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We discuss the existence of solutions for Langevin fractional differential inclusions involving two fractional orders with four-point
multiterm fractional integral boundary conditions. Our study relies on standard fixed point theorems for multivalued maps and
covers the cases when the right-hand side of the inclusion has convex as well as nonconvex values. Illustrative examples are also

presented.

1. Introduction

We consider a boundary value problem of nonlinear Lan-
gevin fractional differential inclusions involving two frac-
tional orders with four-point multiterm fractional integral
boundary conditions given by

‘DP (‘DT +A)x(t) e F(t,x(t)), 0<t<l,
x(0) = ) B (I"x) (€). O
i=1

x(l):i(xi(lv"x)(n), 0<{<n<l,

i=1

where 0 < p, g < 1, “D? denotes the Caputo fractional
derivative of order g, A is a real number, I* is the Riemann-
Liouville fractional integral of order x > 0 (x = v, py;; i =
1,2,...,n, n € N = {1,2,...}), and «;, ; € R are suitably
chosen constants.

In recent years, the boundary value problems of fractional
order differential equations have emerged as an important
area of research, since these problems have applications
in various disciplines of science and engineering such as
mechanics, electricity, chemistry, biology, economics, control

theory, signal and image processing, polymer rheology, regu-
lar variation in thermodynamics, biophysics, aerodynamics,
viscoelasticity and damping, electrodynamics of complex
medium, wave propagation, and blood flow phenomena
[1-5]. Many researchers have studied the existence theory for
nonlinear fractional differential equations with a variety of
boundary conditions; for instance, see the papers [6-17] and
the references therein.

The Langevin equation (first formulated by Langevin in
1908) is found to be an effective tool to describe the evolution
of physical phenomena in fluctuating environments [18]. For
some new developments on the fractional Langevin equation,
see, for example, [19-26].

The main objective of this paper is to develop the
existence theory for a class of problems of the type (1), when
the right-hand side is convex as well as nonconvex valued.
We establish three existence results: the first result is obtained
by means of the nonlinear alternative of Leray-Schauder
type; the second one relies on the nonlinear alternative of
Leray-Schauder type for single-valued maps together with
a selection theorem due to Bressan and Colombo for lower
semicontinuous multivalued maps with nonempty closed and
decomposable values; and a fixed point theorem due to Covitz
and Nadler for contraction multivalued maps is applied to get
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the third result. The methods used are well known; however  has a unique solution
their exposition in the framework of problem (1) is new.

The paper is organized as follows: in Section 2, we recall Et— )Tt
some preliminary facts that we need in the sequel, and - L I (q)
Section 3 contains our main results.

h (r)dr — Ax (s))
2. Preliminaries

tIA,+ A T(g+1
2.1. Fractional Calculus. Let us recall some basic definitions (g+1) )

of fractional calculus [1-3]. r (q +1)
y . . . . (1-97"
Definition 1. For at least n-times differentiable function g : X J (9
[0,00) — R, the Caputo derivative of fractional order q is 0 1
defined as S (s— )P
, ><<J ) h(r)dr—/\x(s)>ds
1 o 0
‘Dig(t) = T j (t - )" T g™ (s)ds,
n— v
v @ g [
n-l<qg<n n=[q|+1, ') T()
where [g] denotes the integer part of the real number g. < J,u (- 58!
Definition 2. The Riemann-Liouville fractional integral of RO
order g is defined as (s — P!
J h(r)dr
g = Jt 94 as0 ) {o r'(p)
T(q) Jo (-9 ’
provided the integral exists. —Ax(s) ]’ ds ) d”]
Lemma 3. For q > 0, the general solution of the fractional 1/tA,+A,T(g+1)
differential equation DIx(t) = 0 is given by A T(q+1)
x(t)=c+et+-+c, ", (4) C— )t
whereg € R, i=1,2,...,n—1 (n=[q] + 1). X;ﬁijo T (1)
In view of Lemma 3, it follows that y ( J Y- s)T!
D (t) = x (t) + ¢y + ¢t + -+, 1", (5) o TI(q)
forsomec € R, i=1,2,...,n—1 (n=[q] + 1). y {J" (S_r)Pilh(r)dr—/\x(s)}ds>du
In the following, AC'([0, T], R) will denote the space of I'(p) '
functions x : [0,T] — R that are absolutely continuous and @)
whose first derivative is absolutely continuous.
where
Definition 4. A function x € ACY([0,T], R) is called a solu- A=A A, —AA, 40
tion of problem (1) if there exists a function v € L'([0, T], R) 172 73T
with v(t) € F(t, x(t)), ae. [0,T] such that ‘DP(°‘D? + n gt
M)x(t) = v(t), a.e. [0,T], and x(0) = Y7, B,(I*x)((), x(1) = Ay = Z’—,
Z?:l “i(Ivix)(ﬂ)‘ prp (.”i +q+ 1)

Lemma 5. Let h € C[0, 1]. Then the boundary value problem 1 i an’ >
¢pP (D1 _ ST(i+1) 8)
DP(‘DT+ M) x(t)=h(t), 0<t<]l,

: LAl
x(0) = Y (1) ©). As= (l‘gr(wl))’

(6)

x(l)=i(xi(1v"x)(17), 0<{<n<l, A, =
i=1
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Proof. As argued in [23], the solution of “DP(‘D? + A)x(t) =
h(t) can be written as

_[fe=9T
x0= | e

S (s—r)P! 9
x(JO Wh(r)dr—)tx(s))ds )
__ %  a_
F(q+1)t q.

Using the given conditions in (9) together with (8), we find
that

Ay —=AiG=-F1s

(10)
Ayo =Dy =75
where
B n ¢ (( _ u)llrl
7= 26, S
u (u_ S)q—l
g <L r(q)

S(s—r)P! ~ } )
« {JO Fp) O Ax () ds )du

C(fa-sr!
7=, T(q)

S(s—r)P!
X (L 0p) h(r)dr—)lx(s))ds
& (-
;0‘1‘ L I'(v)
Y —s)T?
" (L e
X {r (s—n™ h(r)dr — Ax (s)} ds> du.
o T(p)
(11)
Solving (10) for ¢, and ¢;, we find that
1
Q= K(AZjl +A3.7,),
(12)

1
G = K(A4j1+A1j2).

Substituting these values in (9), we find the desired
solution. O

In order to simplify the computations in the main results,
we present a technical lemma, concerning the bounds of the
operators £, and £, defined in the proof of the above lemma.

3
Lemma 6. One has
JHHPH ||
|fJ<ZUi————————
i=1 [’l + p + q + 1)
C’“q [A] [l
53 1] ¢
i=1 "lz + q + 1)
h Al |lx
|j|< Al N [AL ]| 13)
T(ptq+1) T(q+1)
n 17‘1/,-+p+q ”h"
+ Z|“i| Y
i1 T(v+p+q+1)
i| | " AL |l
57T+ q+1)
Proof. By using the following property of beta function
1
BMb+1,a) = J (1-5)""'sbds
' (14)
_T@Tr®+1)
C T(a+b+1)’
we have
1711 < Y IBi]
i=1
¢ - M)Mrl
. ()

(L

AL S

mwwhﬂﬂw®¢¢)w

SP
X {m Al + 1A ||x||]» d5> du
L [ G-
<1, S
Y (u—s)T 1P |k
. (L F@rpen®

Y- s)T!
’ L (9

[A (x| ds) du



uP k|

n ¢ - u)m-l
]

e
=

3181,

T(w) T(@T(p+1)

xB(p+1,9)

C-wH!
CT(w) T

S

du

ul

(Al llx]l du
(q+1)

M:

P F(Ml I(q)T(p+1)

xB(p+1,q)B(p+q+1,u)

Zm

Cﬂl
T(u)T(g+1)

i S

F(M

+p+q+1)

Hitq A
ZLBl CHTIAL llxll

T(i+q+1)

By a similar way, we have

72| <

v (u)]

B(q+1,u) Al IxI

Al 1x ()]

n

+Z|“z’|

i=1

n

+Z|“z’|

i=1

which completes the proof.

T(p+q+1) T(q+1)

n Py ()

T(v +p+q+1)

7 AL |x ()]

(v +q+1)’

In the following, for convenience, we put

Q=

|As|+]A,|T(q+1)

N

F(q+1)

_ A, +]A,|T(g+1)

Al

1+A,

+AIZ|

+ Azz |/3:|
i=1

F(q+1)

T(p+qg+1)

’,’vi+p+q
(vi+p+q+1)

C Hitpt+q

T(g+p+q+1)

(15)

(16)
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_ IA(1+A))
T(g+1)

v,-+

Al
C."li"'
+AzZ|/3; T rqr1)

17)

2.2. Background Material for Multivalued Analysis. Now we
recall some basic definitions on multivalued maps [27-29].

Let C([0, 1]) denote a Banach space of continuous func-
tions from [0, 1] into R with the norm || x [|= sup,¢(o ;Ix(?)!.
Let L'([0, 1], R) be the Banach space of measurable functions
x : [0,1] — R which are Lebesgue integrable and normed
by Il x llps = f, Ix(t)ldt

For a normed space (X, || - |), let

Py(X)={Y € P(X):Y isclosed},

Py (X) ={Y € P (X) : Yisbounded},

. (18)
Py (X) = {Y € P(X) : Y is compact},

Pope (X) ={Y € P (X) : Y is compact and convex} .

A multivalued map G : X —» 2(X)

(i) is convex (closed) valued if G(x) is convex (closed) for

all x € X;

(ii) is bounded on bounded sets if G(B) = U,.zG(x) is
boundedin X forall B € 9,(X) (i.e., sup,..gisupf|yl :
y € G(x)}} < 00);

(iii) is called upper semicontinuous (u.s.c.) on X if, for each
x, € X, the set G(x,) is a nonempty closed subset of
X and if, for each open set N of X containing G(x,),
there exists an open neighborhood ./, of x,, such that
G(SNy) € N;

(iv) G is lower semicontinuous (Ls.c.) if the set {y € X :
G(y) N B+ 0} is open for any open set B in E;

(v) is said to be completely continuous if G(B) is relatively
compact for every B € %, (X);

(vi) is said to be measurable if, for every y € R, the
function

t—d(y,G(@) =inf{|y-z|:z2 € G()} (19)

is measurable;

(vii) has a fixed point if there is x € X such that x € G(x).
The fixed point set of the multivalued operator G will
be denoted by FixG.

Definition 7. A multivalued map F : [0,1] x R — PA(R) is
said to be Carathéodory if

(i) t — F(t, x) is measurable for each x € R;
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(ii) x — F(t,x) is upper semicontinuous for almost all
te[0,1];

Further a Carathéodory function F is called L'-Carathéodory
if
(iii) for each a > 0, there exists ¢, € L'([0, 1], R") such
that

IF (8, %)l = sup{[v| : v € F (£, x)} < ¢, (£) (20)
forall | x|, < «and fora.e.t € [0,1].

For each x € C([0, 1], R), define the set of selections of F
by

SF,x

={ve L' ([0,1],R):v(t) € F(t,x(t)) forae te[0,1]}.
(21)

We define the graph of G to be the set Gr(G) = {(x, y) €
XxY, y € G(x)} and recall two useful results regarding closed
graphs and upper semicontinuity.

Lemma 8 (see [27, Proposition 1.2]). If G : X — P4(Y)
is u.s.c., then Gr(G) is a closed subset of X x Y; that is, for
every sequence {x,},cn C X and {y,},en € Y, if, when
n — 00,Xx, — X,YV, — V.andy, € G(x,), then
v, € G(x,). Conversely, if G is completely continuous and has
a closed graph, then it is upper semicontinuous.

Lemma 9 (see [30]). Let X be a Banach space. Let F : [0, T] x
R — &,(X) be an L'-Carathéodory multivalued map,

and let ® be a linear continuous mapping from L'([0,1], X)
to C([0, 1], X). Then the operator

©0Sp: C([0,1], X) — £, (C([0,1], X)),

cp,c
(22)

x> (0 05;) (x) = O (S,
is a closed graph operator in C([0, 1], X) x C([0, 1], X).

We recall the well-known nonlinear alternative of Leray-
Schauder for multivalued maps.

Lemma 10 (nonlinear alternative for Kakutani maps [31]).
Let E be a Banach space, C a closed convex subset of E,U an
open subset of C, and 0 € U. Suppose that F : U — P, (C) is
an upper semicontinuous compact map; here & _ . (C) denotes
the family of nonempty, compact convex subsets of C. Then
either

(i) F has a fixed point in U, or
(ii) thereisau € oU and A € (0,1) with u € AF(u).

Definition 11. Let A be a subset of [0,1] x R. Ais & ® &
measurable if A belongs to the o-algebra generated by all sets
of the form # x &, where 7 is Lebesgue measurable in [0, 1]
and 9 is Borel measurable in R.

Definition 12. A subset &f of LY([0,1],R) is decomposable if,
for all u, v € of, and measurable # C [0, 1] = J, the function
uxy + vx_y € o, where x; stands for the characteristic
function of 7.

Lemmal3 (see [32]). LetY be a separable metric space, and let
N:Y — 2(LY([0,1],R)) be a lower semicontinuous (l.s.c.)
multivalued operator with nonempty closed and decomposable
values. Then N has a continuous selection; that is, there exists
a continuous function (single-valued) g : Y — L'([0,1],R)
such that g(x) € N(x) foreveryx € Y.

Let (X, d) be a metric space induced from the normed
space (X; || - [). Consider H; : P(X) x P(X) — R U {oo}
given by

H,; (A, B) = max {sup d(a,B),supd (A, b)}, (23)

acA beB

where d(A,b) = inf,.,d(a;b) and d(a, B) = inf,zd(a;b).
Then (%, 4(X), H,) is a metric space (see [33]).

Definition 14. A multivalued operator N : X — P4(X) is
called

(a) y-Lipschitz if and only if there exists y > 0 such that
Hy (N (x), N (y)) < yd (x, )

(b) a contraction if and only if it is y-Lipschitz with y < 1.

foreach x,y € X; (24)

Lemma 15 (see [34]). Let (X, d) be a complete metric space. If
N: X — Py(X) is a contraction, then Fix N # 0.

3. Main Results

3.1. The Carathéodory Case. In this section, we are concerned
with the existence of solutions for the problem (1) when
the right-hand side has convex as well as nonconvex values.
Initially, we assume that F is a compact and convex valued
multivalued map.

Theorem 16. Suppose that

(H,) the map F : [0,1] x R — P(R) is Carathéodory and
has nonempty compact and convex values;

(H,) there exist a continuous nondecreasing function y :
[0,00) — (0,00) and function p € L'([0,1],R")
such that

IF(t ) == sup{lvl: v e Ft,x)} < p(O) y (Ix[)  (25)
foreach (t,u) € [0,1] x R;
(H,) there exists a number M > 0 such that
M(1-Y)
—_— > 1, 26
y (0[]0 2

with ¥ < 1, where Q, YV are defined in (17).
Then BVP (1) has at least one solution.

Proof. Let us introduce the operator N : C([0,1],R) —
P(C([0,1],R)) as
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- J~t (t— S)q—
o TI'(q)

1 s —1
(J (51?8; v(r)dr—)tx(s))ds
0

+AT(g+1)

(th

A T(g+1)
s)1™!
[o I'(q) .
( (s—r) v(r)dr—}\x(s))
n v;—1
AR ORE I Y J, (nr(? 7

X(Lu( e

s -1
X «“0 (s;(r;)’ v(r)dr—)tx(s)}ds)du]

(th +A, F(qH))iﬁz Jc ((r_(l:ji;,.l

I(g+1)

i=1 70

for v € Sp,. We will show that the operator N satisfies the
assumptions of the nonlinear alternative of Leray-Schauder
type. The proof consists of several steps. As a first step, we
show that N(x) is convex for each x € C([0, 1], R). For that,
let k), h, € N(x). Then there exist v, v, € S, such that, for
each t € [0, 1], we have

h; ()
_ Jt (t-97"
o T(q)
s -1
X (Jo (51:(2;’ v, (r)dr—)»x(s))ds
1 <th3+A1F(q+1))

A T(g+1)
di!

(1-s)1"
I'(q)

s -1
><<J'0 (51:(2; v; (r)dr—)\x(s))ds

u)vrl

‘Z L T(v)
([

AL o

v (r)ydr — Ax (s)} ds) du]

A
Rl
0

-1
(51:(2; v(r)dr — Ax (s)} ds) du

(8

pP* v (r)ydr — Ax (s)} ds> du
(28)

fori = 1,2. Let 0 < w < 1. Then, for each t € [0,1] and
putting z(r) = wv,(r) + (1 — w)v,(r), we have

[wh, + (1 = w) h,] (1)

_ r (t-s)7" (Js (s—r
o T'(g) \Jo T(p)

1 (th3+A1F(q+1))

A T(q+1)

A
PA=-9)T (s (s=r)P! ~ )
X [Jo Q) (L p) z(r)dr — Ax(s) | ds

i=1 70

)

z(r)dr — Ax (s)> ds
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= (I
X X
o T(q) o T(q)
X {r (S_r)p_lz(r)dr—/\x (s)}ds) du] S0t dr-2A ds|d
o T(p) X L (p) v(r)dr — Ax(s)r ds | du
_l(th2+A4I‘(q+l)) (t - )0
A T (q + 1) - JO I‘ )
L ¢ - u)#rl (s— r)p 1
X ; _
;/3 L I'() ( v(r)dr - Ax (s))
(1 48, 4 AT (g + 1)
o T(q) T(q+1) 2
S(s—r)f! g
x J z(r)dr — Ax(s)+ ds | du t1A, + AT (g +1)
o T(p) T(g+1) !
(29)
|h (£)]
Since Sg, is convex (F has convex values), therefore it E(f— )T
follows that wh, + (1 — w)h, € N(x). < J
Next, we show that N(x) maps bounded sets into bounded o T(q)
sets in C([0,1], R). For a positive number r, let B, = {x € S (s— )Pt
C([0,1],R) : || x [I< p} be abounded setin C([0, 1], R). Then, (J [v(r)|dr+]|A| |x(s)|>ds
foreachh € N(x),x € Bp, there exists v € Sg such that o T (p)

+ A |7+ A, |7

h(t)
RS C YU el 1Anix
:J (t-s) T T(p+g+1) T(g+1)
o (=) || o
- v lxD el 1AL I
S(s—r)P? - ) A ( A
x(L ) v(r)dr — Ax(s) |ds I(p+q+1) T(gq+1)
(8, + AT (g ) (a2
A T(g+1) L(vi+p+q+1)
(1- S)‘r1 7 A NIx)
X[Jo I'(q +F(vi+q+1)])
1
([ (s—r)P v(r)dr—/\x(s)>ds o ((ﬂ+p+q1//(||x||)||P”L1
ST T+ ptqt1)
o ”) {44 ) x|
Zl L L) (M+q+1)>
“(y—s)1! _
=y (x| 2|l
X(Jo I'(q) " “L
s Yt 1+A
X {L (SF(T;) v(r)dr—/\x(s)}ds>du] {1"(p+q+1)
1 [t +A,T(q+1) N g
_Z< T(g+1) > " IZ| IF(V +p+qg+1)

n Cor — it n witptq
XZ:BiJ €ow +A22|ﬁi|5—}

57 T(w) T(;+p+q+1)



-l {—'M Ur4,)
I(g+1)

Vi*'q

+1AA, ZMW

C!‘i*q
|F(ui+q+1)}

= Qy (Ix) o[l + ¥ Il

n
+ Azz |/3i
=1

Then

Il < Qy (p) ol + ¥ (31)

Now we show that Nmaps bounded sets into equicontin-
uous sets of C([0,1],R). Let t',¢" € [0,1] witht' < " and
x € B, where B,, as above, is a bounded set of C([0, 1], R).
For each h € N(x), we obtain

[n(") - n(¥)
) r~@~_gq1

o T(q)
s -1
[
o T(q)
X (J‘Sﬂh/(rﬂdrﬂ)q |X(S)|)ds
o T(p)
|A | "
*area ) -
|A2| H , q
|A|r(q+1)| ()17l
' n_ q-1 B r q-1
s I [(t s) (t' -5s) ]
0 I'(q)
‘ (LS % v ()l dr+ Al |x(5)|) ds

(¢ - s)q_1
)

s -1
([ wotar s o ) as
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4] "
IAIT (g +1) ()=
|A2| "
T (g + 1) (
t' [(t" - s)q_l - (t' - s)q_l]
ol

o I'(q)

B t’)q| 7]

X (Ilpllpw(p) LS %dr + (Al p) ds

o q-1
. J (1" -s)
tl

I'(q)
s _ Pl
(Ul ) || S5 25+ i s
|A3| "
+|A|1“(q+1) ‘( “jzl

|A2| 1m\4 na
Fiar e (¢ =il

(32)

Obviously the right-hand side of the above inequality
tends to zero independently of x € B, as t" -t -
0. As N satisfies the above three assumptions, therefore it
follows by Ascoli-Arzeld theorem that N : C([0,1],R) —
P(C([0,1],R)) is completely continuous.

In our next step, we show that N has a closed graph. Let
x, — x,, h, € N(x,),and h, — h,.Then we need to show
that h, € N(x,). Associated with h, € N(x,), there exists
v, € Sg, such that, for each t € [0,1],

h, (1)
_ J~t (t—S)q_l
o T(q)
S(s—r)P!
X(L rp)
1 (tA,+AT(g+1)
N G T i

F(q+ 1)
L(1-)1!
8 |:J0 T(q)
s -1
"

(1) dr - Ax (s)> s
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u ( u— s)q—l
X
<L I'(q)

s —1
y {L “;{2; vnhjdr—kx(g}ds>du]

1 <th2+A41"(q+1)>

A F(q+1)

A

A (e
- ;ﬁt L r (ﬂi)

(L

s —1
X {J (s;(r;;) v, (r)dr — Ax (s)}ds) du.
0

(33)

Thus we have to show that there exists v, € Sg, such that,
for each t € [0, 1],

h, ()
_ j L-9T!
o T(q)
s -1
X (L (51:(2; v, (r)dr — Ax (s)) ds

1 (tIA;+AT(q+1)
X( T(q+1) )

x “0 (lr—(s)qf1

(I

v, (r)dr - /\x(s)>

Yy —s)i?
g (L r(a)
S (s—r)P! B
X {L ) v, (r)dr Ax(s)}ds) du]

()

A

e
<26 S
X (Ju (u— S)q_l
o T(q)

S(s—r)P! B
X {L () v, (r)dr — Ax (s)} ds) du.

(34)

L'([0, 1],

Let us consider the continuous linear operator ©

vi— O (V)

¢ (=N
. JO T (1)
(e
o T(q)
{JS (s—r)F!
o T(p)
Observe that

g

0

Ft-s

)i

I'(q)

R) — C([0,1],R) so that

s -1
X (J-o (S;(’;; v(r)dr — Ax (s))ds

e

I(q+1)

s)q !

(ﬂA +A1%q+n)

s -1
><<J (51:(2; v(r)dr—Ax(s))ds
0

vaw—uw*

(%)

(o

ALerr

1 (th2+A41"(q+1)>
A

T(g+1)

|k, ) = h, )]
(R
I'(q)

Il

(I
i

(s— )"
T'(p)

tIA,+ A T(g+1)

I(g+1)

)

v(r)dr — Ax (s)} ds) du]

_ v(r)dr — Ax (s)} ds) du.

(35)

v, (1) = v, (s)) dr) ds
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dir (L5
y (L (Sr(p) (v, (r) - ))dr) ds y {L (5;(2;_1 v, (r)dr—)tx(s)}ds) du]
2o ()
g0 o
(I JE=re
N “0 i (’)§ (v, 9)d }ds)du] x( [ (“r‘(;);*l
_%<%> x “0 (Sr‘(’;;lv* (r)dr—)»x(s)]»ds)du

(37)

X Z.Bx
i=1 for some v, € Sg, .
r (G Finally, we discuss a priori bounds on solutions. Let x be a

solution of (1). Then there exists v € L'([0, 1], R) with v € Skx

o Tw) such that, for t € [0, 1], we have
¥y — )T
: (L T(9) )
(s—r)F?t _ fE-s)T!
X {L ) (v, (r) = v, (5) dr} ds) dul, L I'(q)

(36) -1

v(r)dr — Ax (s)>

which tends to zero asn — oo.
Thus, it follows from Lemma 9 that @S, is a closed graph
operator. Further, we have h, () € ©(S F,xn)‘ Since x,, — x,,

it follows that

(L5
(P

tIA,+AT(g+1)
q+1

1 (1 _s)q—l
h, (1) g “o I'(q)
(=9 ( syt )
= L ) X L T00) v(r)dr — Ax(s) | ds
X (J: (S;(’Z;_l v, (r)dr —Ax (s)) ds - ;“i
7<th +A1F(q+l)> 1 (g -u)
A T(g+1) * L T (v)
(1-9)"" Y- )T
[ e X<L I(a)
S(s—ryf! - ) S(s—r)P!
X <L T (p) v, (r)dr—Ax(s) | ds X {L ) v(r)dr — Ax (s)]» ds) du]
_i(x. 1/tA,+A,T(g+1)
il A < I(g+1) )
- N
. —[0 (%) g ;ﬁl
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¢ (C _ u)m-l
- L )

(L

S(s—r)P! B
X {L () v(r)dr Ax(s)}ds)du.

(38)

Using the computations proving that N(x) maps bounded
sets into bounded sets and the notations (17), we have

Ixll < v (el 1ol
1+A,

o 1rAL

{ T(p+q+1)

+A1Z|

1/ i+pt+q

T (v +p+q+1)

Garat]
+ AZZ Iﬁ, —_—
57 T(+p+rq+l)

(39)
M(1+A4,))
+ x| {W
v,~+q
+ 1M Alz o] m
&
“ 3 1) F(#,+q+1)}
= Qu (Ix) ||pll + ¥l
Consequently
[lx]l (1 —¥)
————— < 40
N o

In view of (Hj), there exists M such that || x || # M. Let us
set

U={xeC(0,1],R): x|l < M+ 1}. (41)
Note that the operator N : U — 2(C([0,1],R)) is upper
semicontinuous and completely continuous. From the choice
of U, there is no x € 0U such that x € uN(x) for some
p € (0,1). Consequently, by the nonlinear alternative of
Leray-Schauder type [31], we deduce that N has a fixed point
x € U which is a solution of the problem (1). This completes
the proof. O

3.2. The Lower Semicontinuous Case. Next, we study the case
where F is not necessarily convex valued. Our approach
here is based on the nonlinear alternative of Leray-Schauder
type combined with the selection theorem of Bressan and
Colombo for lower semicontinuous maps with decom-
posable values.

1

Theorem 17. Assume that (H,)-(H;) and the following condi-
tions hold:

(Hy) F:[0,1]xR — P(R) is a nonempty compact-valued
multivalued map such that

(a) (t,x) — F(t,x) is &£ ® B measurable,

(b) x — F(t,x) is lower semicontinuous for each t €
(0, 1];

(H;) for each o > 0, there exists ¢, € L'([0,1],R,) such
that

IE (t,x)| = sup{|y| : y € F(t,x)} < @, ()
(42)
Vx| <o and for ae. t € [0,1].

Then the boundary value problem (1) has at least one solution
on [0, 1].

Proof. 1t follows from (H,) and (H;) that F is of Ls.c. type
[35]. Then from Lemma 13, there exists a continuous function
f:C([0,1,R) — L'([0, 1], R) such that f(x) € F(x) for
all x € C([0,1], R).

Consider the problem

‘DP (‘DI +A)x(t)=F(x(t)), 0<t<]l,

— N (TH
x(O)—;ﬂl (I"x) (), )

x(l):zn:oci(lv"x)(n), 0<{<n<l.
i=1

Observe that, if x € ACY([0,1]) is a solution of (43),
then x is a solution to the problem (1). In order to transform
the problem (43) into a fixed point problem, we define the
operator N as

(Nx) (t)
_ Jt (t—s)T!
o T(q)
(s—
X (L F( ) f(x(r))dr Ax(s))

)
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- [J-O1 %
: (L o (r))

f(x(r)dr - Ax (s))

-
|, oy

(o
X{L (Sr( T e r

—Ax (s) } ds> du]

()

A o

f(x(r)dr—Ax (s)l> ds) du
(44)

It can easily be shown that N is continuous and completely
continuous. The remaining part of the proof is similar to that
of Theorem 16. So we omit it. This completes the proof.  [J

3.3. The Lipschitz Case. Now we prove the existence of
solutions for the problem (1) with a nonconvex valued right-
hand side by applying a fixed point theorem for multivalued
map due to Covitz and Nadler [34].

Theorem 18. Assume that the following conditions hold:

(Hg) F: [0,1]xR — @CP(R) is such that F(-, x) : [0,1] —
Pp(R) is measurable for each x € R;

(H;) H (F(t,x), F(t,x)) < m(t)|x — x| for almost all t €
[0,1] and x,x € R with m € C([0,1],R") and
d(0, F(t,0)) < m(t) for almost all t € [0, 1].

Abstract and Applied Analysis

Then the boundary value problem (1) has at least one solution
on [0,1]if Q || ml 1 < 1, that is,

1+ A, §E| AL
F(p+q+1) T(v;+p+q+1)
(45)
CM’*’PW
+ Azzm T prarDy | e <t

Proof. Observe that the set Sy, is nonempty for each x €
C([0, 1], R) by the assumption (Hg), so F has a measurable
selection (see Theorem II1.6 [36]). Now we show that the
operator N satisfies the assumptions of Lemma 15. To show
that N(x) € 24((CI[0,1],R)) for each x e C([0,1],R),
let {u,},5o € N(x) be such thatuy, — u(n — o00) in
C([0, 1], R). Then u € C([0, 1], R), and there exists v,, € Sg,
such that, for each t € [0, 1],

u, (t)
:J‘u—sﬁ*
o T(q)
s -1
X (L (S;(’Z; v, (r)dr - Ax (s)) ds

()

A
IO
[ o)

(L5

v, (r)dr — Ax (s)> ds

XJ”M—MV4

(%)
Yy —s)T!
g <L r(@)
X {Ls (S;(t;;_ v, (r)dr — Ax (s)j» ds) du]

()

X (f ‘o

S(s—r)P! } )
X {J v, (r)dr — Ax (s){ ds | du.
r(p) "
0 (46)
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As F has compact values, we pass onto a subsequence to
obtain that v,, converges to v in LY([0,1], R). Thus, v € Skx
and, for each t € [0, 1],

u, (t) — u(t)

-1
I

(1%

1 [ t9A;+ AT ( q+1
T(g+1)

v(r) dr — Ax (s)) ds

A
[

X<E“;8?1

v(r)dr — Ax (s)> ds

“u-s)T!
X<L T (9)
s —1
X {L (S;(r;; v(r)dr — Ax (s)} ds) du}

()

CQowt
< T ()

Y u—s)T!
X<L T(@)
S(s— r)P*1
X{L T ()
Hence, u € N(x).

Next we show that there exists y < 1 such that
Hy (N (x), N (x))

v(r)dr — Ax (s)} ds) du.

(47)

(48)

<ylx—-x| for each x,x € C([0,1],R).

Let x,x € C([0,1],R) and h; € N(x). Then there exists
v, (t) € F(t, x(t)) such that, for each t € [0, 1],

hy (8)
_ Jf (t-s""
o T(q)

(L

v, (r)dr — Ax (s)) ds

13

1 tIA;+ A T(g+1)
A( T(g+1) >

X{ﬁung

s -1
X <L (51:(2; vy (r)dr — Ax (s))ds

‘(-9
X(L r()
1
{J (s = r)P vl(r)dr—/\x(s)}ds>du:|

1A, +A,I(q+1)
A I'(g+1)

x Zﬁz
r ¢-wH!
o T(w)
u (u 75)41—1
X<L e
S(s— 1‘)‘1’_1
X {L ) vy (r)dr - Ax (s)} ds) du
(49)
By (H;), we have
H,;(F(t,x),F(t,x)) <m(t) |x(t) —x(t)]. (50)

So, there exists w(t) € F(t, x(t)) such that
|v1 (t)—w(t)| <m(t)|x () -x()], te[0,1]. (51)
Define U : [0,1] — P(R) by

U)=fweR:|v () -w|<m@®)|xt)-x@®)I}. (52)

Since the multivalued operator U(¢) N F(¢, x(¢)) is measurable
(Proposition II1.4 [36]), there exists a function v, (t) which is
a measurable selection for V. So v,(t) € F(t,x(t)), and for
eacht € [0,1], we have |v,(t) — v, ()| < m(t)|x(t) — x(£)|.
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For each t € [0, 1], let us define

h, (t)
Jf( -9
o T(q
( sr—(r)) vz(r)dr—/\x(s)>ds
1(t‘1A +A, F(q+1)>
T(g+1)
diieion

s -1
X (L (51:(2; v, (r)dr—/\x(s))ds

U (u—s)1!
‘ (L I'(q)
s -1
X {L %vz (r)dr—/\x(s)}ds) du]

1 (th2+A41“(q+1)>

I‘(q+ 1)

¢ (( _ u)#i*I
- JO T(w)

g (J: (ur_(sq);1

s —1
X 4“ (S;(}Z; v, (1) dr—)\x(s)}ds) du
0

(53)

Thus,
|hy () = hy (1)]
_ r (t-s)3"
o I'(q)

S(s—r)P! B
X <L ) |v1 (r)—v, (r)|dr> ds

Abstract and Applied Analysis
1(tA;+AT(g+1)
A T(g+1)

dis

()

Hence,

XZﬂi
J‘ G —w
o T(w)
(I
o T(q)
s _ Pl
X {L (sr(r;) |v1 (r)—v, (r)|dr]> ds>du.
(54)
1+A,
|hy =Ry < {m
'1/+p+q
+AIZ| | v+p+q+1) (55)

(#‘*’P*’q
2P ey

X mllp flx = Il
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Analogously, interchanging the roles of x and X, we obtain

H; (N (x),N (X)) < ylx -l

- 1+A,
T T (p+gq+1)
n 7/1-+p+q

F ALY Jog] 1

i=1 T(v+p+q+1)

n et }
+A |
Zizzlw T(g+p+q+1)

X mllp flx = Il (56)

Since N is a contraction, it follows from Lemma 15 that N
has a fixed point x which is a solution of (1). This completes
the proof. O

Remark 19. Ttisimportant to note that several new interesting
special results of the present work can be obtained by fixing
the parameters involved in the given problem. Some of these
results are listed in the following.

(i) Our results correspond to the multivalued extension
of the Dirichlet problem considered in [23] for f; =
0=« i=12,...,n

(ii) In case we take 3; = 0, i = 1,2,...,n, we obtain the
results for Langevin fractional differential inclusions
with the three-point integral boundary conditions of
the following form:

x(0)=0, x(1)=Ye(I"x)(n). (57)
i=1

(iii) By taking 5, =0 =«;, i =2,3,...,n,andv, = 1 = y,
we get the results for Langevin fractional differential
inclusions with four-point nonlocal integral bound-
ary conditions of the following type:

¢ n
x(0) = B, L x(s)ds, x(1)=a L x (s) ds. (58)

Note that we obtain the typical integral boundary
condition in the limit {,# — 1°.

Example 20. Consider the problem
CD2/3< ‘D 4 )x(t) eF(t,x(t), 0<t<]l,

()

x(0) =

N | =
—~
—~
pA
=
S
x
~—
e
=
~—
|
W | =

x(1) = %(IlMx)(%) —%(Imx)(%)
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where F: [0,1] x R — P(R) is a multivalued map given by

1 %

F(t,x)= |~
x— Fi&x) [4x5+3

1 1 1
+-(+1),-sinx+-(t+1)].
8( )4 in x 4( )]
(60)
For f € F, we have

1
4x°+3

1 1 . 1 3
+—-(@{+1),-sinx+-(t+1)]| < —.
8 4 4 4

1 max|
(61)

Here p = 2/3,q = 4/5,A = 1/10,n = 1/3,n = 4, a; =
1/2, 0y = =-2/3, 3 = 3/4, 04 = —4/5, v, = 1/4,v, =
3/4, v, = 5/4, v, = 7/4, { = 1/4, B, = 1/2, B, = —1/3, B; =
1/4, B, = -1/5 pw =1/2, u, = 3/4, u3 = 3/2, and y, = 4/3.
Clearly,

IE(E, )] 5

=sup{ly|:y e Ft, )} < p@)y(lxl), xeR,

(62)

with p(t) = 1, y(llx|l) = 3/4. Using the given data, it is found
that

A, =0.126506, A, =0.804143,
A5 =0.849082, A, = —0.983656,
A=0936934, A, =1.108019, (63)
A, = 1971367, Q = 1.764724,
V¥ = 0.47047.
Thus,
M > w ~ 2.499467. (64)

Clearly, all the conditions of Theorem 16 are satisfied. So there
exists at least one solution of the problem (59) on [0, 1].

Example 21. Consider the fractional inclusion boundary
value problem (59) with F : [0,1] x R — P(R) given by

(65)

F(t,x):[O sin x 1]'

bl - 5 + A
Q2+1)? 12
Then, we have
1 1
supflul:u € F(t,x)} < — + ——,
12 2+ t)2 (66)
H,; (F(t,x),F(t,x)) <m(t)|x - x|,

wherem(t) = 1/(2+t)%. With || m|p =1/6and Q = 1.764724
(from Example 20), it is found that

y = Q|ml|l ~ 0294121 < 1. (67)

Since all the conditions of Theorem 18 are satisfied, therefore
the problem (59) with F given by (65) has at least one solution
on [0, 1].
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