∈ 𝑌, the sequence (𝑔(𝑆

𝑛

𝑦)) is called a basic nilsequence.
A nilsequence is a uniform limit of basic nilsequences of the
same step, or, equivalently, a sequence of the form (𝑔(𝑆

𝑛

𝑦))

for an inverse limit 𝑌 of nilsystems of the same step, 𝑦 ∈ 𝑌,
a rotation 𝑆 on 𝑌 and 𝑔 ∈ 𝐶(𝑌); see Host and Maass
[24]. Indeed, recently Zorin-Kranich [16] proved theWiener-
Wintner type return time theorem for nilsequences showing
universal convergence of averages

1

𝑁

𝑁

∑

𝑛=1

𝑎
𝑛
𝑔
1
(𝑆
𝑛

1
𝑦
1
) ⋅ ⋅ ⋅ 𝑔

𝑘
(𝑆
𝑛

𝑘
𝑦
𝑘
) (2)



2 Abstract and Applied Analysis

for every 𝑘 ∈ N and every nilsequence (𝑎
𝑛
), where the uni-

versal sets of convergence do not depend on (𝑎
𝑛
). This gener-

alised an earlier result byAssani et al. [25] for sequences of the
form (𝜆

𝑛

), 𝜆 ∈ T , and 𝑘 = 2.
In this paper, we search for good weights for ergodic

theorems using a functional analytic perspective and produce
deterministic good weights. We first introduce sequences of
the form (⟨𝑇

𝑛

𝑥, 𝑥


⟩), which we call linear sequences if 𝑥 is in a
Banach space𝑋, 𝑥 ∈ 𝑋

 and 𝑇 is a linear operator on𝑋with
relatively weakly compact orbits; see Section 2 later. Using a
structure result for linear sequences, we show that they are
good weights for the multiple polynomial ergodic theorem
(Section 4) and for the Wiener-Wintner type multiple return
time theorem discussed (Section 3). In the last section, we
present a counterexample showing that the assumption on the
operators cannot be dropped even for positive isometries on
Banach lattices and the mean ergodic theorem.

We finally remark that all results in this paper hold if we
replace linear sequences by a larger class of “asymptotic nilse-
quences,” that is, for sequences (𝑎

𝑛
) of the form 𝑎

𝑛
= 𝑏
𝑛
+ 𝑐
𝑛
,

where (𝑏
𝑛
) is a nilsequence and (𝑐

𝑛
) is a bounded sequence

satisfying lim
𝑁→∞

(1/𝑁)∑
𝑁

𝑛=1
|𝑐
𝑛
| = 0 (cf. Theorem 3).

Examples of asymptotic nilsequences (of step ≥2 in general)
aremultiple polynomial correlation sequences (𝑎

𝑛
) of the form

𝑎
𝑛
= ∫
𝑌

𝑆
𝑝
1
(𝑛)

𝑔
1
⋅ ⋅ ⋅ 𝑆
𝑝
𝑘
(𝑛)

𝑔
𝑘
𝑑𝜇 (3)

for an ergodic invertible measure preserving system (𝑌, 𝜇, 𝑆),
𝑘 ∈ N, 𝑔

𝑗
∈ 𝐿
∞

(𝑌, 𝜇), and polynomials 𝑝
𝑗
with integer

coefficients, 𝑗 = 1, . . . , 𝑘. This follows from Leibman [26,
Theorem 3.1] and, in the case of linear polynomials, is due to
Bergelson et al. [27, Theorem 1.9]. Thus, multiple polynomial
correlation sequences provide another class of deterministic
examples of good weights for the Wiener-Wintner type
multiple return time theorem and the multiple polynomial
ergodic theorem discussed in Sections 3 and 4.

2. Linear Sequences and Their Structure

A linear operator 𝑇 on a Banach space𝑋 has relatively weakly
compact orbits if for every 𝑥 ∈ 𝑋, the orbit {𝑇𝑛𝑥, 𝑛 ∈ N

0
} is

relatively weakly compact in𝑋.

Definition 1. We call a sequence (𝑎
𝑛
) ⊂ C a linear sequence if

there exists an operator𝑇 on a Banach space𝑋with relatively
weakly compact orbits and 𝑥 ∈ 𝑋, 𝑥 ∈ 𝑋

, such that 𝑎
𝑛
=

⟨𝑇
𝑛

𝑥, 𝑥


⟩ holds for every 𝑛 ∈ N.

A large class of operators with relatively weakly compact
orbits, leading to a large class of linear sequences, are power
bounded operators on reflexive Banach spaces. Recall that an
operator𝑇 is called power bounded if it satisfies sup

𝑛∈N‖𝑇
𝑛

‖ <

∞. Another class of operators with relatively weakly compact
orbits are power bounded positive operators on a Banach
lattice 𝐿

1

(𝜇) preserving the order interval generated by a
strictly positive function; see, for example, Schaefer [28,The-
orem II.5.10(f) and Proposition II.8.3]. See [29, Section I.1]
and [30, Section 16.1] for further discussion.

Remark 2. By restricting to the closed linear invariant sub-
space 𝑌 := lin{𝑇𝑛𝑥, 𝑛 ∈ N

0
} induced by the orbit and using

the decomposition 𝑋


= 𝑌


⊕ 𝑌


0
for 𝑌
0
:= {𝑥


: 𝑥


|
𝑌
= 0}, it

suffices to assume that only the relevant orbit {𝑇𝑛𝑥, 𝑛 ∈ N
0
} is

relatively weakly compact in the definition of a linear
sequence (⟨𝑇

𝑛

𝑥, 𝑥


⟩). Note that in this case 𝑇 has relatively
weakly compact orbits on 𝑌 by a limiting argument; see, for
example, [29, Lemma I.1.6].

Weobtain the following structure result for linear sequen-
ces as a direct consequence of an extended Jacobs-Glicksberg-
deLeeuw decomposition for operators with relatively weakly
compact orbits.

Theorem 3. Every linear sequence is a sum of an almost
periodic sequence and a (bounded) sequence (𝑐

𝑛
) satisfying

lim
𝑁→∞

(1/𝑁)∑
𝑁

𝑛=1
|𝑐
𝑛
| = 0.

Proof. Let 𝑇 be an operator on a Banach space 𝑋 with
relatively weakly compact orbits. By the Jacobs-Glicksberg-
deLeeuw decomposition, see, for example, [29, Theorem
II.4.8],𝑋 = 𝑋

𝑟
⊕ 𝑋
𝑠
, where

𝑋
𝑟
= lin {𝑥 : 𝑇𝑥 = 𝜆𝑥 for some 𝜆 ∈ T} , (4)

while every 𝑥 ∈ 𝑋
𝑠

satisfies
lim
𝑁→∞

(1/𝑁)∑
𝑁

𝑛=1
|⟨𝑇
𝑛

𝑥, 𝑥


⟩| = 0 for every 𝑥


∈ 𝑋
.

(Recall that by the Koopman-von Neumann lemma, see,
for example, Petersen [31, p. 65], for bounded sequences the
condition lim

𝑁→∞
(1/𝑁)∑

𝑁

𝑛=1
|𝑐
𝑛
| = 0 is equivalent to

lim
𝑗→∞

𝑐
𝑛
𝑗

= 0 for some subsequence {𝑛
𝑗
} ⊂ N with density

1.)
Let 𝑥 ∈ 𝑋, 𝑥 ∈ 𝑋

 and define the sequence (𝑎
𝑛
) by 𝑎
𝑛
:=

⟨𝑇
𝑛

𝑥, 𝑥


⟩. For 𝑥 ∈ 𝑋
𝑠
we have lim

𝑁→∞
(1/𝑁)∑

𝑁

𝑛=1
|𝑎
𝑛
| = 0

by the aforementioned. If now 𝑥 is an eigenvector corre-
sponding to an eigenvalue 𝜆 ∈ T , then 𝑎

𝑛
= 𝜆
𝑛

⟨𝑥, 𝑥


⟩.
Therefore, for every 𝑥 ∈ 𝑋

𝑟
, the sequence (𝑎

𝑛
) is a uniform

limit of finite linear combinations of sequences (𝜆𝑛), 𝜆 ∈ T ,
and is therefore almost periodic. The assertion follows.

3. A Wiener-Wintner Type Result for
the Multiple Return Time Theorem

In this section, we show that one can take linear sequences as
weights in the multiple Wiener-Wintner type generalisation
of the return time theorem due to Zorin-Kranich [16] and
Assani et al. [25] discussed in the introduction.

First we recall the definition of a property satisfied
universally.

Definition 4. Let 𝑘 ∈ N and 𝑃 be a pointwise property for 𝑘
measure preserving dynamical systems. We say that a prop-
erty 𝑃 is satisfied universally almost everywhere if for every
system (𝑌

1
, 𝜇
1
, 𝑆
1
) and every 𝑔

1
∈ 𝐿
∞

(𝑌
1
, 𝜇
1
) there is a set

𝑌


1
⊂ 𝑌
1
of full measure such that for every 𝑦

1
∈ 𝑌


1
and

every system (𝑌
2
, 𝜇
2
, 𝑆
2
) . . . for every system (𝑌

𝑘
, 𝜇
𝑘
, 𝑆
𝑘
) and

𝑔
𝑘
∈ 𝐿
∞

(𝑌
𝑘
, 𝜇
𝑘
) there is a set 𝑌

𝑘
⊂ 𝑌
𝑘
of full measure such

that for every 𝑦
𝑘
∈ 𝑌


𝑘
the property 𝑃 holds.
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We show the following linear version of theWiener-Wint-
ner type multiple return time theorem.

Theorem 5. For every 𝑘 ∈ N, the weighted averages (2) con-
verge universally almost everywhere for every linear sequence
(𝑎
𝑛
), where the universal sets 𝑌

𝑗
, 𝑗 = 1, . . . , 𝑘, of full measure

are independent of (𝑎
𝑛
).

Proof. By Theorem 3, we can show the assertion for
almost periodic sequences and for (𝑎

𝑛
) satisfying

lim
𝑁→∞

(1/𝑁)∑
𝑁

𝑛=1
|𝑎
𝑛
| = 0 separately. For sequences

from the second class, the assertion follows from the estimate


1

𝑁

𝑁

∑

𝑛=1

𝑎
𝑛
𝑔
1
(𝑆
𝑛

1
𝑦
1
) ⋅ ⋅ ⋅ 𝑔

𝑘
(𝑆
𝑛

𝑘
𝑦
𝑘
)



≤
𝑔1

∞ ⋅ ⋅ ⋅
𝑔𝑘

∞

1

𝑁

𝑁

∑

𝑛=1

𝑎𝑛


(5)

with a clear choice of 𝑌
1
, . . . , 𝑌



𝑘
.

Universal convergence for almost periodic sequences is
a consequence of Zorin-Kranich’s result [16, Theorem 1.3]
which shows the assertion for the larger class of nilsequences.

4. Weighted Multiple Polynomial
Ergodic Theorem

Using the Host-Kra Wiener-Wintner type result for nilse-
quences and extending their result for linear polynomials
from [9], Chu [32] showed the following (see also [10] for
a slightly different proof). Let (𝑌, 𝜇, 𝑆) be a system and 𝑔 ∈

𝐿
∞

(𝑌, 𝜇). Then, for almost every 𝑦 ∈ 𝑌, the sequence
(𝑔(𝑆
𝑛

𝑦)) is a good weight for the multiple polynomial ergodic
theorem; that is, for the sequence of weights (𝑎

𝑛
) given by

𝑎
𝑛

:= 𝑔(𝑆
𝑛

𝑦) and for every 𝑘 ∈ N, the weighted multiple
polynomial averages

1
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1
𝑔
𝑘

(6)

converge in 𝐿
2 for every system (𝑌

1
, 𝜇
1
, 𝑆
1
) with invertible

𝑆
1
, every 𝑔

1
, . . . , 𝑔

𝑘
∈ 𝐿
∞

(𝑌
1
, 𝜇
1
), and every polynomial

𝑝
1
, . . . , 𝑝

𝑘
with integer coefficients.

The following result is a consequence of Chu [32, Theo-
rem 1.3], with the fact that the product of two nilsequences
is again a nilsequence and equidistribution theory for nilsys-
tems; see, for example, Parry [33] and Leibman [34].

Theorem6. Every nilsequence is a goodweight for themultiple
polynomial ergodic theorem.

This remains true when replacing a nilsequence by a lin-
ear sequence.

Theorem7. Every linear sequence is a goodweight for themul-
tiple polynomial ergodic theorem.

Proof. For an almost periodic sequence (𝑎
𝑛
), the averages (6)

converge in 𝐿
2 byTheorem 6. It is also clear that the averages

(6) converge to 0 in 𝐿
∞ for every sequence (𝑎

𝑛
) satisfying

lim
𝑁→∞

(1/𝑁)∑
𝑁

𝑛=1
|𝑎
𝑛
| = 0.The assertion follows now from

Theorem 3.

5. A Counter Example

The following example shows that if one does not assume rel-
ative weak compactness in the definition of linear sequences,
each of the previous results can fail dramatically even for
positive isometries on Banach lattices.

Example 8. Let𝑋 := 𝑙
1 and 𝑇 be the right shift operator; that

is,

𝑇 (𝑡
1
, 𝑡
2
, . . .) := (0, 𝑡

1
, 𝑡
2
, . . .) . (7)

We first show that for every 𝜆 ∈ T , 𝑥 = (𝑡
𝑗
) ∈ 𝑋, and 𝑥



=

(𝑠
𝑗
) ∈ 𝑋
, we have

lim
𝑁→∞
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∞
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𝑗



= 0. (8)

Indeed, take 𝜀 > 0 and 𝐽 ∈ N such that ∑∞
𝑗=𝐽+1

|𝑡
𝑗
| < 𝜀. Then,

for𝑁 ∈ N we have
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𝑥
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𝜀
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𝐽
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𝑗
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𝑛
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𝐽
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+ 2

𝑥

∞

𝜀

≤

2𝐽‖𝑥‖
1


𝑥

∞

𝑁
+ 2


𝑥

∞

𝜀.

(9)

Choosing, for example,𝑁 > 𝐽‖𝑥‖
1
/𝜀 finishes the proof of (8).

In particular, for 𝜆 = 1, we see that the sequence
(⟨𝑇
𝑛

𝑥, 𝑥


⟩) is Cesàro divergent for every 𝑥 = (𝑡
𝑗
) ∈ 𝑙
1 with

∑
∞

𝑗=1
𝑡
𝑗

̸= 0 and for every 𝑥


∈ 𝑙
∞ which is Cesàro divergent.

Note that the sets of such 𝑥 and 𝑥
 are open and dense in 𝑙

1

and 𝑙
∞, respectively. (The assertion for 𝑙1 is clear as well as the

openness of the set of Cesàro divergent sequences in 𝑙
∞, and

density follows from the fact that one can construct Cèsaro
divergent sequences of arbitrarily small supremum norm.)
Thus, for topologically very big sets of 𝑥 and 𝑥

 (with com-
plements being nowhere dense), the sequence (⟨𝑇

𝑛

𝑥, 𝑥


⟩) is
not a good weight for the mean ergodic theorem.

We further show that in fact for every 0 ̸= 𝑥 ∈ 𝑙
1, there

is 𝜆 ∈ T so that for every 𝑥


∈ 𝑙
∞ from a dense open set,

the sequence (𝜆𝑛⟨𝑇𝑛𝑥, 𝑥⟩) is Cesàro divergent, implying that
the sequence (⟨𝑇

𝑛

𝑥, 𝑥


⟩) is not a good weight for the mean
ergodic theorem.
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Take 0 ̸= 𝑥 = (𝑡
𝑗
) ∈ 𝑙
1 and define the function 𝑓 on the

unit disc D by 𝑓(𝑧) := ∑
∞

𝑗=1
𝑡
𝑗
𝑧
𝑗. Then, 𝑓 is a nonzero holo-

morphic function belonging to the Hardy space 𝐻
1

(D). By
Hardy space theory, see, for example, Rosenblum and
Rovnyak [35, Theorem 4.25], there is a set 𝑀 ⊂ T of positive
Lebesgue measure such that for every 𝜆 ∈ 𝑀, we have

lim
𝑟→1−

𝑓 (𝑟𝜆) =

∞

∑

𝑗=1

𝜆
𝑗

𝑡
𝑗

̸= 0. (10)

For every such 𝜆, by (8), we see that the sequence
(𝜆
𝑛

⟨𝑇
𝑛

𝑥, 𝑥


⟩) is Cesàro divergent for every 𝑥


= (𝑠
𝑗
) ∈ 𝑙
∞

such that (𝜆𝑗𝑠
𝑗
) is Cesàro divergent.The set of such 𝑥

 is open
and dense in 𝑙

∞ since it is the case for 𝜆 = 1, and the mul-
tiplication operator (𝑠

𝑗
) → (𝜆

𝑗

𝑠
𝑗
) is an invertible isometry.

Thus, for every 0 ̸= 𝑥 ∈ 𝑙
1, there is an open dense set of𝑥 ∈ 𝑙

∞

such that the sequence (⟨𝑇𝑛𝑥, 𝑥⟩) fails to be a goodweight for
the mean ergodic theorem.
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