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This paper considers the dynamics of switched cellular neural networks (CNNs) with mixed delays. With the help of the Lyapnnov
function combined with the average dwell time method and linear matrix inequalities (LMIs) technique, some novel sufficient
conditions on the issue of the uniformly ultimate boundedness, the existence of an attractor, and the globally exponential stability
for CNN are given.The provided conditions are expressed in terms of LMI, which can be easily checked by the effective LMI toolbox
in Matlab in practice.

1. Introduction

Cellular neural networks (CNNs) introduced by Chua and
Yang in [1, 2] have attracted increasing interest due to
the potential applications in classification, signal processing,
associative memory, parallel computation, and optimization
problems. In these applications, it is essential to investigate
the dynamical behavior [3–5]. Both in biological and artifi-
cial neural networks, the interactions between neurons are
generally asynchronous. As a result, time delay is inevitably
encountered in neural networks, which may lead to an
oscillation and furthermore to instability of networks. Since
Roska et al. [6, 7] first introduced the delayed cellular neural
networks (DCNNs), DCNNhas been extensively investigated
[8–10].Themodel can be described by the following differen-
tial equation:
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where 𝑡 ≥ 0, 𝑛(≥ 2) corresponds to the number of units
in a neural network; 𝑥

𝑖
(𝑡) denotes the potential (or voltage)

of cell 𝑖 at time 𝑡; 𝑓
𝑗
(⋅) denotes a nonlinear output function;

𝐽

𝑖
denotes the 𝑖th component of an external input source

introduced from outside the network to the cell 𝑖 at time
𝑡; 𝑑
𝑖
(> 0) denotes the rate with which the cell 𝑖 resets its

potential to the resting state when isolated from other cells
and external inputs; 𝑎

𝑖𝑗
denotes the strength of the 𝑗th unit

on the 𝑖th unit at time 𝑡; 𝑏
𝑖𝑗
denotes the strength of the 𝑗th

unit on the 𝑖th unit at time 𝑡 − 𝜏
𝑗
; 𝜏
𝑗
(≥ 0) corresponds to the

time delay required in processing and transmitting a signal
from the 𝑗th cell to the 𝑖th cell at time 𝑡.

Although the use of constant fixed delays in models of
delayed feedback provides of a good approximation in simple
circuits consisting a small number of cells, recently, it has
been well recognized that neural networks usually have a
spatial extent due to the presence of a multitude of parallel
pathways with a variety of axon sizes and lengths. Therefore,
there will be a distribution of conduction velocities along
these pathways and a distribution of propagation delays. As
the fact that delays in artificial neural networks are usually
time varying and sometimes vary violently with time, system
(1) can be generalized as follow:
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On the other hand, neural networks are complex and

large-scale nonlinear dynamics; during hardware implemen-
tation, the connection topology of networks may change
very quickly and link failures or new creation in networks
often bring about switching connection topology [11, 12]. To
obtain a deep and clear understanding of the dynamics of
this complex system, one of the usual ways is to investigate
the switched neural network. As a special class of hybrid
systems, switched neural network systems are composed of
a family of continuous-time or discrete-time subsystems and
a rule that orchestrates the switching between the subsystems
[13]. A switchedDCNN can be characterized by the following
differential equation:
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where 𝜎(𝑡) : [0, +∞) → Σ = {1, 2, . . . , 𝑚} is the switching
signal, which is a piecewise constant function of time.

Corresponding to the switching signal 𝜎(𝑡), we have the
switching sequence {𝑥

𝑡0
; (𝑖
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0
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, 𝑡
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).

Over the past decades, the stability of the unique equilib-
rium point for switched neural networks has been intensively
investigated. There are three basic problems in dealing with
the stability of switched systems: (1) find conditions that
guarantee that the switched system (3) is asymptotically
stable for any switching signal; (2) identify those classes
of switching signals for which the switched system (3) is
asymptotically stable; (3) construct a switching signal that
makes the switched system (3) asymptotically stable [14].
Recently, some novel results on the stability of switched
systems have been reported; see for examples [14–22] and
references therein.

Just as pointed out in [23], when the activation functions
are typically assumed to be continuous, bounded, differen-
tiable, and monotonically increasing, such as the functions
of sigmoid type, the existence of an equilibrium point can
be guaranteed. However, in some special applications, one
is required to use unbounded activation functions. For
example, when neural networks are designed for solving
optimization problems in the presence of constraints (lin-
ear, quadratic, or more general programming problems),
unbounded activations modeled by diode-like exponential-
type functions are needed to impose constraints satisfaction.
Different from the bounded case where the existence of
an equilibrium point is always guaranteed, for unbounded
activations it may happen that there is no equilibrium point.
In this case, it is difficult to deal with the issue of the stability
of the equilibrium point for switched neural networks.

In fact, studies on neural dynamical systems involve
not only the discussion of stability property but also other

dynamics behaviors such as the ultimate boundedness and
attractor [24, 25]. To the best of our knowledge, so far there
are no published results on the ultimate boundedness and
attractor for the switched system (3).

Motivated by the above discussions, in the following,
the objective of this paper is to establish a set of sufficient
criteria on the attractor and ultimate boundedness for the
switched system.The rest of this paper is organized as follows.
Section 2 presents model formulation and some preliminary
works. In Section 3, ultimate boundedness and attractor for
the considered model are studied. In Section 4, a numerical
example is given to show the effectiveness of our results.
Finally, in Section 5, conclusions are given.

2. Problem Formulation

For the sake of convenience, throughout this paper, two of the
standing assumptions are formulated below:
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1
) Assume the functions 𝜏(𝑡) and ℎ(𝑡) are bounded:
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Remark 1. We shall point out that the constants 𝑙
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and 𝐿
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be positive, negative, or zero, and the boundedness on 𝑓
𝑗
(⋅)

is no longer needed in this paper. Therefore, the activation
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Different from the bounded case where the existence of an
equilibrium point is always guaranteed, under the condition
(𝐻

2
), in the switched system (3) it may happen that there is

no equilibrium point.Thus it is of great interest to investigate
the ultimate boundedness solutions and the existence of an
attractor by replacing the usual stability property for system
(3).

Without loss of generality, let 𝐶([−𝜏∗, 0], 𝑅𝑛) denote
the Banach space of continuous mapping from [−𝜏

∗
, 0]

to 𝑅𝑛 equipped with the supremum norm ‖ 𝜑(𝑡) ‖=

max
1≤𝑖≤𝑛

sup
𝑡−𝜏
∗
<𝑠≤𝑡
|𝜑

𝑖
(𝑠)|. Throughout this paper, we give

some notations: 𝐴𝑇 denotes the transpose of any square
matrix 𝐴, 𝐴 > 0 (< 0) denotes a positive (negative) definite
matrix 𝐴, the symbol “∗” within the matrix represents
the symmetric term of the matrix, 𝜆min(𝐴) represents the
minimumeigenvalue ofmatrix𝐴, and 𝜆max(𝐴) represents the
maximum eigenvalue of matrix 𝐴.

System (3) is supplemented with initial values of the type

𝑥 (𝑡) = 𝜑, 𝜑 ∈ 𝐶 ([−𝜏

∗
, 0] , 𝑅

𝑛
) . (6)

Now, we briefly summarize some needed definitions and
lemmas as below.
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Definition 2 (see [24]). System (3) is uniformly ultimately
bounded; if there is ̃𝐵 > 0, for any constant 󰜚 > 0, there is
𝑡
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Definition 3. The nonempty closed set A ⊂ 𝑅

𝑛 is called an
attractor for the solution 𝑥(𝑡; 𝜑) of system (3) if the following
formula holds:
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𝑦∈A ‖ 𝑥 − 𝑦 ‖.

Definition 4 (see [26]). For any switching signal 𝜎(𝑡) and any
finite constants 𝑇
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3. Main Results

Theorem 5. Assume there is a constant 𝜇, such that ̇𝜏(𝑡) ≤ 𝜇,
and denote 𝑔(𝜇) as
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and then system (2) is uniformly ultimately bounded.

Proof. Choose the following Lyapunov functional:
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From assumption (𝐻
2
), we have
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𝑖
(𝑥

𝑖 (
𝑡)) − 𝑙𝑖

𝑥

𝑖 (
𝑡) − 𝑓𝑖 (

0)]

− 2

𝑛

∑

𝑖=1

𝑦

2𝑖
[𝑓

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡)))

−𝐿

𝑖
𝑥

𝑖 (
𝑡 − 𝜏 (𝑡)) − 𝑓𝑖 (

0) ]

× [𝑓

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) − 𝑙𝑖

𝑥

𝑖 (
𝑡 − 𝜏 (𝑡)) − 𝑓𝑖 (

0)] }

= 𝑒

𝑎𝑡
{−2

𝑛

∑

𝑖=1

𝑦

1𝑖
[𝑓

𝑖
(𝑥

𝑖 (
𝑡)) − 𝐿 𝑖

𝑥

𝑖 (
𝑡)]

× [𝑓

𝑖
(𝑥

𝑖 (
𝑡)) − 𝑙𝑖

𝑥

𝑖 (
𝑡) − 𝑓𝑖 (

0)]

− 2

𝑛

∑

𝑖=1

𝑦

2𝑖
[𝑓

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) − 𝐿 𝑖

𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))]

× [𝑓

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) − 𝑙𝑖

𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))]

− 2

𝑛

∑

𝑖=1

𝑦

1𝑖
𝑓

2

𝑖
(0)

+ 2

𝑛

∑

𝑖=1

𝑦

1𝑖
𝑓

𝑖 (
0) [2𝑓𝑖

(𝑥

𝑖 (
𝑡)) − (𝐿 𝑖

+ 𝑙

𝑖
) 𝑥

𝑖 (
𝑡)]

− 2

𝑛

∑

𝑖=1

𝑦

2𝑖
𝑓

2

𝑖
(0)

+ 2

𝑛

∑

𝑖=1

𝑦

2𝑖
𝑓

𝑖 (
0) [2𝑓𝑖

(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡)))

− (𝐿

𝑖
+ 𝑙

𝑖
) 𝑥

𝑖 (
𝑡 − 𝜏 (𝑡)) ] }

≤ 𝑒

𝑎𝑡
{−2

𝑛

∑

𝑖=1

𝑦

1𝑖
[𝑓

𝑖
(𝑥

𝑖 (
𝑡)) − 𝐿 𝑖

𝑥

𝑖 (
𝑡)]

× [𝑓

𝑖
(𝑥

𝑖 (
𝑡)) − 𝑙𝑖

𝑥

𝑖 (
𝑡)]

− 2

𝑛

∑

𝑖=1

𝑦

1𝑖
[𝑓

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) − 𝐿 𝑖

𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))]

× [𝑓

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) − 𝑙𝑖

𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑖=1

[

󵄨

󵄨

󵄨

󵄨

4𝑦

1𝑖
𝑓

𝑖 (
0) 𝑓𝑖

(𝑥

𝑖 (
𝑡))

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

2𝑦

1𝑖
𝑓

𝑖 (
0) (𝐿 𝑖

+ 𝑙

𝑖
) 𝑥

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

]

+

𝑛

∑

𝑖=1

[

󵄨

󵄨

󵄨

󵄨

4𝑦

2𝑖
𝑓

𝑖 (
0) 𝑓𝑖

(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡)))

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

2𝑦

1𝑖
𝑓

𝑖 (
0) (𝐿 𝑖

+ 𝑙

𝑖
) 𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))

󵄨

󵄨

󵄨

󵄨

] }

≤ 𝑒

𝑎𝑡
{−2

𝑛

∑

𝑖=1

𝑦

1𝑖
[𝑓

𝑖
(𝑥

𝑖 (
𝑡)) − 𝐿 𝑖

𝑥

𝑖 (
𝑡)]

× [𝑓

𝑖
(𝑥

𝑖 (
𝑡)) − 𝑙𝑖

𝑥

𝑖 (
𝑡)]

− 2

𝑛

∑

𝑖=1

𝑦

1𝑖
[𝑓

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) − 𝐿 𝑖

𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))]

× [𝑓

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) − 𝑙𝑖

𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑖=1

[𝑎𝑓

2

𝑖
(𝑥

𝑖 (
𝑡)) + 4𝑎

−1
𝑓

2

𝑖
(0) 𝑦

2

1𝑖

+𝑎𝑥

2

𝑖
(𝑡) + 𝑎

−1
𝑓

2

𝑖
(0) 𝑦

2

1𝑖
(𝐿

𝑖
+ 𝑙

𝑖
)

2
]

+

𝑛

∑

𝑖=1

[𝑎𝑓

2

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) + 4𝑎

−1
𝑓

2

𝑖
(0) 𝑦

2

2𝑖

+ 𝑎𝑥

2

𝑖
(𝑡 − 𝜏 (𝑡)) + 𝑎

−1
𝑓

2

𝑖
(0)

×𝑦

2

2𝑖
(𝐿

𝑖
+ 𝑙

𝑖
)

2
]} .

(16)

Denote 𝑀𝑇(𝑡) = (𝑥

𝑇
(𝑡), 𝑥

𝑇
(𝑡 − 𝜏), 𝐹

𝑇
(𝑥(𝑡)), 𝐹

𝑇
(𝑥(𝑡 − 𝜏)),

(∫

𝑡

𝑡−ℎ
𝐹(𝑥(𝑠))d𝑠)𝑇)𝑇; combing with (11)–(16), we have

̇

𝑉 (𝑡)

≤ 𝑒

𝑎𝑡
[𝑎𝑥

𝑇
(𝑡) 𝑃𝑥 (𝑡) − 2𝑥

𝑇
(𝑡) 𝑃𝐷𝑥 (𝑡)

+ 2𝑥

𝑇
(𝑡) 𝑃𝐴𝐹 (𝑥 (𝑡)) + 2𝑥

𝑇
(𝑡) 𝑃𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑥

𝑇
(𝑡) 𝑃𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠

+𝑥

𝑇
(𝑡) 𝑃𝑥 (𝑡) + 𝐽

𝑇
𝑃𝐽]
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+ 𝑒

𝑎𝑡
[𝑥

𝑇
(𝑡) 𝑄11

𝑥 (𝑡) + 𝐹

𝑇
(𝑥 (𝑡)) 𝑄

𝑇

12
𝑥 (𝑡)

+ 𝑥

𝑇
(𝑡) 𝑄12

𝐹 (𝑥 (𝑡)) +𝐹

𝑇
(𝑥 (𝑡)) 𝑄22

𝐹 (𝑥 (𝑡))]

− 𝑔

1
(𝜇) 𝑒

𝑎𝑡
× [𝑥

𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄11

𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐹

𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄

𝑇

12
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑥

𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄12

𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐹

𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄22

𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))]

+ 𝑒

𝑎𝑡
{−2

𝑛

∑

𝑖=1

𝑦

1𝑖
[𝑓

𝑖
(𝑥

𝑖 (
𝑡)) − 𝐿 𝑖

𝑥

𝑖 (
𝑡)]

× [𝑓

𝑖
(𝑥

𝑖 (
𝑡)) − 𝑙𝑖

𝑥

𝑖 (
𝑡)]

− 2

𝑛

∑

𝑖=1

𝑦

1𝑖
[𝑓

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) − 𝐿 𝑖

𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))]

× [𝑓

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) − 𝑙𝑖

𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑖=1

[𝑎𝑓

2

𝑖
(𝑥

𝑖 (
𝑡)) + 𝑎𝑥

2

𝑖
(𝑡) + 𝑎

−1
𝑓

2

𝑖
(0) 𝑦

2

1𝑖

× (𝐿

𝑖
+ 𝑙

𝑖
)

2
+ 4𝑎

−1
𝑓

2

𝑖
(0) 𝑦

2

1𝑖
]

+

𝑛

∑

𝑖=1

[𝑎𝑓

2

𝑖
(𝑥

𝑖 (
𝑡 − 𝜏 (𝑡))) + 4𝑎

−1
𝑓

2

𝑖
(0) 𝑦

2

2𝑖

+𝑎𝑥

2

𝑖
(𝑡 − 𝜏 (𝑡)) + 𝑎

−1
𝑓

2

𝑖
(0) 𝑦

2

2𝑖
(𝐿

𝑖
+ 𝑙

𝑖
)

2
]} ,

(17)

and then we have

̇

𝑉 (𝑡) ≤ 𝑒

𝑎𝑡
𝑀

𝑇
(𝑡) Δ 1

𝑀(𝑡) + 𝑒

𝑎𝑡
𝑅

1
, (18)

where 𝑅
1
= ∑

𝑛

𝑖=1
[4𝑎

−1
𝑓

2

𝑖
(0)𝑦

2

2𝑖
+ 𝑎

−1
𝑓

2

𝑖
(0)𝑦

2

1𝑖
(𝐿

𝑖
+ 𝑙

𝑖
)

2
+ 4𝑎

−1

𝑓

2

𝑖
(0)𝑦

2

2𝑖
+ 𝑎

−1
𝑓

2

𝑖
(0)𝑦

2

2𝑖
(𝐿

𝑖
+ 𝑙

𝑖
)

2
] + 𝐽

𝑇
𝑃𝐽.

Therefore, we obtain

𝐾𝑒

𝑎𝑡
‖𝑥 (𝑡)‖

2
≤ 𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (𝑡0

)) + 𝑎

−1
𝑒

𝑎𝑡
𝑅

1
, (19)

where𝐾 = 𝜆min(𝑃), which implies

‖𝑥 (𝑡)‖

2
≤

𝑒

−𝑎𝑡
𝑉 (𝑥 (0)) + 𝑎

−1
𝑅

1

𝐾

.

(20)

If one chooses ̃𝐵 = √(1 + 𝑎−1𝑅
1
)/𝐾 > 0, then for any

constant 󰜚 > 0 and ‖ 𝜑 ‖< 󰜚, there is 𝑡󸀠 = 𝑡󸀠(󰜚) > 0, such that
𝑒

−𝑎𝑡
𝑉(𝑥(0)) < 1 for all 𝑡 ≥ 𝑡󸀠. According to Definition 2, we

have ‖ 𝑥(𝑡, 0, 𝜑) ‖< ̃𝐵 for all 𝑡 ≥ 𝑡󸀠. That is to say, system (2) is
uniformly ultimately bounded.This completes the proof.

Theorem 6. If all of the conditions of Theorem 5 hold, then
there exists an attractor A

𝐵
for the solutions of system (2),

where A
𝐵
= {𝑥(𝑡) :‖ 𝑥(𝑡) ‖≤

̃

𝐵, 𝑡 ≥ 𝑡

0
}.

Proof. If one chooses ̃𝐵 = √(1 + 𝑎−1𝑅
1
)/𝐾 > 0, Theorem 5

shows that for any 𝜙 there is 𝑡󸀠 > 0, such that ‖ 𝑥(𝑡, 0, 𝜙) ‖<
̃

𝐵 for all 𝑡 ≥ 𝑡

󸀠. Let A
𝐵
be denoted by A

𝐵
= {𝑥(𝑡) :‖

𝑥(𝑡) ‖≤

̃

𝐵, 𝑡 ≥ 𝑡

0
}. Clearly, A

𝐵
is closed, bounded, and

invariant. Furthermore, lim
𝑡→∞

sup inf
𝑦∈A
𝐵

‖𝑥(𝑡; 0, 𝜙) − 𝑦‖=

0.Therefore,A
𝐵
is an attractor for the solutions of system (2).

This completes the proof.

Corollary 7. In addition to all of the conditions of Theorem 5
holding, if 𝐽 = 0 and𝑓

𝑖
(0) = 0 for all 𝑖 = 1, 2, . . . , 𝑛, then system

(2) has a trivial solution 𝑥(𝑡) ≡ 0, and the trivial solution of
system (2) is globally exponentially stable.

Proof. If 𝐽 = 0 and 𝑓
𝑖
(0) = 0 for all 𝑖 = 1, 2, . . . , 𝑛, then

𝑅

1
= 0, and it is obvious that system (2) has a trivial solution

𝑥(𝑡) ≡ 0. FromTheorem 5, one has

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡; 0, 𝜙)

󵄩

󵄩

󵄩

󵄩

2
≤ 𝐾

∗
𝑒

−𝑎𝑡
, ∀𝜙,

(21)

where 𝐾∗ = 𝑉(𝑥(0))/𝐾. Therefore, the trivial solution of
system (2) is globally exponentially stable.This completes the
proof.

By (11) and (19), there is a positive constant 𝐶
0
, such that

‖𝑥 (𝑡)‖

2
≤

𝐶

0

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2
𝑒

−𝑎(𝑡−𝑡0)

𝐾

+

Λ

𝐾

,

(22)

where Λ = 𝑎−1𝑅
1
.

We now consider the switched cellular neural networks
without uncertainties as system (3). When 𝑡 ∈ [𝑡

𝑘
, 𝑡

𝑘+1
], the

𝑖

𝑘
th subsystem is activated; from (22) andTheorem 5, there is

a positive constant 𝐶
𝑖𝑘
, such that

‖𝑥 (𝑡)‖

2
≤

𝐶

𝑖𝑘

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2
𝑒

−𝑎(𝑡−𝑡𝑘)

𝐾

𝑖𝑘

+

Λ

𝐾

𝑖𝑘

,
(23)

where𝐾
𝑖𝑘
= 𝜆min(𝑃𝑖).

Theorem 8. For a given constant 𝑎 > 0, if there exist
positive-definite matrixes 𝑃

𝑖
= diag(𝑝

𝑖1
, 𝑝

𝑖2
, . . . , 𝑝

𝑖𝑛
), 𝑌
𝑖
=

diag(𝑦
𝑖1
, 𝑦

𝑖2
, . . . , 𝑦

𝑖𝑛
), 𝑖 = 1, 2, such that the following condi-

tion holds:

Δ

𝑖1
=

[

[

[

[

[

[

Φ

𝑖11
0 Φ

𝑖13
Φ

𝑖14
Φ

𝑖15

∗ Φ

𝑖22
0 Φ

𝑖24
0

∗ ∗ Φ

𝑖33
0 0

∗ ∗ ∗ Φ

𝑖44
0

∗ ∗ ∗ ∗ 0

]

]

]

]

]

]

< 0, (24)
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where

𝑄

𝑖
= (

𝑄

𝑖11
𝑄

𝑖12

∗ 𝑄

𝑖22

) ≥ 0, 𝑌

𝑖
≥ 0, 𝑖 = 1, 2, ̇𝜏 (𝑡) ≤ 𝜇,

Φ

𝑖11
= 𝑎𝑃

𝑖
− 2𝐷𝑃

𝑖
+ 𝑄

𝑖11
− Ω

1
𝑌

1
+ 𝑃

𝑖
+ 𝑎𝐼,

Φ

𝑖13
= 𝑃

𝑖
𝐴

𝑖
+ 𝑄

𝑖12
+ Ω

2
𝑌

1
,

Φ

𝑖14
= 𝑃

𝑖
𝐵

𝑖
, Φ

15
= 𝑃

𝑖
𝐶

𝑖
,

Φ

𝑖22
= −𝑔 (𝜇)𝑄

𝑖11
− Ω

1
𝑌

2
+ 𝑎𝐼,

Φ

𝑖24
= −𝑔 (𝜇)𝑄

𝑖12
+ Ω

2
𝑌

2
, Φ

𝑖33
= 𝑄

𝑖22
− 2𝑌

1
+ 𝑎𝐼,

Φ

𝑖44
= −𝑔 (𝜇)𝑄

𝑖22
− 2𝑌

2
+ 𝑎𝐼.

(25)

Then system (3) is uniformly ultimately bounded for any
switched signal with average dwell time satisfying

𝑇

𝛼
> 𝑇

∗

𝛼
=

ln𝐶max
𝑎

,
(26)

where 𝐶max = max
𝑖𝑘
{𝐶

𝑖𝑘
}.

Proof . Define the Lyapunov functional candidate

𝑉

𝜎(𝑡)
= 𝑒

𝑎𝑡
𝑥

𝑇
(𝑡) 𝑃𝜎(𝑡)

𝑥 (𝑡)

+ ∫

𝑡

𝑡−𝜏

𝑒

𝑎𝑠
𝜉

𝑇
(𝑠) 𝑄𝜎(𝑡)

𝜉 (𝑠) d𝑠.
(27)

Since the system state is continuous, it follows from (23) that

‖𝑥(𝑡)‖

2
≤

𝐶

𝑖𝑘

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

𝑘
)

󵄩

󵄩

󵄩

󵄩

2
𝑒

−𝑎(𝑡−𝑡𝑘)

𝐾

𝑖𝑘

+

Λ

𝐾

𝑖𝑘

≤ ⋅ ⋅ ⋅

≤

𝑒

∑
𝑘

V=0 ln𝐶𝑖V−𝑎(𝑡−𝑡0)󵄩󵄩
󵄩

󵄩

𝑥 (𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

𝐾

𝑘+1

min

+ [𝐶

𝑘

𝑖1
𝑒

−𝑎(𝑡−𝑡1)
Λ

𝐾

𝑘+1

𝑖1

+ 𝐶

𝑘−1

𝑖2
𝑒

−𝑎(𝑡−𝑡2)
Λ

𝐾

𝑘

𝑖2

+ 𝐶

𝑘−2

𝑖3
𝑒

−𝑎(𝑡−𝑡3)
Λ

𝐾

𝑘−1

𝑖3

+ ⋅ ⋅ ⋅ + 𝐶

2

𝑖𝑘−1
𝑒

−𝑎(𝑡−𝑡𝑘−1)
Λ

𝐾

3

𝑖𝑘−1

+𝐶

𝑖𝑘
𝑒

−𝑎(𝑡−𝑡𝑘)
Λ

𝐾

2

𝑖𝑘

+

Λ

𝐾

𝑖𝑘+1

]

≤

𝑒

(𝑘+1) ln𝐶max−𝑎(𝑡−𝑡0)

𝐾

𝑘+1

min

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

+ [𝐶

𝑘

max
Λ

𝐾

𝑘+1

min
+ 𝐶

𝑘−1

max
Λ

𝐾

𝑘

min

+ 𝐶

𝑘−2

max
Λ

𝐾

𝑘−1

min
+ . . . + 𝐶

2

max
Λ

𝐾

3

min

+𝐶max
Λ

𝐾

2

min
+

Λ

𝐾min
]

≤

𝐶max𝑒
𝑘 ln𝐶max−𝑎(𝑡−𝑡0)

𝐾

𝑘+1

min

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

+

Λ/𝐾min
(𝐶max/𝐾min) − 1

[

𝐶

𝑛+1

max
𝐾

𝑛+1

min
− 1]

≤

𝐶max𝑒
ln𝐶max𝑁𝜎(𝑡0 ,𝑡)−𝑎(𝑡−𝑡0)

𝐾

𝑘+1

min

󵄩

󵄩

󵄩

󵄩

𝑥(𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

+

Λ

𝐶max − 𝐾min
[(𝐶

𝑛+1

max/𝐾
𝑛+1

min) − 1]

≤

𝐶max𝑒
𝑁0 ln𝐶max−(𝑎−(ln𝐶max/𝑇𝛼))(𝑡−𝑡0)

𝐾

𝑘+1

min

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2

+

Λ ((𝐶

𝑛+1

max/𝐾
𝑛+1

min) − 1)

𝐶max − 𝐾min
.

(28)

If one chooses ̃

𝐵 =

√
1/𝐾min + Λ(𝐶

𝑛+1

max/𝐾
𝑛+1

min − 1)/(𝐶max − 𝐾min) > 0, then
for any constant 󰜚 > 0 and ‖ 𝜑 ‖< 󰜚, there is 𝑡󸀠 = 𝑡󸀠(󰜚) > 0,
such that 𝐶max𝑒

𝑁0 ln𝐶max−(𝑎−ln𝐶max/𝑇𝛼)(𝑡−𝑡0)
‖ 𝑥(𝑡

0
)‖

2
< 1 for all

𝑡 ≥ 𝑡

󸀠. According to Definition 2, we have ‖ 𝑥(𝑡, 0, 𝜑) ‖< ̃𝐵
for all 𝑡 ≥ 𝑡󸀠. That is to say, system (3) is uniformly ultimately
bounded, and the proof is completed.

Theorem 9. If all of the conditions of Theorem 8 hold, then
there exists an attractor A󸀠

𝐵
for the solutions of system (3),

where A󸀠
𝐵
= {𝑥(𝑡) :‖ 𝑥(𝑡) ‖≤

̃

𝐵, 𝑡 ≥ 𝑡

0
}.

Proof. If one chooses ̃

𝐵 =

√

1/𝐾min + Λ(𝐶
𝑛+1

max/𝐾
𝑛+1

min − 1)/(𝐶max − 𝐾min) > 0,Theorem 8
shows that for any 𝜙 there is 𝑡󸀠 > 0, such that ‖ 𝑥(𝑡, 0, 𝜙) ‖<
̃

𝐵 for all 𝑡 ≥ 𝑡󸀠. Let A󸀠
𝐵
be denoted by A󸀠

𝐵
= {𝑥(𝑡) :‖ 𝑥(𝑡) ‖≤

̃

𝐵, 𝑡 ≥ 𝑡

0
}. Clearly, A󸀠

𝐵
is closed, bounded, and invariant.

Furthermore, lim
𝑡→∞

sup inf
𝑦∈A󸀠
𝐵

‖ 𝑥(𝑡; 0, 𝜙) − 𝑦 ‖= 0.
Therefore, A󸀠

𝐵
is an attractor for the solutions of system (3).

This completes the proof.
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Corollary 10. In addition to all of the conditions ofTheorem 8
holding, if 𝐽 = 0 and 𝑓

𝑖
(0) = 0 for all 𝑖, then system (2) has a

trivial solution 𝑥(𝑡) ≡ 0, and the trivial solution of system (3)
is globally exponentially stable.

Proof. If 𝐽 = 0 and 𝑓
𝑖
(0) = 0 for all 𝑖, then it is obvious that

system (3) has a trivial solution 𝑥(𝑡) ≡ 0. From Theorem 8,
one has

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡; 0, 𝜙)

󵄩

󵄩

󵄩

󵄩

2
≤ 𝐾

2
𝑒

−𝑎𝑡
, ∀𝜙,

(29)

where

𝐾

2
=

𝐶max𝑒
𝑁0 ln𝐶max+𝑎𝑡0+(ln𝐶max/𝑇𝛼)(𝑡−𝑡0)

𝐾

𝑘+1

min

󵄩

󵄩

󵄩

󵄩

𝑥 (𝑡

0
)

󵄩

󵄩

󵄩

󵄩

2
. (30)

Therefore, the trivial solution of system (3) is globally expo-
nentially stable. This completes the proof.

Remark 11. Up to now, various dynamical results have been
proposed for switched neural networks in the literature.
For example, in [15], synchronization control of switched
linearly coupled delayed neural networks is investigated; in
[16–20], the authors investigated the stability of switched
neural networks; in [21, 22], stability and L2-gain analysis
for switched delay system have been investigated. To the best
of our knowledge, there are few works about the uniformly
ultimate boundedness and the existence of an attractor for
switched neural networks. Therefore, results of this paper are
new.

Remark 12. We notice that Lian and Zhang developed an
LMI approach to study the stability of switched Cohen-
Grossberg neural networks and obtained some novel results
in a very recent paper [20], where the considered model
includes both discrete and bounded distributed delays. In
[20], the following fundamental assumptions are required:
(i) the delay functions 𝜏(𝑡), ℎ(𝑡) are bounded, and ̇𝜏(𝑡) ≤ 𝜏,
̇

ℎ(𝑡) ≤ 𝑑 < 1; (ii) 𝑓
𝑖
(0) = 0, 𝑙

𝑗
≤ (𝑓

𝑗
(𝑥) − 𝑓

𝑗
(𝑦))/(𝑥 − 𝑦) ≤ 𝐿

𝑗
,

for all 𝑖 = 1, 2, . . . , 𝑛; (iii) the switched system has only one
equilibrium point. However, as a defect appearing in [20],
just checking the inequality (13) in [20], it is easy to see that
the assumed condition on ̇𝜏(𝑡) ≤ 𝜏 is not correct, which
should be revised as ̇𝜏(𝑡) ≤ 𝜏 ≤ 1. On the other hand, just
as described by Remark 1 in this paper, for a neural network
with unbounded activation functions, the considered system
in [20] may have no equilibrium point or have multiple
equilibrium points. In this case, it is difficult to deal with
the issue of the stability of equilibrium point for switched
neural networks. In order to modify this imperfection, after
relaxing the conditions ̇𝜏(𝑡) ≤ 𝜏 ≤ 1, ̇ℎ(𝑡) ≤ 𝑑 < 1, and
𝑓

𝑖
(0) = 0, replacing (i), (ii), and (iii) with assumptions (𝐻

1
)

and (𝐻
2
), we drop out the assumption of the existence of

a unique equilibrium point and investigate the issue of the
ultimate boundedness and attractor; this modification seems
more natural and reasonable.

Remark 13. When investigating the stability, although the
adopted Lyapunov function in this paper is similar to those
used in [20]; just from Corollaries 7 and 10, the conservatism

of the conditions of the delay function in this paper has been
further reduced. Hence, the obtained results on stability in
this paper are complementary to the corresponding results in
[20].

Remark 14. When the uncertainties appear in the system (3),
employing the Lyapunov function as (27) in this paper and
applying a similar method to the one used in [20], we can get
the corresponding dynamical results. Due to the limitation
of space, we choose not to give the straightforward but the
tedious computations here for the formulas that determine
the uniformly ultimate boundedness, the existence of an
attractor, and stability.

4. Illustrative Example

In this section, we present an example to illustrate the
effectiveness of the proposed results. Consider the switched
cellular neural networks with two subsystems.

Example 15. Consider the switched cellular neural networks
system (3) with 𝑑

𝑖
= 1, 𝑓

𝑖
(𝑥

𝑖
(𝑡)) = 0.5 tanh(𝑥

𝑖
(𝑡))(𝑖 = 1, 2),

𝜏(𝑡) = 0.5sin2(𝑡), ℎ(𝑡) = 0.3sin2(𝑡), and the connection
weight matrices where

𝐴

1
= (

3.1 0.4

0.2 0.5

) , 𝐵

1
= (

2.1 −1

−1.4 0.4

) ,

𝐶

1
= (

1.2 −1.1

−0.5 0.1

) , 𝐴

2
= (

2.5 0.3

0.2 0.6

) ,

𝐵

2
= (

1.4 −1.2

−2.4 0.3

) , 𝐶

2
= (

2.4 −0.1

0.7 0.4

) .

(31)

From assumptions (𝐻
1
) and (𝐻

2
), we can obtain 𝑑 = 1,

𝑙

𝑖
= 0, 𝐿

𝑖
= 0.5, 𝑖 = 1, 2, 𝜏 = 0.5, ℎ = 0.3, 𝜇 = 1.

Choosing 𝑎 = 2 and solving LMIs (23), we get

𝑃

1
= (

0.0324 0

0 0.0776

) ,

𝑃

2
= (

0.0168 0

0 0.0295

) ,

𝑄

1
= (

−1.9748 0.3440 −0.3551 0.0168

∗ −1.9458 0.0168 −0.3438

∗ ∗ 2.9120 −0.2371

∗ ∗ ∗ 2.8760

) ,

𝑄

2
= (

−1.9996 0.2120 −0.1452 0.0119

∗ −1.9918 0.0119 −0.1464

∗ ∗ 2.9029 −0.1083

∗ ∗ ∗ 2.8927

) .

(32)

Using (26), we can get the average dwell time 𝑇∗
𝑎
= 0.3590.

5. Conclusions

In this paper, the dynamics of switched cellular neural
networkswithmixed delays (interval time-varying delays and



8 Abstract and Applied Analysis

distributed-time varying delays) are investigated. Novel mul-
tiple Lyapunov-Krasovkii functional methods are designed
to establish new sufficient conditions guaranteeing the uni-
formly ultimate boundedness, the existence of an attractor,
and the globally exponential stability. The derived conditions
are expressed in terms of LMIs, which are more relaxed
than algebraic formulation and can be easily checked by the
effective LMI toolbox in Matlab in practice.
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