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A nonlinear generalization of the famous Camassa-Holmmodel is investigated. Provided that initial value 𝑢𝑢0 ∈ 𝐻𝐻
𝑠𝑠(𝑅𝑅𝑅(𝑅 𝑅 𝑠𝑠 𝑅 𝑅𝑅𝑅𝑅

and (𝑅 − 𝜕𝜕𝑅𝑥𝑥𝑅𝑢𝑢0 satis�es an associated sign condition, it is shown that there exists a unique global weak solution to the equation in
space 𝑢𝑢(𝑢𝑢𝑢 𝑥𝑥𝑅 ∈ 𝑢𝑢𝑅([0𝑢 +∞𝑅𝑢𝐻𝐻𝑠𝑠(𝑅𝑅𝑅𝑅 in the sense of distribution, and 𝑢𝑢𝑥𝑥 ∈ 𝑢𝑢

∞([0𝑢 +∞𝑅 × 𝑅𝑅𝑅.

1. Introduction

In recent years, a lot of works have been carried out to
investigate the Camassa-Holm equation [1],

𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑢𝑢𝑥𝑥 + 𝑅𝑢𝑢𝑢𝑢𝑥𝑥 = 𝑅𝑢𝑢𝑥𝑥𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑢 (1)

which is a completely integrable equation. In fact, the
Camassa-Holm equation arises as a model describing the
unidirectional propagation of shallow water waves over a
�at bottom [1–3]. e equation was originally derived much
earlier as a bi-Hamiltonian generalization of the Korteweg-
de Vries equation (see [4]). Johnson [2], Constantin and
Lannes [5] derivedmodels which include the Camassa-Holm
equation (1). It has been found that (1) conforms with many
conservation laws (see [6, 7]) and possesses smooth solitary
wave solutions if 𝑘𝑘 𝑘 0 [3, 8] or peakons if 𝑘𝑘 = 0 [3, 9].
Equation (1) is also regarded as a model of the geodesic
�ow for the 𝐻𝐻𝑅 right invariant metric on the Bott-Virasoro
group if 𝑘𝑘 𝑘 0 and on the diffeomorphism group if 𝑘𝑘 = 0
(see [10–14]). e well-posedness of local strong solutions
for generalized forms of (1) has been given in [15–17].
e sharpest results for the global existence and blow-up
solutions are found in Bressan and Constantin [18, 19].

Recently, Li et al. [20] studied the following generalized
Camassa-Holm equation:

𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑢𝑢
𝑚𝑚𝑢𝑢𝑥𝑥 + (𝑚𝑚 + 𝑅𝑅 𝑢𝑢𝑚𝑚+𝑅𝑢𝑢𝑥𝑥

= (𝑚𝑚 + 𝑅𝑅 𝑢𝑢𝑚𝑚𝑢𝑢𝑥𝑥𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢
𝑚𝑚+𝑅𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑢

(2)

where 𝑚𝑚 𝑚 0 is a natural number. Obviously, (2) reduces
to (1) if 𝑚𝑚 = 0. e authors applied the pseudoparabolic
regularization technique to build the local well-posedness
for (2) in Sobolev space 𝐻𝐻𝑠𝑠(𝑅𝑅𝑅 with 𝑠𝑠 𝑘 𝑅𝑅𝑅 via a limiting
procedure. Provided that the initial value 𝑢𝑢0 satis�es a
sign condition and 𝑢𝑢0 ∈ 𝐻𝐻𝑠𝑠(𝑅𝑅𝑅(𝑠𝑠 𝑘 𝑅𝑅𝑅𝑅, it is shown
that there exists a unique global strong solution for (2) in
space𝐶𝐶([0𝑢∞𝑅𝐶𝐻𝐻𝑠𝑠(𝑅𝑅𝑅𝑅⋂𝐶𝐶𝑅([0𝑢∞𝑅𝐶𝐻𝐻𝑠𝑠−𝑅(𝑅𝑅𝑅𝑅. However, the
existence and uniqueness of the global weak solution for (2)
is not investigated in [20].

e objective of this paper is to establish the well-
posedness of global weak solutions for (2). Using the esti-
mates in𝐻𝐻𝑞𝑞(𝑅𝑅𝑅with 0 𝑅 𝑞𝑞 𝑅 𝑅𝑅𝑅, which are derived from the
equation itself, we prove that there exists a unique global weak
solution to (2) in space𝐻𝐻𝑠𝑠(𝑅𝑅𝑅with 𝑅 𝑅 𝑠𝑠 𝑅 𝑅𝑅𝑅 if 𝑢𝑢0 ∈ 𝐻𝐻

𝑠𝑠(𝑅𝑅𝑅,
and (𝑅 − 𝜕𝜕𝑅𝑥𝑥𝑅𝑢𝑢0 satis�es an associated sign condition.

e structure of this paper is as follows. e main result
is given in Section 2. Several lemmas are given in Section 3.
Section 4 establishes the proof of the main result.

2. Main Results

Firstly, we give some notations.
e space of all in�nitely differentiable functions 𝜙𝜙(𝑢𝑢𝑢 𝑥𝑥𝑅

with compact support in [0𝑢 +∞𝑅 × 𝑅𝑅 is denoted by 𝐶𝐶∞
0 .

𝑢𝑢𝑝𝑝 = 𝑢𝑢𝑝𝑝(𝑅𝑅𝑅 (𝑅 𝑅 𝑝𝑝 𝑅 +∞𝑅 is the space of all mea-
surable functions ℎ such that ‖ℎ‖𝑝𝑝𝑢𝑢𝑝𝑝 = ∫𝑅𝑅 |ℎ(𝑢𝑢𝑢 𝑥𝑥𝑅|

𝑝𝑝𝑑𝑑𝑥𝑥 𝑅
∞. We de�ne 𝑢𝑢∞ = 𝑢𝑢∞(𝑅𝑅𝑅 with the standard norm
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‖ℎ‖𝐿𝐿∞ = inf𝑚𝑚𝑚𝑚𝑚𝑚=𝑚 sup𝑥𝑥𝑥𝑥𝑥𝑥𝑚𝑚 |ℎ𝑚𝑡𝑡𝑡 𝑥𝑥𝑚|. For any real number 𝑠𝑠,
we let𝐻𝐻𝑠𝑠 = 𝐻𝐻𝑠𝑠𝑚𝑥𝑥𝑚 denote the Sobolev space with the norm
de�ned by

‖ℎ‖𝐻𝐻𝑠𝑠 = 
𝑥𝑥
1 + 𝜉𝜉2

𝑠𝑠
ℎ 𝑚𝑡𝑡𝑡 𝜉𝜉𝑚

2
𝑑𝑑𝜉𝜉

1/2
< ∞𝑡 (3)

where ℎ𝑚𝑡𝑡𝑡 𝜉𝜉𝑚 = 𝑡𝑥𝑥 𝑚𝑚
−𝑖𝑖𝑥𝑥𝜉𝜉ℎ𝑚𝑡𝑡𝑡 𝑥𝑥𝑚𝑑𝑑𝑥𝑥.

For𝑇𝑇 𝑇 𝑚 and nonnegative number 𝑠𝑠, let𝐶𝐶𝑚𝐶𝑚𝑡 𝑇𝑇𝑚𝐶𝐻𝐻𝑠𝑠𝑚𝑥𝑥𝑚𝑚
denote the Frechet space of all continuous 𝐻𝐻𝑠𝑠-valued func-
tions on 𝐶𝑚𝑡 𝑇𝑇𝑚. We set Λ = 𝑚1 − 𝜕𝜕2𝑥𝑥𝑚

1/2.
�e�ning

𝜙𝜙 𝑚𝑥𝑥𝑚 = 𝑚𝑚
1/𝑚𝑥𝑥2−1𝑚𝑡 |𝑥𝑥| < 1𝑡
𝑚𝑡 |𝑥𝑥| ≥ 1𝑡

(4)

and letting 𝜙𝜙𝜀𝜀𝑚𝑥𝑥𝑚 = 𝜀𝜀−𝑚1/4𝑚𝜙𝜙𝑚𝜀𝜀−𝑚1/4𝑚𝑥𝑥𝑚 with 𝑚 < 𝜀𝜀 < 1/4 and
𝑢𝑢𝜀𝜀𝑚 = 𝜙𝜙𝜀𝜀 ⋆ 𝑢𝑢𝑚 (convolution of 𝜙𝜙𝜀𝜀 and 𝑢𝑢𝑚), we know that 𝑢𝑢𝜀𝜀𝑚 𝑥
𝐶𝐶∞ for any 𝑢𝑢𝑚 𝑥 𝐻𝐻

𝑠𝑠 with 𝑠𝑠 𝑇 𝑚. Notation 𝑚1 − 𝜕𝜕2𝑥𝑥𝑚𝑢𝑢 + 𝑢𝑢/2𝑚𝑚𝑚+
1𝑚 𝑥 𝑁𝑁+𝑚𝑥𝑥𝑚 (or equivalently 𝑚1 − 𝜕𝜕2𝑥𝑥𝑚𝑢𝑢 + 𝑢𝑢/2𝑚𝑚𝑚+1𝑚 𝑥 𝑁𝑁−𝑚𝑥𝑥𝑚)
means that 𝑚1 − 𝜕𝜕2𝑥𝑥𝑚𝑢𝑢 ⋆ 𝜙𝜙𝜀𝜀 + 𝑢𝑢/2𝑚𝑚𝑚 + 1𝑚 ≥ 𝑚 (or equivalently
𝑚1 − 𝜕𝜕2𝑥𝑥𝑚𝑢𝑢 ⋆ 𝜙𝜙𝜀𝜀 + 𝑢𝑢/2𝑚𝑚𝑚 + 1𝑚 𝑘 𝑚) for an arbitrary sufficiently
small 𝜀𝜀 𝑇 𝑚.

For the equivalent form of (2), we consider its Cauchy
problem

𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑡𝑡𝑥𝑥𝑥𝑥 = −
𝑢𝑢

𝑚𝑚 + 1
𝑢𝑢𝑚𝑚+1𝑥𝑥 −

𝑚𝑚 + 𝑚
𝑚𝑚 + 2

𝑢𝑢𝑚𝑚+2𝑥𝑥

+
1

𝑚𝑚 + 2
𝜕𝜕𝑚𝑥𝑥 𝑢𝑢

𝑚𝑚+2 − 𝑚𝑚𝑚 + 1𝑚 𝜕𝜕𝑥𝑥 𝑢𝑢
𝑚𝑚𝑢𝑢2𝑥𝑥

+ 𝑢𝑢𝑚𝑚𝑢𝑢𝑥𝑥𝑢𝑢𝑥𝑥𝑥𝑥𝑡

𝑢𝑢 𝑚𝑚𝑡 𝑥𝑥𝑚 = 𝑢𝑢𝑚 𝑚𝑥𝑥𝑚 .

(5)

�e�nition �. A function 𝑢𝑢𝑚𝑡𝑡𝑡 𝑥𝑥𝑚 𝑥 𝐿𝐿2𝑚𝐶𝑚𝑡 +∞𝑚𝑡𝐻𝐻𝑠𝑠𝑚𝑥𝑥𝑚𝑚 is
called a global weak solution to problem (5) if for every𝑇𝑇 𝑇 𝑚,
𝑢𝑢𝑚𝑡𝑡𝑡 𝑥𝑥𝑚 𝑥 𝐻𝐻𝑠𝑠𝑚𝑥𝑥𝑚𝑡 𝑢𝑢𝑡𝑡𝑚𝑡𝑡𝑡 𝑥𝑥𝑚 𝑥 𝐻𝐻𝑠𝑠−1𝑚𝑥𝑥𝑚, and all 𝜓𝜓𝑚𝑡𝑡𝑡 𝑥𝑥𝑚 𝑥 𝐶𝐶∞

𝑚 , it
holds that


𝑇𝑇

𝑚

𝑥𝑥
𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑡𝑡𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑢𝑢

𝑚𝑚𝑢𝑢𝑥𝑥 + 𝑚𝑚𝑚 + 𝑚𝑚 𝑢𝑢𝑚𝑚+1𝑢𝑢𝑥𝑥

− 𝑚𝑚𝑚 + 2𝑚 𝑢𝑢𝑚𝑚𝑢𝑢𝑥𝑥𝑢𝑢𝑥𝑥𝑥𝑥 − 𝑢𝑢
𝑚𝑚+1𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 𝜓𝜓 𝑚𝑡𝑡𝑡 x𝑚 𝑑𝑑𝑥𝑥 𝑑𝑑𝑡𝑡 = 𝑚

(6)

with 𝑢𝑢𝑚𝑚𝑡 𝑥𝑥𝑚 = 𝑢𝑢𝑚𝑚𝑥𝑥𝑚.

Now, we give the main result of this work.

eorem 2. Let 𝑢𝑢𝑚𝑚𝑥𝑥𝑚 𝑥 𝐻𝐻𝑠𝑠𝑚𝑥𝑥𝑚, 1 𝑘 𝑠𝑠 𝑘 𝑚/2, 𝑚1 − 𝜕𝜕2𝑥𝑥𝑚𝑢𝑢𝑚 +
𝑢𝑢/2𝑚𝑚𝑚 + 1𝑚 𝑥 𝑁𝑁+𝑚𝑥𝑥𝑚, and 𝑢𝑢 ≥ 𝑚 (or equivalently 𝑚1 − 𝜕𝜕2𝑥𝑥𝑚𝑢𝑢𝑚 +
𝑢𝑢/2𝑚𝑚𝑚 + 1𝑚 𝑥 𝑁𝑁−𝑚𝑥𝑥𝑚, 𝑢𝑢 𝑘 𝑚). en, problem (5) has a unique
global weak solution 𝑢𝑢𝑚𝑡𝑡𝑡 𝑥𝑥𝑚 𝑥 𝐿𝐿2𝑚𝐶𝑚𝑡 +∞𝑚𝑡𝐻𝐻𝑠𝑠𝑚𝑥𝑥𝑚𝑚 in the sense
of distribution, and 𝑢𝑢𝑥𝑥 𝑥 𝐿𝐿

∞𝑚𝐶𝑚𝑡 +∞𝑚 × 𝑥𝑥𝑚.

3. Several Lemmas

Lemma 3 (see [20]). Let 𝑢𝑢𝑚𝑚𝑥𝑥𝑚 𝑥 𝐻𝐻
𝑠𝑠𝑚𝑥𝑥𝑚 with 𝑠𝑠 𝑇 𝑚/2. en,

the Cauchy problem (5) has a unique solution

𝑢𝑢 𝑚𝑡𝑡𝑡 𝑥𝑥𝑚 𝑥 𝐶𝐶 𝐶𝑚𝑡 𝑇𝑇𝑚 𝐶𝐻𝐻𝑠𝑠 𝑚𝑥𝑥𝑚𝐶𝐶1 𝐶𝑚𝑡 𝑇𝑇𝑚 𝐶𝐻𝐻𝑠𝑠−1 𝑚𝑥𝑥𝑚 𝑡
(7)

where 𝑇𝑇 𝑇 𝑚 depends on ‖𝑢𝑢𝑚‖𝐻𝐻𝑠𝑠𝑚𝑥𝑥𝑚.

Lemma 4 (see [20]). Let 𝑢𝑢𝑚𝑚𝑥𝑥𝑚 𝑥 𝐻𝐻𝑠𝑠, 𝑠𝑠 𝑇 𝑚/2, and 𝑢𝑢 ≥
𝑚𝑡 𝑚1 − 𝜕𝜕2𝑥𝑥𝑚𝑢𝑢𝑚 + 𝑢𝑢/2𝑚𝑚𝑚 + 1𝑚 ≥ 𝑚 (or equivalently 𝑢𝑢 𝑘 𝑚𝑡 𝑚1 −
𝜕𝜕2𝑥𝑥𝑚𝑢𝑢𝑚 + 𝑢𝑢/2𝑚𝑚𝑚 + 1𝑚 𝑘 𝑚𝑚. en, problem (5) has a unique
solution satisfying

𝑢𝑢 𝑚𝑡𝑡𝑡 𝑥𝑥𝑚 𝑥 𝐶𝐶 𝐶𝑚𝑡∞𝑚 𝐶𝐻𝐻𝑠𝑠 𝑚𝑥𝑥𝑚𝐶𝐶1 𝐶𝑚𝑡∞𝑚 𝐶𝐻𝐻𝑠𝑠−1 𝑚𝑥𝑥𝑚 .
(8)

�sing the �rst equation of system (5) derives

𝑑𝑑
𝑑𝑑𝑡𝑡


𝑥𝑥
𝑢𝑢2 + 𝑢𝑢2𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑚𝑡 (9)

from which one has the conservation law


𝑥𝑥
𝑢𝑢2 + 𝑢𝑢2𝑥𝑥 𝑑𝑑𝑥𝑥 = 

𝑥𝑥
𝑢𝑢2𝑚 + 𝑢𝑢

2
𝑚𝑥𝑥 𝑑𝑑𝑥𝑥. (10)

Lemma 5 (see [20]). Let 𝑠𝑠 𝑇 𝑚/2𝑡 and the function 𝑢𝑢𝑚𝑡𝑡𝑡 𝑥𝑥𝑚 is a
solution of problem (5) and the initial data 𝑢𝑢𝑚𝑚𝑥𝑥𝑚 𝑥 𝐻𝐻

𝑠𝑠. en,
the following inequality holds:

‖𝑢𝑢‖2𝐻𝐻1 𝑘 
𝑥𝑥
𝑢𝑢2 + 𝑢𝑢2𝑥𝑥 𝑑𝑑𝑥𝑥 = 

𝑥𝑥
𝑢𝑢2𝑚 + 𝑢𝑢

2
𝑚𝑥𝑥 𝑑𝑑𝑥𝑥. (11)

For 𝑞𝑞 𝑥 𝑚𝑚𝑡 𝑠𝑠 − 1𝑞, there is a constant 𝑐𝑐 such that


𝑥𝑥
Λ𝑞𝑞+1𝑢𝑢

2
𝑑𝑑𝑥𝑥 𝑘 

𝑥𝑥
Λ𝑞𝑞+1𝑢𝑢𝑚

2
𝑑𝑑𝑥𝑥

+ 𝑐𝑐
𝑡𝑡

𝑚
‖𝑢𝑢‖2𝐻𝐻𝑞𝑞+1 𝑢𝑢𝑥𝑥𝐿𝐿∞‖𝑢𝑢‖

𝑚𝑚
𝐿𝐿∞

+‖𝑢𝑢‖𝑚𝑚−1𝐿𝐿∞ 𝑢𝑢𝑥𝑥
2
𝐿𝐿∞ 𝑑𝑑𝑑𝑑.

(12)

For 𝑞𝑞 𝑥 𝐶𝑚𝑡 𝑠𝑠 − 1𝑞, there is a constant 𝑐𝑐 such that

𝑢𝑢𝑡𝑡𝐻𝐻𝑞𝑞 𝑘 𝑐𝑐‖𝑢𝑢‖𝐻𝐻𝑞𝑞+1 ‖𝑢𝑢‖𝑚𝑚𝐿𝐿∞‖𝑢𝑢‖𝐻𝐻1 + ‖𝑢𝑢‖𝑚𝑚𝐿𝐿∞𝑢𝑢𝑥𝑥𝐿𝐿∞

+‖𝑢𝑢‖𝑚𝑚−1𝐿𝐿∞ 𝑢𝑢𝑥𝑥
2
𝐿𝐿∞ .

(13)

For (2), consider the problem

𝑝𝑝𝑡𝑡 = 𝑢𝑢
𝑚𝑚+1 𝑡𝑡𝑡 𝑝𝑝 𝑡 𝑡𝑡 𝑥 𝐶𝑚𝑡 𝑇𝑇𝑚 𝑡

𝑝𝑝 𝑚𝑚𝑡 𝑥𝑥𝑚 = 𝑥𝑥.
(14)

Lemma 6 (see [20]). Let 𝑢𝑢𝑚 𝑥 𝐻𝐻𝑠𝑠, 𝑠𝑠 ≥ 𝑚, and let 𝑇𝑇 𝑇 𝑚 be
the maximal existence time of the solution to problem (5).
en, problem (14) has a unique solution 𝑝𝑝 𝑥 𝐶𝐶1𝑚𝐶𝑚𝑡 𝑇𝑇𝑚 × 𝑥𝑥𝑚.
Moreover, the map 𝑝𝑝𝑚𝑡𝑡𝑡 𝑝𝑚 is an increasing diffeomorphism of 𝑥𝑥
with 𝑝𝑝𝑥𝑥𝑚𝑡𝑡𝑡 𝑥𝑥𝑚 𝑇 𝑚 for 𝑚𝑡𝑡𝑡 𝑥𝑥𝑚 𝑥 𝐶𝑚𝑡 𝑇𝑇𝑚 × 𝑥𝑥.
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Differentiating (14) with respect to 𝑥𝑥 yields

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑝𝑝𝑥𝑥 = (𝑚𝑚 𝑚 𝑚) 𝑢𝑢𝑚𝑚𝑢𝑢𝑥𝑥 𝑑𝑑𝑡 𝑝𝑝 𝑝𝑝𝑥𝑥𝑡 𝑑𝑑 𝑡 [0𝑡 𝑇𝑇) 𝑡

𝑝𝑝𝑥𝑥 (0𝑡 𝑥𝑥) = 𝑚𝑡
(15)

which leads to

𝑝𝑝𝑥𝑥 (𝑑𝑑𝑡 𝑥𝑥) = exp 
𝑑𝑑

0
(𝑚𝑚 𝑚 𝑚) 𝑢𝑢𝑚𝑚𝑢𝑢𝑥𝑥 𝜏𝜏𝑡 𝑝𝑝 (𝜏𝜏𝑡 𝑥𝑥) 𝑑𝑑𝜏𝜏 . (16)

e next lemma is reminiscent of a strong invariance
property of the Camassa-Holm equation (the conservation of
momentum [21]).

Lemma 7 (see [20]). Let 𝑢𝑢0 𝑡 𝐻𝐻
𝑠𝑠 with 𝑠𝑠 𝑠 𝑠, and let 𝑇𝑇 𝑇 0 be

the maximal existence time of the problem (5). It holds that

𝑦𝑦 𝑑𝑑𝑡 𝑝𝑝 (𝑑𝑑𝑡 𝑥𝑥) 𝑝𝑝2𝑥𝑥 (𝑑𝑑𝑡 𝑥𝑥) = 𝑦𝑦0 (𝑥𝑥) 𝑒𝑒
∫𝑑𝑑0 𝑚𝑚𝑢𝑢

𝑚𝑚𝑢𝑢𝑥𝑥𝑑𝑑𝜏𝜏𝑡 (17)

where (𝑑𝑑𝑡 𝑥𝑥) 𝑡 [0𝑡 𝑇𝑇) 𝑡 𝑡𝑡 and 𝑦𝑦 𝑦= 𝑢𝑢 𝑦 𝑢𝑢𝑥𝑥𝑥𝑥 𝑚 𝑘𝑘𝑘2(𝑚𝑚 𝑚 𝑚).

Lemma8. If 𝑢𝑢0 𝑡 𝐻𝐻
𝑠𝑠, 𝑠𝑠 𝑠 𝑠, such that (𝑚𝑦𝜕𝜕2𝑥𝑥)𝑢𝑢0𝑚𝑘𝑘𝑘2(𝑚𝑚𝑚𝑚) 𝑠

0𝑡 𝑘𝑘 𝑠 0 (or equivalently, (𝑚 𝑦 𝜕𝜕2𝑥𝑥)𝑢𝑢0 𝑚 𝑘𝑘𝑘2(𝑚𝑚𝑚𝑚) 𝑘 0𝑡 𝑘𝑘 𝑘 0),
then the solution of problem (5) satis�es

𝑢𝑢𝑥𝑥𝐿𝐿∞ 𝑘 ‖𝑢𝑢‖𝐿𝐿∞ 𝑚 |𝑘𝑘|
2 (𝑚𝑚 𝑚 𝑚)

𝑘 𝑐𝑐. (18)

Proof. Using𝑢𝑢0𝑦𝑢𝑢0𝑥𝑥𝑥𝑥𝑚𝑘𝑘𝑘2(𝑚𝑚𝑚𝑚) 𝑠 0, it follows fromLemma
7 that 𝑢𝑢𝑦𝑢𝑢𝑥𝑥𝑥𝑥 𝑚𝑘𝑘𝑘2(𝑚𝑚𝑚𝑚) 𝑠 0. Letting𝑌𝑌𝑚 = 𝑢𝑢𝑦𝑢𝑢𝑥𝑥𝑥𝑥, we have

𝑢𝑢 =
𝑚
2
𝑒𝑒𝑦𝑥𝑥 

𝑥𝑥

𝑦∞
𝑒𝑒𝜂𝜂𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂 𝑚

𝑚
2
𝑒𝑒𝑥𝑥 

∞

𝑥𝑥
𝑒𝑒𝑦𝜂𝜂𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂𝑡

(19)

from which we obtain

𝜕𝜕𝑥𝑥𝑢𝑢 (𝑑𝑑𝑡 𝑥𝑥)

= 𝑦
𝑚
2
𝑒𝑒𝑦𝑥𝑥 

𝑥𝑥

𝑦∞
𝑒𝑒𝜂𝜂𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂 𝑚 𝑒𝑒

𝑥𝑥 
∞

𝑥𝑥
𝑒𝑒𝑦𝜂𝜂𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂

𝑚 𝑒𝑒𝑥𝑥 
∞

𝑥𝑥
𝑒𝑒𝑦𝜂𝜂𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂

= 𝑦𝑢𝑢 (𝑑𝑑𝑡 𝑥𝑥) 𝑚 𝑒𝑒𝑥𝑥 
∞

𝑥𝑥
𝑒𝑒𝑦𝜂𝜂𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂

= 𝑦𝑢𝑢 (𝑑𝑑𝑡 𝑥𝑥) 𝑚 𝑒𝑒𝑥𝑥 
∞

𝑥𝑥
𝑒𝑒𝑦𝜂𝜂 𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑚

𝑘𝑘
2 (𝑚𝑚 𝑚 𝑚)

 𝑑𝑑𝜂𝜂

𝑦
𝑘𝑘

2 (𝑚𝑚 𝑚 𝑚)
𝑒𝑒𝑥𝑥 

∞

𝑥𝑥
𝑒𝑒𝑦𝜂𝜂𝑑𝑑𝜂𝜂

= 𝑦𝑢𝑢 (𝑑𝑑𝑡 𝑥𝑥) 𝑚 𝑒𝑒𝑥𝑥 
∞

𝑥𝑥
𝑒𝑒𝑦𝜂𝜂 𝑦𝑦 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂 𝑦

𝑘𝑘
2 (𝑚𝑚 𝑚 𝑚)

𝑠 𝑦𝑢𝑢 (𝑑𝑑𝑡 𝑥𝑥) 𝑦
𝑘𝑘

2 (𝑚𝑚 𝑚 𝑚)
.

(20)

On the other hand, we have

𝜕𝜕𝑥𝑥𝑢𝑢 (𝑑𝑑𝑡 𝑥𝑥)

=
𝑚
2
𝑒𝑒𝑦𝑥𝑥 

𝑥𝑥

𝑦∞
𝑒𝑒𝜂𝜂𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂 𝑚 𝑒𝑒

𝑥𝑥 
∞

𝑥𝑥
𝑒𝑒𝑦𝜂𝜂𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂

𝑦 𝑒𝑒𝑦𝑥𝑥 
𝑥𝑥

𝑦∞
𝑒𝑒𝜂𝜂𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂

= 𝑢𝑢 (𝑑𝑑𝑡 𝑥𝑥) 𝑦 𝑒𝑒𝑦𝑥𝑥 
𝑥𝑥

𝑦∞
𝑒𝑒𝜂𝜂𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂

= 𝑢𝑢 (𝑑𝑑𝑡 𝑥𝑥) 𝑦 𝑒𝑒𝑦𝑥𝑥 
𝑥𝑥

𝑦∞
𝑒𝑒𝜂𝜂 𝑌𝑌𝑚 𝑑𝑑𝑡 𝜂𝜂 𝑚

𝑘𝑘
2 (𝑚𝑚 𝑚 𝑚)

 𝑑𝑑𝜂𝜂

𝑚
𝑘𝑘

2 (𝑚𝑚 𝑚 𝑚)
𝑒𝑒𝑦𝑥𝑥 

𝑥𝑥

𝑦∞
𝑒𝑒𝜂𝜂𝑑𝑑𝜂𝜂

= 𝑢𝑢 (𝑑𝑑𝑡 𝑥𝑥) 𝑦 𝑒𝑒𝑦𝑥𝑥 
𝑥𝑥

𝑦∞
𝑒𝑒𝜂𝜂𝑦𝑦 𝑑𝑑𝑡 𝜂𝜂 𝑑𝑑𝜂𝜂 𝑚

𝑘𝑘
2 (𝑚𝑚 𝑚 𝑚)

𝑘 𝑢𝑢 (𝑑𝑑𝑡 𝑥𝑥) 𝑚
𝑘𝑘

2 (𝑚𝑚 𝑚 𝑚)
.

(21)

e inequalities (19), (20), and (21) derive that inequality (18)
is valid. Similarly, if (𝑚 𝑦 𝜕𝜕2𝑥𝑥)𝑢𝑢0 𝑚 𝑘𝑘𝑘2(𝑚𝑚 𝑚 𝑚) 𝑘 0𝑡 𝑘𝑘 𝑘 0, we
still know that (18) is valid.

Lemma 9. For 𝑠𝑠 𝑇 0, 𝑢𝑢0 𝑡 𝐻𝐻
𝑠𝑠, it holds that

𝑢𝑢𝜀𝜀0𝑥𝑥𝐿𝐿∞ 𝑘 𝑐𝑐𝑢𝑢0𝑥𝑥𝐿𝐿∞𝑡

𝑢𝑢𝜀𝜀0𝐻𝐻𝑞𝑞 𝑘 𝑐𝑐𝑡 if 𝑞𝑞 𝑘 𝑠𝑠𝑡

𝑢𝑢𝜀𝜀0𝐻𝐻𝑞𝑞 𝑘 𝑐𝑐𝜀𝜀𝑠𝑠𝑦𝑞𝑞𝑘𝑠𝑡 if 𝑞𝑞 𝑇 𝑠𝑠𝑡

𝑢𝑢𝜀𝜀0 𝑦 𝑢𝑢0𝐻𝐻𝑞𝑞 𝑘 𝑐𝑐𝜀𝜀𝑠𝑠𝑦𝑞𝑞𝑘𝑠𝑡 if 𝑞𝑞 𝑘 𝑠𝑠𝑡

𝑢𝑢𝜀𝜀0 𝑦 𝑢𝑢0𝐻𝐻𝑠𝑠 = 𝑜𝑜 (𝑚) 𝑡

(22)

where 𝑐𝑐 is a constant independent of 𝜀𝜀.

e proof of this lemma can be found in Lai andWu [15].
From Lemma 3, it derives that the Cauchy problem

𝑢𝑢𝑑𝑑 𝑦 𝑢𝑢𝑑𝑑𝑥𝑥𝑥𝑥 = 𝑦
𝑚𝑚 𝑚 𝑠
𝑚𝑚 𝑚 2

𝑢𝑢𝑚𝑚𝑚2𝑥𝑥 𝑚
𝑚

𝑚𝑚 𝑚 2
𝜕𝜕𝑠𝑥𝑥 𝑢𝑢

𝑚𝑚𝑚2

𝑦 (𝑚𝑚 𝑚 𝑚) 𝜕𝜕𝑥𝑥 𝑢𝑢
𝑚𝑚𝑢𝑢2𝑥𝑥 𝑚 𝑢𝑢

𝑚𝑚𝑢𝑢𝑥𝑥𝑢𝑢𝑥𝑥𝑥𝑥𝑡

𝑢𝑢 (0𝑡 𝑥𝑥) = 𝑢𝑢𝜀𝜀0 (𝑥𝑥) 𝑡 𝑥𝑥 𝑡 𝑡𝑡𝑡

(23)

has a unique solution 𝑢𝑢 depending on the parameter 𝜀𝜀. We
write 𝑢𝑢𝜀𝜀(𝑑𝑑𝑡 𝑥𝑥) to represent the solution of problem (23). Using
Lemma 3 derives that 𝑢𝑢𝜀𝜀(𝑑𝑑𝑡 𝑥𝑥) 𝑡 𝑡𝑡∞([0𝑡 𝑇𝑇)𝑡𝐻𝐻∞(𝑡𝑡)) since
𝑢𝑢𝜀𝜀0(𝑥𝑥) 𝑡 𝑡𝑡

∞
0 (𝑡𝑡).
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Lemma 10. Provided that 𝑢𝑢0 ∈ 𝐻𝐻
𝑠𝑠, 1 ≤ 𝑠𝑠 ≤ 𝑠𝑠𝑠, 𝑘𝑘 𝑘 0, and

(1 − 𝜕𝜕𝑠𝑥𝑥)𝑢𝑢0 + 𝑘𝑘𝑠𝑠(𝑘𝑘+ 1) ∈ 𝑘𝑘+(𝑅𝑅) (or equivalently (1 − 𝜕𝜕𝑠𝑥𝑥)𝑢𝑢0 +
𝑘𝑘𝑠𝑠(𝑘𝑘+1) ∈ 𝑘𝑘−(𝑅𝑅), 𝑘𝑘 ≤ 0), then there exists a constant 𝑐𝑐0 > 0
independent of 𝜀𝜀 such that the solution of problem (23) satis-
�es

𝑢𝑢𝜀𝜀𝑥𝑥𝐿𝐿∞ ≤ 𝑢𝑢𝑥𝑥𝐿𝐿∞ + |𝑘𝑘|
𝑠 (𝑘𝑘 + 1)

≤ 𝑐𝑐0. (24)

Proof. Using identity (10) and Lemma 9, if 𝑢𝑢0 ∈ 𝐻𝐻
𝑠𝑠(𝑅𝑅) with

1 ≤ 𝑠𝑠 ≤ 𝑠𝑠𝑠, we have

𝑢𝑢𝜀𝜀𝐿𝐿∞ ≤ 𝑢𝑢𝜀𝜀𝐻𝐻1 = 𝑢𝑢𝜀𝜀0𝐻𝐻1 ≤ 𝑐𝑐𝑐 (25)

where 𝑐𝑐 is independent of 𝜀𝜀.
From Lemma 8, we have

𝑢𝑢𝜀𝜀𝑥𝑥𝐿𝐿∞ ≤ 𝑢𝑢𝜀𝜀𝐿𝐿∞ + |𝑘𝑘|
𝑠 (𝑘𝑘 + 1)

≤ 𝑐𝑐 + |𝑘𝑘|
𝑠 (𝑘𝑘 + 1)

𝑐 (26)

which completes the proof.

Lemma 11. For any 𝑓𝑓1 ∈ 𝐿𝐿∞, 𝑓𝑓𝑠 ∈ 𝐻𝐻𝑧𝑧 with 𝑧𝑧 ≤ 0, it holds
that

𝑓𝑓1𝑓𝑓𝑠𝐻𝐻𝑧𝑧 ≤ 𝑐𝑐𝑓𝑓1𝐿𝐿∞𝑓𝑓𝑠𝐻𝐻z for any 𝑧𝑧 ≤ 0. (27)

e proof of this lemma can be found in [15].

4. Existence and Uniqueness of
GlobalWeak Solution

Provided that 1 ≤ 𝑠𝑠 ≤ 𝑠𝑠𝑠, for problem (23), applying
Lemmas 5, 9, and 10, and the Gronwall’s inequality, we obtain
the inequalities

𝑢𝑢𝜀𝜀𝐻𝐻1 ≤ 𝑢𝑢𝜀𝜀0𝐻𝐻1 ≤ 𝑐𝑐𝑐

𝑢𝑢𝜀𝜀𝐻𝐻𝑞𝑞 ≤ 𝑐𝑐𝑢𝑢𝜀𝜀0𝐻𝐻𝑞𝑞 exp 
𝑡𝑡

0
𝑢𝑢𝜀𝜀𝑥𝑥 + 𝑢𝑢𝜀𝜀𝑥𝑥

𝑠
𝐿𝐿∞ 𝑑𝑑𝑑𝑑 ≤ 𝑐𝑐𝑐𝑐

𝑐𝑐𝑡𝑡𝑐

𝑢𝑢𝜀𝜀𝑡𝑡𝐻𝐻𝑟𝑟 ≤ 𝑢𝑢𝜀𝜀𝐻𝐻𝑟𝑟+1 1 + 𝑐𝑐𝑐𝑐𝑡𝑡 ≤ 𝑐𝑐 1 + 𝑐𝑐𝑐𝑐𝑡𝑡 𝑐
(28)

where 𝑞𝑞 ∈ (0𝑐 𝑠𝑠𝑞𝑐 𝑟𝑟 ∈ 𝑞0𝑐 𝑠𝑠−1𝑞, and 𝑐𝑐 is a constant independent
of 𝜀𝜀. It follows from the Aubin’s compactness theorem that
there is a subsequence of {𝑢𝑢𝜀𝜀}, denoted by {𝑢𝑢𝜀𝜀𝑛𝑛}, such that {𝑢𝑢𝜀𝜀𝑛𝑛}
and their temporal derivatives {𝑢𝑢𝜀𝜀𝑛𝑛𝑡𝑡} are weakly convergent to
a function 𝑢𝑢(𝑡𝑡𝑐 𝑥𝑥) and its derivative 𝑢𝑢𝑡𝑡 in 𝐿𝐿

𝑠(𝑞0𝑐 𝑇𝑇𝑞𝑐𝐻𝐻𝑠𝑠) and
𝐿𝐿𝑠(𝑞0𝑐 𝑇𝑇𝑞𝑐𝐻𝐻𝑠𝑠−1), respectively, where 𝑇𝑇 is an arbitrary �xed
positive number. Moreover, for any real number 𝑅𝑅1 > 0,
{𝑢𝑢𝜀𝜀𝑛𝑛 } is convergent to the function 𝑢𝑢 strongly in the space

𝐿𝐿𝑠(𝑞0𝑐 𝑇𝑇𝑞𝑐𝐻𝐻𝑞𝑞(−𝑅𝑅1𝑐 𝑅𝑅1)) for 𝑞𝑞 ∈ (0𝑐 𝑠𝑠𝑞 and {𝑢𝑢𝜀𝜀𝑛𝑛𝑡𝑡} converges
to 𝑢𝑢𝑡𝑡 strongly in the space 𝐿𝐿𝑠(𝑞0𝑐 𝑇𝑇𝑞𝑐𝐻𝐻𝑟𝑟(−𝑅𝑅1𝑐 𝑅𝑅1)) for 𝑟𝑟 ∈
𝑞0𝑐 𝑠𝑠 − 1𝑞.

4.1. e Proof of Existence for Global Weak Solution. For
an arbitrary �xed 𝑇𝑇 > 0, from Lemma 10, we know that
{𝑢𝑢𝜀𝜀𝑛𝑛𝑥𝑥}(𝜀𝜀𝑛𝑛 → 0) is bounded in the space 𝐿𝐿∞. us, the
sequences {𝑢𝑢𝜀𝜀𝑛𝑛 }, {𝑢𝑢𝜀𝜀𝑛𝑛𝑥𝑥}, {𝑢𝑢

𝑠
𝜀𝜀𝑛𝑛𝑥𝑥}, and {𝑢𝑢

𝑠
𝜀𝜀𝑛𝑛𝑥𝑥} are weakly conver-

gent to 𝑢𝑢, 𝑢𝑢𝑥𝑥, 𝑢𝑢
𝑠
𝑥𝑥, and 𝑢𝑢

𝑠
𝑥𝑥 in 𝐿𝐿𝑠(𝑞0𝑐 𝑇𝑇𝑞𝑐𝐻𝐻𝑟𝑟(−𝑅𝑅1𝑐 𝑅𝑅1)) for any

𝑟𝑟 ∈ 𝑞0𝑐 𝑠𝑠−1), separately. Using 𝑢𝑢𝑘𝑘(𝑢𝑢𝑠𝑥𝑥)𝑥𝑥 = (𝑢𝑢
𝑘𝑘𝑢𝑢𝑠𝑥𝑥)𝑥𝑥 −(𝑢𝑢

𝑘𝑘)𝑥𝑥𝑢𝑢
𝑠
𝑥𝑥,

we know that 𝑢𝑢 satis�es the equation

− 
𝑇𝑇

0

𝑅𝑅
𝑢𝑢 𝑔𝑔𝑡𝑡 − 𝑔𝑔𝑥𝑥𝑥𝑥𝑡𝑡 𝑑𝑑𝑥𝑥 𝑑𝑑𝑡𝑡

= 
𝑇𝑇

0

𝑅𝑅

𝑘𝑘 + 𝑠
𝑘𝑘 + 𝑠

𝑢𝑢𝑘𝑘+𝑠 + (𝑘𝑘 + 1) 𝑢𝑢𝑘𝑘𝑢𝑢𝑠𝑥𝑥 𝑔𝑔𝑥𝑥

−
1

𝑘𝑘 + 𝑠
𝑢𝑢𝑘𝑘+𝑠𝑔𝑔𝑥𝑥𝑥𝑥𝑥𝑥 −

1
𝑠
𝑢𝑢𝑘𝑘𝑢𝑢𝑠𝑥𝑥𝑔𝑔𝑥𝑥

−
𝑘𝑘
𝑠
𝑢𝑢𝑘𝑘−1𝑢𝑢𝑠𝑥𝑥𝑔𝑔 𝑑𝑑𝑥𝑥 𝑑𝑑𝑡𝑡𝑐

(29)

with 𝑢𝑢(0𝑐 𝑥𝑥) = 𝑢𝑢0(𝑥𝑥) and 𝑔𝑔 ∈ 𝑔𝑔
∞
0 . Since𝑋𝑋 = 𝐿𝐿1(𝑞0𝑐 𝑇𝑇𝑞 𝑇 𝑅𝑅) is

a separable Banach space and {𝑢𝑢𝜀𝜀𝑛𝑛𝑥𝑥} is a bounded sequence
in the dual space 𝑋𝑋∗ = 𝐿𝐿∞(𝑞0𝑐 𝑇𝑇𝑞 𝑇 𝑅𝑅) of 𝑋𝑋, there exists
a subsequence of {𝑢𝑢𝜀𝜀𝑛𝑛𝑥𝑥}, still denoted by {𝑢𝑢𝜀𝜀𝑛𝑛𝑥𝑥}, weakly star
convergent to a function 𝑣𝑣 in 𝐿𝐿∞(𝑞0𝑐 𝑇𝑇𝑞𝑇𝑅𝑅). As {𝑢𝑢𝜀𝜀𝑛𝑛𝑥𝑥}weakly
converges to 𝑢𝑢𝑥𝑥 in 𝐿𝐿

𝑠(𝑞0𝑐 𝑇𝑇𝑞 𝑇𝑅𝑅), it results that 𝑢𝑢𝑥𝑥 = 𝑣𝑣 almost
everywhere.us, we obtain 𝑢𝑢𝑥𝑥 ∈ 𝐿𝐿

∞(𝑞0𝑐 𝑇𝑇𝑞𝑇𝑅𝑅). Since T > 0
is an arbitrary number, we complete the global existence of
weak solutions to problem (5).

Proof of Uniqueness. Suppose that there exist two global
weak solutions 𝑢𝑢(𝑡𝑡𝑐 𝑥𝑥) and 𝑣𝑣(𝑡𝑡𝑐 𝑥𝑥) to problem (5) with the
same initial value 𝑢𝑢(0𝑐 𝑥𝑥) ∈ 𝐻𝐻𝑠𝑠(𝑅𝑅), 1 ≤ 𝑠𝑠 ≤ 𝑠𝑠𝑠, we
consider its associated regularized problem (23). Letting𝑤𝑤𝜀𝜀 =
𝑢𝑢𝜀𝜀(𝑡𝑡𝑐 𝑥𝑥) − 𝑣𝑣𝜀𝜀(𝑡𝑡𝑐 𝑥𝑥), from Lemma 10, we get ‖𝜕𝜕𝑢𝑢𝜀𝜀(𝑡𝑡𝑐𝑥𝑥)𝑠𝜕𝜕𝑥𝑥‖𝐿𝐿∞ ≤
𝑐𝑐 and ‖𝜕𝜕𝑣𝑣𝜀𝜀(𝑡𝑡𝑐𝑥𝑥)𝑠𝜕𝜕𝑥𝑥‖𝐿𝐿∞ ≤ 𝑐𝑐 which is independent of 𝜀𝜀. Still
denoting 𝑢𝑢 = 𝑢𝑢𝜀𝜀𝑐 𝑣𝑣 = 𝑣𝑣𝜀𝜀, and 𝑤𝑤 = 𝑤𝑤𝜀𝜀, it holds that

𝑤𝑤𝑡𝑡 = 1 − 𝜕𝜕
𝑠
𝑥𝑥

−1
−𝜕𝜕𝑥𝑥 𝑢𝑢

𝑘𝑘+𝑠 − 𝑣𝑣𝑘𝑘+𝑠

− 𝜕𝜕𝑥𝑥 𝜕𝜕𝑥𝑥 𝑢𝑢
𝑘𝑘+1 𝜕𝜕𝑥𝑥𝑤𝑤

+𝜕𝜕𝑥𝑥 𝑢𝑢
𝑘𝑘+1 − 𝑣𝑣𝑘𝑘+1 𝜕𝜕𝑥𝑥𝑣𝑣

+ 𝑢𝑢𝑘𝑘𝑢𝑢𝑥𝑥𝑢𝑢𝑥𝑥𝑥𝑥 − 𝑣𝑣
𝑘𝑘𝑣𝑣𝑥𝑥𝑣𝑣𝑥𝑥𝑥𝑥 

−
1

𝑘𝑘 + 𝑠
𝜕𝜕𝑥𝑥 𝑢𝑢

𝑘𝑘+𝑠 − 𝑣𝑣𝑘𝑘+𝑠 𝑐

𝑤𝑤 (0𝑐 𝑥𝑥) = 0.

(30)
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Multiplying both sides of (30) by 𝑤𝑤, we get

1
2
𝑑𝑑
𝑑𝑑𝑑𝑑


𝑅𝑅
𝑤𝑤2𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑 

𝑅𝑅
𝑤𝑤𝑢𝑢𝑚𝑚𝑚2 − 𝑣𝑣𝑚𝑚𝑚2𝑑𝑑𝑑𝑑𝑑𝑑

𝑚 
𝑅𝑅
𝑤𝑤𝑤−2𝑢𝑢𝑚𝑚𝑚2 − 𝑣𝑣𝑚𝑚𝑚2𝑑𝑑𝑑𝑑𝑑𝑑

𝑚 
𝑅𝑅
𝑤𝑤𝑤−2𝜕𝜕𝑑𝑑 𝑢𝑢

𝑚𝑚𝑚1 𝜕𝜕𝑑𝑑𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑

𝑚 
𝑅𝑅
𝑤𝑤𝑤−2𝜕𝜕𝑑𝑑 𝑢𝑢

𝑚𝑚𝑚1 − 𝑣𝑣𝑚𝑚𝑚1 𝜕𝜕𝑑𝑑𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑

𝑚 
𝑅𝑅
𝑤𝑤𝑤−2 𝑢𝑢𝑚𝑚𝑢𝑢𝑑𝑑𝑢𝑢𝑑𝑑𝑑𝑑 − 𝑣𝑣

𝑚𝑚𝑣𝑣𝑑𝑑𝑣𝑣𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

= 𝐼𝐼1 𝑚 𝐼𝐼2 𝑚 𝐼𝐼3 𝑚 𝐼𝐼4 𝑚 𝐼𝐼5.
(31)

Using ‖𝑢𝑢‖𝐿𝐿∞ 𝑑 𝑑𝑑𝑐 ‖𝑣𝑣‖𝐿𝐿∞ 𝑑 𝑑𝑑, ‖𝑢𝑢𝑑𝑑‖𝐿𝐿∞ 𝑑 𝑑𝑑𝑐 ‖𝑣𝑣𝑑𝑑‖𝐿𝐿∞ 𝑑 𝑑𝑑, we have

𝐼𝐼1 𝑑 𝑑𝑑 



𝑅𝑅
𝑤𝑤


𝑤𝑤
𝑚𝑚𝑚1

𝑗𝑗=𝑗

𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚𝑚1−𝑗𝑗

𝑑𝑑

𝑑𝑑𝑑𝑑



= 𝑑𝑑 



𝑅𝑅
𝑤𝑤


𝑤𝑤𝑑𝑑

𝑚𝑚𝑚1

𝑗𝑗=𝑗

𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚𝑚1−𝑗𝑗 𝑚 𝑤𝑤
𝑚𝑚𝑚1

𝑗𝑗=𝑗

𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚𝑚1−𝑗𝑗𝑑𝑑



𝑑𝑑𝑑𝑑



= 𝑑𝑑 



𝑅𝑅

1
2
𝑤𝑤2

𝑑𝑑

𝑚𝑚𝑚1

𝑗𝑗=𝑗

𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚𝑚1−𝑗𝑗 𝑚 𝑤𝑤2
𝑚𝑚𝑚1

𝑗𝑗=𝑗

𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚𝑚1−𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑




= 𝑑𝑑 



𝑅𝑅

−1
2
𝑤𝑤2

𝑚𝑚𝑚1

𝑗𝑗=𝑗

𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚𝑚1−𝑗𝑗𝑑𝑑 𝑚 𝑤𝑤
2
𝑚𝑚𝑚1

𝑗𝑗=𝑗

𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚𝑚1−𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑




= 𝑑𝑑 



𝑅𝑅

1
2
w2

𝑚𝑚𝑚1

𝑗𝑗=𝑗

𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚𝑚1−𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑




𝑑 𝑑𝑑‖𝑤𝑤‖2𝐿𝐿2
𝑚𝑚𝑚1

𝑗𝑗=𝑗

𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚𝑚1−𝑗𝑗𝑑𝑑𝐿𝐿∞

𝑑 𝑑𝑑‖𝑤𝑤‖2𝐿𝐿2 .
(32)

Applying Lemma 11 repeatedly, we have

𝐼𝐼2 𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2𝑤
−2𝑢𝑢𝑚𝑚𝑚2 − 𝑣𝑣𝑚𝑚𝑚2𝑑𝑑𝐿𝐿2

𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2


𝑤𝑤
𝑚𝑚𝑚1

𝑗𝑗=𝑗

𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚𝑚1−𝑗𝑗

𝐿𝐿2

𝑑 𝑑𝑑‖𝑤𝑤‖2𝐿𝐿2
𝑚𝑚𝑚1

𝑗𝑗=𝑗

‖𝑢𝑢‖𝑗𝑗𝐿𝐿∞‖𝑣𝑣‖
𝑚𝑚𝑚1−𝑗𝑗
𝐿𝐿∞

𝑑 𝑑𝑑‖𝑤𝑤‖2𝐿𝐿2 𝑐

𝐼𝐼3 𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2𝑤
−2𝜕𝜕𝑑𝑑 𝑢𝑢

𝑚𝑚𝑚1 𝜕𝜕𝑑𝑑𝑤𝑤𝑑𝑑𝐿𝐿2

𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2𝜕𝜕𝑑𝑑 𝑢𝑢
𝑚𝑚𝑚1 𝜕𝜕𝑑𝑑𝑤𝑤𝐻𝐻−1

𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2𝜕𝜕𝑑𝑑𝑤𝑤𝐻𝐻−1𝜕𝜕𝑑𝑑 𝑢𝑢
𝑚𝑚𝑚1𝐿𝐿∞

𝑑 𝑑𝑑‖𝑤𝑤‖2𝐿𝐿2 𝑐

𝐼𝐼4 𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2𝜕𝜕𝑑𝑑 𝑢𝑢
𝑚𝑚𝑚1 − 𝑣𝑣𝑚𝑚𝑚1 𝜕𝜕𝑑𝑑𝑣𝑣𝐻𝐻−1

𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2𝜕𝜕𝑑𝑑𝑣𝑣𝐿𝐿∞𝜕𝜕𝑑𝑑 𝑢𝑢
𝑚𝑚𝑚1 − 𝑣𝑣𝑚𝑚𝑚1𝐻𝐻−1

𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2𝑢𝑢
𝑚𝑚𝑚1 − 𝑣𝑣𝑚𝑚𝑚1𝐻𝐻𝑗

𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2


𝑤𝑤

𝑚𝑚

𝑗𝑗=𝑗
𝑢𝑢𝑗𝑗𝑣𝑣𝑚𝑚−𝑗𝑗

𝐿𝐿2

𝑑 𝑑𝑑‖𝑤𝑤‖2𝐿𝐿2
𝑚𝑚

𝑗𝑗=𝑗
‖𝑢𝑢‖𝑗𝑗𝐿𝐿∞‖𝑣𝑣‖

𝑚𝑚−𝑗𝑗
𝐿𝐿∞

𝑑 𝑑𝑑‖𝑤𝑤‖2𝐿𝐿2 .
(33)

For 𝐼𝐼5, using Lemma 11 derives

𝐼𝐼5 𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2𝑢𝑢
𝑚𝑚 − 𝑣𝑣𝑚𝑚 𝑢𝑢2𝑑𝑑𝑑𝑑 𝑚 𝑣𝑣

𝑚𝑚𝑢𝑢2𝑑𝑑 − 𝑣𝑣
2
𝑑𝑑𝑑𝑑𝐻𝐻−2

𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2𝑢𝑢
𝑚𝑚 − 𝑣𝑣𝑚𝑚 𝑢𝑢2𝑑𝑑𝑑𝑑𝐻𝐻−2 𝑚 𝑣𝑣

𝑚𝑚𝑢𝑢2𝑑𝑑 − 𝑣𝑣
2
𝑑𝑑𝑑𝑑𝐻𝐻−2

𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2 𝑢𝑢
𝑚𝑚 − 𝑣𝑣𝑚𝑚 𝑢𝑢2𝑑𝑑𝑑𝑑 − 𝑢𝑢

𝑚𝑚 − 𝑣𝑣𝑚𝑚𝑑𝑑𝑢𝑢
2
𝑑𝑑𝐻𝐻−2

𝑚‖𝑣𝑣‖𝑚𝑚𝐿𝐿∞𝑢𝑢 − 𝑣𝑣)𝑑𝑑 𝑢𝑢𝑑𝑑 𝑚 𝑣𝑣𝑑𝑑𝐻𝐻−1

𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2 𝑢𝑢
𝑚𝑚−v𝑚𝑚 𝑢𝑢2𝑑𝑑𝐻𝐻−1 𝑚𝑢𝑢

𝑚𝑚−𝑣𝑣𝑚𝑚𝑑𝑑𝑢𝑢
2
𝑑𝑑𝐻𝐻−2 𝑚𝑑𝑑‖𝑤𝑤‖𝐿𝐿2

𝑑 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2 𝑢𝑢𝑑𝑑
2
𝐿𝐿∞‖𝑤𝑤‖𝐿𝐿2

𝑚𝑚−1

𝑗𝑗=𝑗

‖𝑢𝑢‖𝑗𝑗𝐿𝐿∞‖𝑣𝑣‖
𝑚𝑚−1−𝑗𝑗
𝐿𝐿∞ 𝑚 𝑑𝑑‖𝑤𝑤‖𝐿𝐿2

𝑑 𝑑𝑑‖𝑤𝑤‖2𝐿𝐿2 .
(34)

Using (32)–(34), we get

1
2
𝑑𝑑
𝑑𝑑𝑑𝑑


𝑅𝑅
𝑤𝑤2𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑‖𝑤𝑤‖2𝐿𝐿2 . (35)

Applying 𝑤𝑤𝑗) = 𝑗 results in ‖𝑤𝑤‖2𝐿𝐿2 = 𝑗. Consequently, we
know that the global weak solution is unique.
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