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In this paper we find the best possible lower power mean bounds for the Neuman-Sándor mean and present the sharp bounds for
the ratio of the Neuman-Sándor and identric means.

1. Introduction

For 𝑝 ∈ R the 𝑝th power mean 𝑀𝑝(𝑎, 𝑏), Neuman-Sándor
Mean 𝑀(𝑎, 𝑏) [1], and identric mean 𝐼(𝑎, 𝑏) of two positive
numbers 𝑎 and 𝑏 are defined by

𝑀𝑝 (𝑎, 𝑏) =

{{

{{

{

(
𝑎
𝑝
+ 𝑏
𝑝

2
)

1/𝑝

, 𝑝 ̸= 0,

√𝑎𝑏, 𝑝 = 0,

(1)

𝑀(𝑎, 𝑏) =
{

{

{

𝑎 − 𝑏

2sinh−1 ((𝑎 − 𝑏) / (𝑎 + 𝑏))
, 𝑎 ̸= 𝑏,

𝑎, 𝑎 = 𝑏,

(2)

𝐼 (𝑎, 𝑏) =

{{

{{

{

1

𝑒
(
𝑏
𝑏

𝑎𝑎
)

1/(𝑏−𝑎)

, 𝑎 ̸= 𝑏,

𝑎, 𝑎 = 𝑏,

(3)

respectively, where sinh−1(𝑥) = log(𝑥+√1 + 𝑥2) is the inverse
hyperbolic sine function.

The main properties for 𝑀𝑝(𝑎, 𝑏) and 𝐼(𝑎, 𝑏) are given
in [2]. It is well known that 𝑀𝑝(𝑎, 𝑏) is continuously and
strictly increasing with respect to 𝑝 ∈ R for fixed 𝑎, 𝑏 > 0

with 𝑎 ̸= 𝑏. Recently, the power, Neuman-Sándor, and identric
means have been a subject of intensive research. In particular,
many remarkable inequalities for these means can be found
in the literature [3–26].

Let 𝐻(𝑎, 𝑏) = 2𝑎𝑏/(𝑎 + 𝑏), 𝐺(𝑎, 𝑏) = √𝑎𝑏, 𝐿(𝑎, 𝑏) =

(𝑏 − 𝑎)/(log 𝑏 − log 𝑎), 𝑃(𝑎, 𝑏) = (𝑎 − 𝑏)/[4 arctan(√𝑎/𝑏) − 𝜋],
𝐴(𝑎, 𝑏) = (𝑎+𝑏)/2,𝑇(𝑎, 𝑏) = (𝑎−𝑏)/[2 arctan((𝑎−𝑏)/(𝑎+𝑏))],
𝑄(𝑎, 𝑏) = √(𝑎2 + 𝑏2)/2, and 𝐶(𝑎, 𝑏) = (𝑎

2
+ 𝑏
2
)/(𝑎 + 𝑏) be the

harmonic, geometric, logarithmic, first Seiffert, arithmetic,
second Seiffert, quadratic, and contraharmonic means of two
positive numbers 𝑎 and 𝑏 with 𝑎 ̸= 𝑏, respectively. Then, it is
well known that the inequalities

𝐻(𝑎, 𝑏) = 𝑀−1 (𝑎, 𝑏) < 𝐺 (𝑎, 𝑏) = 𝑀0 (𝑎, 𝑏) < 𝐿 (𝑎, 𝑏)

<𝑃 (𝑎, 𝑏)<𝐼 (𝑎, 𝑏)<𝐴 (𝑎, 𝑏)=𝑀1 (𝑎, 𝑏)<𝑀 (𝑎, 𝑏)

< 𝑇 (𝑎, 𝑏) < 𝑄 (𝑎, 𝑏) = 𝑀2 (𝑎, 𝑏) < 𝐶 (𝑎, 𝑏) ,

(4)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
The following sharp bounds for 𝐿, 𝐼, (𝐼𝐿)1/2, and (𝐼+𝐿)/2

in terms of power means are presented in [27–32]:

𝑀0 (𝑎, 𝑏) < 𝐿 (𝑎, 𝑏) < 𝑀1/3 (𝑎, 𝑏) ,

𝑀2/3 (𝑎, 𝑏) < 𝐼 (𝑎, 𝑏) < 𝑀log 2 (𝑎, 𝑏) ,

𝑀0 (𝑎, 𝑏) < 𝐼
1/2

(𝑎, 𝑏) 𝐿
1/2

(𝑎, 𝑏) < 𝑀1/2 (𝑎, 𝑏) ,

1

2
[𝐼 (𝑎, 𝑏) + 𝐿 (𝑎, 𝑏)] < 𝑀1/2 (𝑎, 𝑏) ,

(5)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
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Pittenger [31] found the greatest value 𝑟1 and the least
value 𝑟2 such that the double inequality

𝑀𝑟
1
(𝑎, 𝑏) ≤ 𝐿𝑝 (𝑎, 𝑏) ≤ 𝑀𝑟

2
(𝑎, 𝑏) , (6)

holds for all 𝑎, 𝑏 > 0, where 𝐿𝑟(𝑎, 𝑏) is the 𝑟th generalized
logarithmic means which is defined by

𝐿𝑟 (𝑎, 𝑏) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

[
𝑏
𝑟+1

− 𝑎
𝑟+1

(𝑟 + 1) (𝑏 − 𝑎)
]

1/𝑟

, 𝑎 ̸=𝑏, 𝑟 ̸= − 1, 𝑟 ̸=0,

1

𝑒
(
𝑏
𝑏

𝑎𝑎
)

1/(𝑏−𝑎)

, 𝑎 ̸= 𝑏, 𝑟 = 0,

𝑏 − 𝑎

log 𝑏 − log 𝑎
, 𝑎 ̸= 𝑏, 𝑟 = −1,

𝑎, 𝑎 = 𝑏.

(7)

The following sharp power mean bounds for the first
Seiffert mean 𝑃(𝑎, 𝑏) are given in [10, 33]:

𝑀log 2/ log𝜋 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) < 𝑀2/3 (𝑎, 𝑏) , (8)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
In [17], the authors answered the question: for 𝛼 ∈ (0, 1),

what are the greatest value 𝑝 and the least value 𝑞 such that
the double inequality

𝑀𝑝 (𝑎, 𝑏) < 𝑃
𝛼
(𝑎, 𝑏) 𝐺

1−𝛼
(𝑎, 𝑏) < 𝑀𝑞 (𝑎, 𝑏) (9)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏?
Neuman and Sándor [1] established that

𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) <
𝐴 (𝑎, 𝑏)

log (1 + √2)
,

𝜋

4
𝑇 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) ,

𝑀 (𝑎, 𝑏) <
2𝐴 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

3
,

(10)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Let 0 < 𝑎, 𝑏 ≤ 1/2 with 𝑎 ̸= 𝑏, 𝑎󸀠 = 1 − 𝑎 and 𝑏󸀠 = 1 − 𝑏.

Then, the Ky Fan inequalities

𝐺 (𝑎, 𝑏)

𝐺 (𝑎󸀠, 𝑏󸀠)
<

𝐿 (𝑎, 𝑏)

𝐿 (𝑎󸀠, 𝑏󸀠)
<

𝑃 (𝑎, 𝑏)

𝑃 (𝑎󸀠, 𝑏󸀠)

<
𝐴 (𝑎, 𝑏)

𝐴 (𝑎󸀠, 𝑏󸀠)
<

𝑀 (𝑎, 𝑏)

𝑀 (𝑎󸀠, 𝑏󸀠)
<

𝑇 (𝑎, 𝑏)

𝑇 (𝑎󸀠, 𝑏󸀠)

(11)

were presented in [1].
In [24], Li et al. found the best possible bounds for the

Neuman-Sándor mean 𝑀(𝑎, 𝑏) in terms of the generalized

logarithmic mean 𝐿𝑟(𝑎, 𝑏). Neuman [25] and Zhao et al. [26]
proved that the inequalities

𝛼𝑄 (𝑎, 𝑏) + (1 − 𝛼)𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽𝑄 (𝑎, 𝑏) + (1 − 𝛽)𝐴 (𝑎, 𝑏) ,

𝜆𝐶 (𝑎, 𝑏) + (1 − 𝜆)𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝜇𝐶 (𝑎, 𝑏) + (1 − 𝜇)𝐴 (𝑎, 𝑏) ,

𝛼1𝐻(𝑎, 𝑏) + (1 − 𝛼1) 𝑄 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝛽1𝐻(𝑎, 𝑏) + (1 − 𝛽1) 𝑄 (𝑎, 𝑏) ,

𝛼2𝐺 (𝑎, 𝑏) + (1 − 𝛼2) 𝑄 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝛽2𝐺 (𝑎, 𝑏) + (1 − 𝛽2) 𝑄 (𝑎, 𝑏)

(12)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ [1 − log(1 +
√2)]/[(√2 − 1) log(1 + √2)], 𝛽 ≥ 1/3, 𝜆 ≤ [1 − log(1 +
√2)]/ log(1 + √2), 𝜇 ≥ 1/6, 𝛼1 ≥ 2/9, 𝛽1 ≤ 1 − 1/[√2 log(1 +
√2)], 𝛼2 ≥ 1/3, and 𝛽2 ≤ 1 − 1/[√2 log(1 + √2)].

In [7], Sándor and Trif proved that the inequalities

𝑒
((𝑎−𝑏)

2
/6(𝑎+𝑏)

2
)
<
𝐴 (𝑎, 𝑏)

𝐼 (𝑎, 𝑏)
< 𝑒
((𝑎−𝑏)

2
/24𝑎𝑏)

,

𝑒
((𝑎−𝑏)

2
/3(𝑎+𝑏)

2
)
<
𝐼 (𝑎, 𝑏)

𝐺 (𝑎, 𝑏)
< 𝑒
((𝑎−𝑏)

2
/12𝑎𝑏)

,

𝑒
((𝑎−𝑏)

4
/30(𝑎+𝑏)

4
)
<

𝐼 (𝑎, 𝑏)

𝐴2/3 (𝑎, 𝑏) 𝐺1/3 (𝑎, 𝑏)

< 𝑒
((𝑎−𝑏)

4
/120𝑎𝑏(𝑎+𝑏)

4
)

(13)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Neuman and Sándor [15] and Gao [20] proved that 𝛼1 =

1, 𝛽1 = 𝑒/2, 𝛼2 = 1, 𝛽2 = 2√2/𝑒, 𝛼3 = 1, 𝛽3 = 3/𝑒, 𝛼4 = 𝑒/𝜋,
𝛽4 = 1, 𝛼5 = 1, and 𝛽5 = 2𝑒/𝜋 are the best possible constants
such that the double inequalities 𝛼1 < 𝐴(𝑎, 𝑏)/𝐼(𝑎, 𝑏) <

𝛽1, 𝛼2 < 𝐼(𝑎, 𝑏)/𝑀2/3(𝑎, 𝑏) < 𝛽2, 𝛼3 < 𝐼(𝑎, 𝑏)/𝐻𝑒(𝑎, 𝑏) < 𝛽3,
𝛼4 < 𝑃(𝑎, 𝑏)/𝐼(𝑎, 𝑏) < 𝛽4, and 𝛼5 < 𝑇(𝑎, 𝑏)/𝐼(𝑎, 𝑏) < 𝛽5 hold
for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where𝐻𝑒(𝑎, 𝑏) = (𝑎 +√𝑎𝑏+ 𝑏)/3 =

(2𝐴(𝑎, 𝑏) + 𝐺(𝑎, 𝑏))/3 is the Heronian mean of 𝑎 and 𝑏.
In [34], Sándor established that

𝐻𝑒 (𝑎, 𝑏) < 𝑀2/3 (𝑎, 𝑏) , (14)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
It is not difficult to verify that the inequality

2𝐴 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

3
< [𝐻𝑒 (𝑎

2
, 𝑏
2
)]
1/2 (15)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
From inequalities (10), (14), and (15), one has

𝑀(𝑎, 𝑏) < [𝑀2/3 (𝑎
2
, 𝑏
2
)]
1/2

= 𝑀4/3 (𝑎, 𝑏) , (16)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
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It is the aim of this paper to find the best possible lower
power mean bound for the Neuman-Sándor mean 𝑀(𝑎, 𝑏)

and to present the sharp constants 𝛼 and 𝛽 such that the
double inequality

𝛼 <
𝑀(𝑎, 𝑏)

𝐼 (𝑎, 𝑏)
< 𝛽 (17)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

2. Main Results

Theorem 1. 𝑝0 = (log 2)/ log [2 log(1 + √2)] = 1.224 . . . is
the greatest value such that the inequality

𝑀(𝑎, 𝑏) > 𝑀𝑝
0
(𝑎, 𝑏) (18)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

Proof. From (1) and (2), we clearly see that both 𝑀(𝑎, 𝑏)

and𝑀𝑝(𝑎, 𝑏) are symmetric and homogenous of degree one.
Without loss of generality, we assume that 𝑏 = 1 and 𝑎 = 𝑥 >

1.
Let 𝑝0 = (log 2)/ log [2 log(1 + √2)], then from (1) and

(2) one has

log𝑀(𝑥, 1) − log𝑀𝑝
0
(𝑥, 1)

= log 𝑥 − 1

2sinh−1 ((𝑥 − 1) / (𝑥 + 1))
−

1

𝑝0
log 𝑥
𝑝
0 + 1

2
.

(19)

Let

𝑓 (𝑥) = log 𝑥 − 1

2sinh−1 ((𝑥 − 1) / (𝑥 + 1))
−

1

𝑝0
log 𝑥
𝑝
0 + 1

2
.

(20)

Then, simple computations lead to

lim
𝑥→1+

𝑓 (𝑥) = 0, (21)

lim
𝑥→+∞

𝑓 (𝑥) =
1

𝑝0
log 2 − log [2sinh−1 (1)] = 0, (22)

𝑓
󸀠
(𝑥) =

(1 + 𝑥
𝑝
0
−1
) 𝑓1 (𝑥)

(𝑥 − 1) (𝑥𝑝0 + 1) sinh−1 ((𝑥 − 1) / (𝑥 + 1))
, (23)

where

𝑓1 (𝑥) = −
√2 (𝑥 − 1) (𝑥

𝑝
0 + 1)

(𝑥 + 1) (𝑥𝑝0−1 + 1)√1 + 𝑥2
+ sinh−1 (𝑥 − 1

𝑥 + 1
) ,

𝑓1 (1) = 0,

(24)

lim
𝑥→+∞

𝑓1 (𝑥) = −√2 + sinh−1 (1) = −0.5328 ⋅ ⋅ ⋅ < 0, (25)

𝑓
󸀠

1
(𝑥) =

√2 (𝑥 − 1) 𝑓2 (𝑥)

(𝑥 + 1)
2
(𝑥𝑝0−1 + 1)

2
(1 + 𝑥2)

3/2
, (26)

where

𝑓2 (𝑥) = 1 + 𝑥 + 2𝑥
2
+ (𝑝0 − 1) 𝑥

𝑝
0
−2
− 𝑥
𝑝
0
−1
+ 𝑥
𝑝
0
+1

− (𝑝0 − 1) 𝑥
𝑝
0
+2
− 2𝑥
2𝑝
0
−2
− 𝑥
2𝑝
0
−1
− 𝑥
2𝑝
0 ,

𝑓2 (1) = 0,

(27)

lim
𝑥→+∞

𝑓2 (𝑥) = −∞, (28)

𝑓
󸀠

2
(𝑥) = 1 + 4𝑥 + (𝑝0 − 1) (𝑝0 − 2) 𝑥

𝑝
0
−3
− (𝑝0 − 1) 𝑥

𝑝
0
−2

+ (𝑝0 + 1) 𝑥
𝑝
0 − (𝑝0 − 1) (𝑝0 + 2) 𝑥

𝑝
0
+1

− 4 (𝑝0−1) 𝑥
2𝑝
0
−3
−(2𝑝0−1) 𝑥

2𝑝
0
−2
−2𝑝0𝑥

2𝑝
0
−1
,

𝑓
󸀠

2
(1) = 4 (4 − 3𝑝0) > 0,

(29)

lim
𝑥→+∞

𝑓
󸀠

2
(𝑥) = −∞, (30)

𝑓
󸀠󸀠

2
(𝑥) = 4 + (𝑝0 − 1) (𝑝0 − 2) (𝑝0 − 3) 𝑥

𝑝
0
−4

− (𝑝0 − 1) (𝑝0 − 2) 𝑥
𝑝
0
−3
+ 𝑝0 (𝑝0 + 1) 𝑥

𝑝
0
−1

− (𝑝0 − 1) (𝑝0 + 2) (𝑝0 + 1) 𝑥
𝑝
0

− 4 (𝑝0 − 1) (2𝑝0 − 3) 𝑥
2𝑝
0
−4

− 2 (2𝑝0 − 1) (𝑝0 − 1) 𝑥
2𝑝
0
−3

− 2𝑝0 (2𝑝0 − 1) 𝑥
2𝑝
0
−2
,

𝑓
󸀠󸀠

2
(1) = 4 (2𝑝0 − 1) (4 − 3𝑝0) > 0,

(31)

lim
𝑥→+∞

𝑓
󸀠󸀠

2
(𝑥) = −∞, (32)

𝑓
󸀠󸀠󸀠

2
(𝑥) = (𝑝0 − 1) 𝑥

𝑝
0
−5
𝑓3 (𝑥) , (33)

where

𝑓3 (𝑥) = − (2 − 𝑝0) (3 − 𝑝0) (4 − 𝑝0) − (2 − 𝑝0) (3 − 𝑝0) 𝑥

+ 𝑝0 (𝑝0 + 1) 𝑥
3
− 𝑝0 (𝑝0 + 1) (𝑝0 + 2) 𝑥

4

− 8 (3−2𝑝0) (2−𝑝0) 𝑥
𝑝
0+2 (2𝑝0−1) (3−2𝑝0) 𝑥

𝑝
0
+1

− 4𝑝0 (2𝑝0 − 1) 𝑥
𝑝
0
+2

< − (2 − 𝑝0) (3 − 𝑝0) (4 − 𝑝0)

− (2 − 𝑝0) (3 − 𝑝0) 𝑥 + 𝑝0 (𝑝0 + 1) 𝑥
4

− 𝑝0 (𝑝0 + 1) (𝑝0 + 2) 𝑥
4
− 8 (3 − 2𝑝0) (2 − 𝑝0) 𝑥

𝑝
0

+ 2 (2𝑝0 − 1) (3 − 2𝑝0) 𝑥
𝑝
0
+2
− 4𝑝0 (2𝑝0 − 1) 𝑥

𝑝
0
+2

= − (2 − 𝑝0) (3 − 𝑝0) (4 − 𝑝0) − (2 − 𝑝0) (3 − 𝑝0) 𝑥

− 𝑝0(𝑝0 + 1)
2
𝑥
4
− 8 (3 − 2𝑝0) (2 − 𝑝0) 𝑥

𝑝
0

− 2 (2𝑝0 − 1) (4𝑝0 − 3) 𝑥
𝑝
0
+2
< 0,

(34)

for 𝑥 > 1.
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Equation (33) and inequality (34) imply that 𝑓󸀠󸀠
2
(𝑥) is

strictly decreasing on [1, +∞). Then, the inequality (31) and
(32) lead to the conclusion that there exists 𝑥1 > 1, such that
𝑓
󸀠

2
(𝑥) is strictly increasing on [1, 𝑥1] and strictly decreasing

on [𝑥1, +∞).
From (29) and (30) together with the piecewise mono-

tonicity of 𝑓󸀠
2
(𝑥), we clearly see that there exists 𝑥2 > 𝑥1 > 1,

such that 𝑓2(𝑥) is strictly increasing on [1, 𝑥2] and strictly
decreasing on [𝑥2, +∞).

It follows from (26)–(28) and the piecewise monotonicity
of 𝑓2(𝑥) that there exists 𝑥3 > 𝑥2 > 1, such that 𝑓1(𝑥),
is strictly increasing on [1, 𝑥3] and strictly decreasing on
[𝑥3, +∞).

From (23)–(25) and the piecewise monotonicity of 𝑓1(𝑥)
we see that there exists 𝑥4 > 𝑥3 > 1, such that 𝑓(𝑥) is strictly
increasing on (1, 𝑥4] and strictly decreasing on [𝑥4, +∞).

Therefore, 𝑀(𝑥, 1) > 𝑀𝑝
0

(𝑥, 1) for 𝑥 > 1 follows easily
from (19)–(22) and the piecewise monotonicity of 𝑓(𝑥).

Next, we prove that 𝑝0 = (log 2)/ log [2 log(1 + √2)] =

1.224 . . . is the greatest value such that 𝑀(𝑥, 1) > 𝑀𝑝
0

(𝑥, 1)

for all 𝑥 > 1.
For any 𝜀 > 0 and 𝑥 > 1, from (1) and (2), one has

lim
𝑥→+∞

𝑀𝑝
0
+𝜀 (𝑥, 1)

𝑀 (𝑥, 1)

= lim
𝑥→+∞

[(
1 + 𝑥
𝑝
0
+𝜀

2
)

1/(𝑝
0
+𝜀)

2sinh−1 ((𝑥 − 1) / (𝑥 + 1))
𝑥 − 1

]

= 2
−1/(𝑝

0
+𝜀)

× 2sinh−1 (1)

= 2
𝜀/𝑝
0
(𝑝
0
+𝜀)

> 1.

(35)
Inequality (35) implies that for any 𝜀 > 0, there exists𝑋 =

𝑋(𝜀) > 1, such that𝑀(𝑥, 1) < 𝑀𝑝
0
+𝜀(𝑥, 1) for 𝑥 ∈ (𝑋, +∞).

Remark 2. 4/3 is the least value such that inequality (16) holds
for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, namely, 𝑀4/3(𝑎, 𝑏) is the best
possible upper power mean bound for the Neuman-Sándor
mean𝑀(𝑎, 𝑏).

In fact, for any 𝜀 ∈ (0, 4/3) and 𝑥 > 0, one has
𝑀4/3−𝜀 (1 + 𝑥, 1) − 𝑀 (1 + 𝑥, 1)

= [
(1 + 𝑥)

4/3−𝜀
+ 1

2
]

1/(4/3−𝜀)

−
𝑥

2sinh−1 (𝑥/ (2 + 𝑥))
.

(36)
Letting 𝑥 → 0 and making use of Taylor expansion, we

get

[
(1 + 𝑥)

4/3−𝜀
+ 1

2
]

1/(4/3−𝜀)

−
𝑥

2sinh−1 (𝑥/ (2 + 𝑥))

= [1 +
4 − 3𝜀

6
𝑥 +

(4 − 3𝜀) (1 − 3𝜀)

36
𝑥
2
+ 𝑜 (𝑥

2
)]

1/(4/3−𝜀)

−
𝑥

𝑥 − (1/2) 𝑥2 + (5/24) 𝑥3 + 𝑜 (𝑥3)

= [1 +
1

2
𝑥 +

1 − 3𝜀

24
𝑥
2
+ 𝑜 (𝑥

2
)]

− [1 +
1

2
𝑥 +

1

24
𝑥
2
+ 𝑜 (𝑥

2
)] = −

𝜀

8
𝑥
2
+ 𝑜 (𝑥

2
) .

(37)

Equations (36) and (37) imply that for any 𝜀 ∈ (0, 4/3)

there exists 𝛿 = 𝛿(𝜀) > 0, such that𝑀(1+𝑥, 1) > 𝑀(4/3)−𝜀(1+

𝑥, 1) for 𝑥 ∈ (0, 𝛿).

Theorem 3. For all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, one has

1 <
𝑀 (𝑎, 𝑏)

𝐼 (𝑎, 𝑏)
<

𝑒

2 log (1 + √2)
, (38)

with the best possible constants 1 and 𝑒/[2 log(1 + √2)] =

1.5419 . . ..

Proof. From (2) and (3), we clearly see that both 𝑀(𝑎, 𝑏)

and 𝐼(𝑎, 𝑏) are symmetric and homogenous of degree one.
Without loss of generality, we assume that 𝑏 = 1 and 𝑎 =

𝑥 > 1. Let

𝑓 (𝑥) =
𝑀 (𝑥, 1)

𝐼 (𝑥, 1)
=

𝑒 (𝑥 − 1)

2𝑥𝑥/(𝑥−1)sinh−1 ((𝑥 − 1) / (𝑥 + 1))
.

(39)

Then, simple computations lead to

𝑓
󸀠
(𝑥)

𝑓 (𝑥)
=

log𝑥
(𝑥 − 1)

2sinh−1 ((𝑥 − 1) / (𝑥 + 1))
𝑓1 (𝑥) , (40)

where

𝑓1 (𝑥) = sinh−1 (𝑥 − 1
𝑥 + 1

) −
√2(𝑥 − 1)

2

(𝑥 + 1)√1 + 𝑥2 log𝑥
,

lim
𝑥→1+

𝑓1 (𝑥) = 0,

(41)

𝑓
󸀠

1
(𝑥) =

√2𝑓2 (𝑥)

𝑥(𝑥 + 1)
2
(1 + 𝑥2)

3/2log2𝑥
, (42)

where

𝑓2 (𝑥) = 𝑥 (𝑥 + 1) (1 + 𝑥
2
) log2𝑥

− 𝑥 (3𝑥
3
− 𝑥
2
+ 𝑥 − 3) log𝑥

+ (𝑥 − 1)
2
(𝑥 + 1) (1 + 𝑥

2
) ,

𝑓2 (1) = 0,

(43)
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𝑓
󸀠

2
(𝑥) = (4𝑥

3
+ 3𝑥
2
+ 2𝑥 + 1) log2𝑥

+ 5 (−2𝑥
3
+ 𝑥
2
+ 1) log𝑥 + 5𝑥4

− 7𝑥
3
+ 𝑥
2
− 𝑥 + 2,

𝑓
󸀠

2
(1) = 0,

(44)

𝑓
󸀠󸀠

2
(𝑥) = 2 (6𝑥

2
+ 3𝑥 + 1) log2𝑥

+ 2 (−11𝑥
2
+ 8𝑥 + 2 + 𝑥

−1
) log𝑥 + 20𝑥3

− 31𝑥
2
+ 7𝑥 − 1 + 5𝑥

−1
,

𝑓
󸀠󸀠

2
(1) = 0,

(45)

𝑓
󸀠󸀠󸀠

2
(𝑥) = 6 (4𝑥 + 1) log2𝑥

+ 2 (−10𝑥 + 14 + 2𝑥
−1
− 𝑥
−2
) log𝑥

+ 60𝑥
2
− 84𝑥 + 23 + 4𝑥

−1
− 3𝑥
−2
,

𝑓
󸀠󸀠󸀠

2
(1) = 0,

(46)

𝑓
(4)

2
(𝑥) = 24log2𝑥 + 4 (7 + 3𝑥−1 − 𝑥−2 + 𝑥−3) log𝑥

+ 120𝑥 − 104 + 28𝑥
−1
+ 4𝑥
−3
> 0

(47)

for 𝑥 > 1.
From (46) and (47), we clearly see that 𝑓󸀠󸀠

2
(𝑥) is strictly

increasing on [1, +∞).Then, (45) leads to the conclusion that
𝑓
󸀠

2
(𝑥) is strictly increasing on [1, +∞).
Equations (43) and (44) together with the monotonicity

of 𝑓󸀠
2
(𝑥) impliy that 𝑓2(𝑥) > 0 for 𝑥 > 1. Then, (42) leads to

the conclusion that 𝑓1(𝑥) is strictly increasing on [1, +∞).
It follows from equations (40) and (41) together with

the monotonicity of 𝑓1(𝑥) that 𝑓(𝑥) is strictly increasing on
(1, +∞).

Therefore, Theorem 3 follows from (39) and the mono-
tonicity of 𝑓(𝑥) together with the facts that

lim
𝑥→+∞

𝑓 (𝑥) =
𝑒

2 log (1 + √2)
,

lim
𝑥→1+

𝑓 (𝑥) = 1.

(48)
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