
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 910624, 11 pages
http://dx.doi.org/10.1155/2013/910624

Research Article
The Use of Phase Lag and Amplification Error Derivatives for
the Construction of a Modified Runge-Kutta-Nyström Method

D. F. Papadopoulos1 and T. E. Simos2,3

1 Department of Business Administration, Faculty of Management and Economy, Technological Educational Institute of Patras,
26 334 Patras, Greece

2 Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
3 Laboratory of Computational Sciences, Department of Computer Science and Technology, Faculty of Sciences and Technology,
University of Peloponnese, 22 100 Tripolis, Greece

Correspondence should be addressed to D. F. Papadopoulos; dimfpap@gmail.com

Received 14 November 2012; Revised 16 March 2013; Accepted 3 April 2013

Academic Editor: Juan Carlos Cortés López
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A new modified Runge-Kutta-Nyström method of fourth algebraic order is developed. The new modified RKN method is based
on the fitting of the coefficients, due to the nullification not only of the phase lag and of the amplification error, but also of their
derivatives. Numerical results indicate that the newmodifiedmethod ismuchmore efficient than othermethods derived for solving
numerically the Schrödinger equation.

1. Introduction

Among the most commonly used methods in the numer-
ical integration of second order differential equations, in
which the first derivative terms are omitted, are Runge-Kutta
(-Nyström) methods. These methods have been used widely
due to their simplicity and their accuracy andmainly because
they are one-step methods and thus they require no addi-
tional starting values.

In the last decadesmany researchers developed optimized
Runge-Kutta (-Nyström) methods, based mostly on the
exponential fitting and the phase lag properties [1–14].

In the last years, a newmethodology has been developed,
which is based on the phase lag derivatives. Researchers that
have been using the mentioned methodology achieve higher
accuracy at their methods [6, 8, 10, 11, 13, 14].

In the present paper a new modified Runge-Kutta-
Nyström method is constructed. The new method contains
four additional variable coefficients (in comparison with the
classical RKN method), which depend on 𝑧 = 𝑤ℎ, where
𝑤 is the dominant frequency of the problem and ℎ is the
step length of integration. In order to evaluate the above

coefficients, the new method combines the nullification of
phase lag and amplification factor with the nullification of
their derivatives.

The new modified RKN method that has been obtained
will be used for the numerical solution of second order
differential equations and more specifically for the numerical
integration of the radial Schrödinger equation.

2. Modified Runge-Kutta-Nyström Method

The𝑚-stage modified RKN method for the equation

𝑑
2
𝑦 (𝑡)

𝑑𝑡
2

= 𝑓 (𝑡, 𝑦 (𝑡)) (1)

is of the form

𝑦
𝑛
= 𝑦
𝑛−1
𝑔
𝑚
+ ℎ𝑦
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𝑖=1
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+ 𝑐
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where

𝑓
𝑖
= 𝑦
𝑛−1
𝑔
𝑖
+ ℎ𝑐
𝑖
𝑦
󸀠

𝑛−1

+ ℎ
2

𝑖−1

∑

𝑗=1

𝛼
𝑖𝑗
𝑓 (𝑡
𝑛−1

+ 𝑐
𝑗
ℎ, 𝑓
𝑗
) , 𝑖 = 1, . . . , 𝑚.

(3)

For the classical method 𝑔
𝑖
= 1, 𝑖 = 1(1)𝑚. In the present

paper and based on the requirement of the development of
the newmethod, values 𝑔

𝑖
, 𝑖 = 1(1)𝑚 are variable and depend

on 𝑧 (which is the product of the frequency𝑤 and the step size
ℎ). In Section 4 we will present a development of a four-stage
modified Runge-Kutta-Nyström method of algebraic order
four.

3. Phase Lag and Amplification Error
Analysis of the Modified
Runge-Kutta-Nyström Methods

Consider the problem

𝑑
2
𝑦 (𝑡)

𝑑𝑡
2

= (𝑖𝑤)
2
𝑦 (𝑡) 󳨐⇒ 𝑦

󸀠󸀠
(𝑡) = −𝑤

2
𝑦 (𝑡) , 𝑤 ∈ 𝑅, (4)

with exact solution

𝑦(𝑡)theoretical = 𝑒
±𝑖𝑤𝑡

. (5)

By applying a numerical method for the solution of (4),
we obtain a numerical solution of the form

𝑦(𝑡)approximate = 𝑎 (𝑤) 𝑒
±𝑖𝜃(𝑤)𝑡

. (6)

Comparing the theoretical (5) and the numerical solution (6),
we obtain the following two definitions (see [2] for details).

Definition 1. The difference

1 − 𝑎 (𝑤) (7)

is called dissipation error.

Definition 2. The difference

𝜃 (𝑤) − 𝑤 (8)

is called dispersion error or phase lag.

Based on the above definitions, it is easy for one to see that
we have two new errors, the dissipation and the dispersion
errors.These errors can be expressed via Taylor series around
an initial value𝑤

0
of the frequency. Vanishing the appropriate

derivatives of the Taylor series expansion (first, second, etc.)
we optimize the specific error.

In order to develop the new method we use the test
equation (4). By applying the modified RKNmethod (2) and
(3) to the test equation (4) we obtain the numerical solution

[

𝑦
𝑛

ℎ𝑦
󸀠

𝑛

] = 𝐷
𝑛
[

𝑦
0

ℎ𝑦
󸀠

0

] ,

𝐷 = [

𝐴 (𝑧
2
) 𝐵 (𝑧

2
)

�̇� (𝑧
2
) �̇� (𝑧

2
)

] , 𝑧 = 𝑤ℎ,

(9)

where 𝐴, 𝐵, �̇�, �̇� are polynomials in 𝑧
2, completely deter-

mined by the parameters of the method (2) and (3).
The eigenvalues of the amplification matrix𝐷(𝑧2) are the

roots of the characteristic equation

𝑟
2
− 𝑡𝑟 (𝐷 (𝑧

2
)) 𝑟 + det (𝐷 (𝑧

2
)) = 0. (10)

In phase analysis one compares the phases of exp(𝑧) with
the phases of the roots of the characteristic equation (10).
The following definition is originally formulated by van der
Houwen and Sommeijer [1].

Definition 3 (phase lag). Apply the RKN method (2) and (3)
to the test equation (4). Then we define the phase lag Φ(𝑧) =
𝑧−arccos(𝑡𝑟(𝐷)/2√det(𝐷)). IfΦ(𝑧) = 𝑂(𝑧𝑞+1), then theRKN
method is said to have phase-lag order 𝑞. In addition, the
quantity 𝑎(𝑧) = 1 − √det(𝐷) is called amplification error. If
𝑎(𝑧) = 𝑂(𝑧

𝑟+1
), then the RKNmethod is said to be dissipative

of order 𝑟.

From Definition 3, it follows that

Φ (𝑧) = 𝑧 − arccos(
𝑅(𝑧
2
)

2√𝑄 (𝑧
2
)

) ,

𝑎 (𝑧) = 1 − √𝑄 (𝑧
2
),

(11)

where 𝑄(𝑧2) and 𝑅(𝑧2) are the determinant and the trace of
the amplificationmatrix𝐷(𝑧2), respectively. Also it is already
known from [1], that we can write the functions 𝑅(𝑧2) and
𝑄(𝑧
2
) in the following form:

𝑅 (𝑧
2
) = 2 − 𝑟
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2
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4
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3
𝑧
4
+ ⋅ ⋅ ⋅ + −𝑟

𝑖
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𝑧
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𝑖
𝑧
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.

(12)

If at a point 𝑧, 𝑎(𝑧) = 0, then the Runge-Kutta-Nyström
method has zero dissipation at this point.

We can also put forward an alternative definition for the
case of infinite order of phase lag.

Definition 4 (phase lag of order infinity). To obtain phase
lag of order infinity the relation Φ(𝑧) = 𝑧 − arccos(𝑅(𝑧2)/
2√𝑄(𝑧

2
)) = 0must hold.

From Definition 4 we have the following theorem.

Theorem5. If one has phase lag of order infinity and at a point
𝑧, 𝑎(𝑧) = 0, then

𝑧− arccos(
𝑅(𝑧
2
)

2√𝑄 (𝑧
2
)

)=0,

1 − √𝑄 (𝑧
2
)=0,

}
}
}
}
}

}
}
}
}
}

}

󳨐⇒

{
{

{
{

{

𝑅(𝑧
2
)=2 cos(𝑧),

𝑄 (𝑧
2
) = 1,

(13)

for more details see [7].
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Lemma 6. For the construction of a method with nullification
of phase lag, amplification error, and their derivatives, onemust
satisfy the conditions 𝑅(𝑧2) = 2 cos(𝑧), 𝑄(𝑧2) = 1, 𝑅󸀠(𝑧2) =
−2 sin(𝑧), 𝑄󸀠(𝑧2) = 0.

4. Derivation of the New Modified
RKN Method

The new method that we are going to develop in this section,
is a four-stage explicit Runge-Kutta-Nyström method with
the FSAL technique (first stage as last), so themethod actually
uses three stages at each step for the function evaluations.
From (2) and (3), the four-stage explicit modified RKN
method can be written in the following form:

𝑦
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(14)

where
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(15)

By substituting the coefficients that have been used by the
DEP algorithm in [15], (14) takes the following form:

𝑦
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𝑔
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where

𝑓
1
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, 𝑦
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𝑔
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) ,
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𝑓
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(17)

By applying numerical method (16) to the test equation
(4), we compute the polynomials 𝐴, �̇�, 𝐵, �̇� in terms of

the modified Runge-Kutta-Nyström parameters. From these
polynomials we obtain the expressions of 𝑅(𝑧2) and 𝑄(𝑧2).
Then, according to Lemma 6 we solve the system of the four
equations(𝑅(𝑧2) = 2 cos(𝑧), 𝑄(𝑧2) = 1, 𝑅󸀠(𝑧2) = −2 sin(𝑧),
and 𝑄󸀠(𝑧2) = 0) and thus we obtain the expressions of the
coefficients 𝑔

𝑖
, 𝑖 = 1(1)4, which are fully dependent on the

product of the step length ℎ and the frequency 𝑤:

𝑔
1
=

5

657

× ( (1982880𝑧
7 sin (𝑧) + 417571200𝑧6

− 10298016𝑧
8
− 5238722304𝑧

4
+ 61200𝑧

10

− 1445𝑧
12
+ 300651264𝑧

5 sin (𝑧)

+ 29023764480𝑧
2
− 7003998720 sin (𝑧) 𝑧3

− 87071293440 + 43535646720 sin (𝑧) 𝑧

+ 7931520 cos (𝑧) 𝑧6 + 1971869184 cos (𝑧) 𝑧4

− 29023764480 cos (𝑧) 𝑧2

+ 87071293440 cos (𝑧) )

× (𝑧
4
(289𝑧

8
− 12240𝑧

6
+ 203040𝑧

4

− 1555200𝑧
2
+ 4665600))

−1

) ,

𝑔
2
= −

5

31536

× ( (−103538248704𝑧
4
− 1175462461440

+ 5554512𝑧
12
− 120046752𝑧

10

− 341029232640 sin (𝑧) 𝑧3

− 653034700800 cos (𝑧) 𝑧2
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14
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6
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8
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9 sin (𝑧) − 3013231104𝑧7 sin (𝑧)
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5 sin (𝑧) + 92005632 cos (𝑧) 𝑧8

− 9456238080 cos (𝑧) 𝑧6
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+ 587731230720 sin (𝑧) 𝑧 + 653034700800𝑧2
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4
(289𝑧

8
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6
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4

− 1555200𝑧
2
+ 4665600))

−1

) ,
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𝑔
3
= −

1
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11 sin (𝑧)
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8
− 12240𝑧

6
+ 203040𝑧

4

− 1555200𝑧
2
+ 4665600))

−1

) ,

𝑔
4
= −

1

70956
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2
+ 4665600)

−1

) .

(18)

For small values of 𝑧 the following Taylor series expan-
sions are used:

𝑔
1
= 1 +

86

365

𝑧
2
+

45119

1655640

𝑧
4
+

180461

74503800

𝑧
6

+

3464911

23602803840

𝑧
8
+

1124771

1471133664000

𝑧
10
,

𝑔
2
= 1 −

387

5840

𝑧
2
+

36731

2207520

𝑧
4
+

1554263

1192060800

𝑧
6

+
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𝑧
8
+
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𝑧
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𝑔
3
= 1 +

387
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𝑧
2
−
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𝑧
4
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𝑧
6
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𝑧
8
+
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𝑧
10
,

𝑔
4
= 1 +

52027
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𝑧
6
+
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𝑧
8

+
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53642736000

𝑧
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+
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𝑧
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.

(19)

5. Algebraic Order

In this section we study the algebraic order of the new
modified RKN method. We require that 𝑦(𝑡

𝑛
) = 𝑦

𝑛
and

𝑦
󸀠
(𝑡
𝑛
) = 𝑦
󸀠

𝑛
. By using the chain rule and 𝑦󸀠󸀠(𝑡) = 𝑓(𝑡, 𝑦), the

Taylor expansion of the exact solution 𝑦(𝑡
𝑛
+ ℎ) is

𝑦 (𝑡
𝑛+1
) = 𝑦 (𝑡) + (

𝑑

𝑑𝑡

𝑦 (𝑡)) ℎ +

1

2

𝐹ℎ
2

+ (

1

6

𝐹
𝑡
+

1

6

𝐹
𝑦

𝑑

𝑑𝑥

𝑦 (𝑡)) ℎ
3

+ (

1

24

𝐹
𝑡,𝑡
+

1

12

(

𝑑

𝑑𝑡

𝑦 (𝑡)) 𝐹
𝑡,𝑦

+

1

24

(

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐹
𝑦,𝑦

+

1

24

𝐹
𝑦
𝐹) ℎ
4
+ 𝑂 (ℎ

5
) .

(20)
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By expanding in Taylor series the corresponding numeri-
cal solution 𝑦

𝑛+1
of a classical explicit Runge-Kutta-Nyström

method, where 𝑐
1
= 0, we have

𝑦 (𝑡
𝑛
+ ℎ)
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𝑑

𝑑𝑡
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𝑐
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𝑑

𝑑𝑡

𝑦 (𝑡))) ℎ
3

+ (𝑏
2
(

1

2

𝐹
𝑡,𝑡
𝑐
2

2
+ 𝐹
𝑡,𝑦
𝑐
2

2

𝑑

𝑑𝑡

𝑦 (𝑡)

+

1

2

𝑐
2

2
(

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐹
𝑦,𝑦

+ 𝐹
𝑦
𝑎
21
𝐹)

+ 𝑏
3
(𝐹
𝑦
𝑎
31
𝐹 + 𝐹
𝑦
𝑎
32
𝐹 + 𝐹
𝑡,𝑦
𝑐
2

3

𝑑

𝑑𝑡

𝑦 (𝑡)

+

1

2

𝑐
2

3
(

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐹
𝑦,𝑦

+

1

2

𝐹
𝑡,𝑡
𝑐
2

3
)

+ 𝑏
4
(

1

2

𝐹
𝑡,𝑡
𝑐
2

4
+ 𝐹
𝑦
𝑎
42
𝐹 + 𝐹
𝑦
𝑎
43
𝐹

+

1

2

𝑐
2

4
(

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐹
𝑦,𝑦

+ 𝐹
𝑦
𝑎
41
𝐹

+ 𝐹
𝑡,𝑦
𝑐
2

4

𝑑

𝑑𝑡

𝑦 (𝑡))) ℎ
4
+ 𝑂 (ℎ

5
) .

(21)

By equating (20) and (21) with respect to ℎ, we obtain the
algebraic order conditions for a fourth algebraic order Runge-
Kutta-Nyström method. So the equations obtained for 𝑦 are.

Order 2:

4

∑

𝑖=1

𝑏
𝑖
=

1

2

, (22)

order 3:

4

∑

𝑖=1

𝑏
𝑖
𝑐
𝑖
=

1

6

, (23)

order 4:

4

∑

𝑖=1

𝑏
𝑖
𝑐
2

𝑖
=

1

12

,

4

∑

𝑖=1

𝑏
𝑖
𝑎
𝑖𝑗
=

1

24

. (24)

By following the same procedure for 𝑦󸀠, we obtain the
corresponding algebraic order conditions, which are.

Order 1:

4

∑

𝑖=1

𝑏
󸀠

𝑖
= 1, (25)

order 2:

4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑐
𝑖
=

1

2

, (26)

order 3:

4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑐
2

𝑖
=

1

3

,

4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑎
𝑖𝑗
=

1

6

, (27)

order 4:

4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑐
3

𝑖
=

1

4

,

4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑐
𝑖
𝑎
𝑖𝑗
=

1

8

,

4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑎
𝑖𝑗
𝑐
𝑗
. =

1

24

.

(28)

For the classical RKN method [15] that we use in the
present paper, the above conditions are satisfied, as this
method is of fourth algebraic order.

In order to verify the algebraic order of the the new
modified explicit Runge-Kutta-Nyströmmethod, first we will
produce the algebraic order conditions. To do that, we apply
the above methodology for the new method. At first, we
want to extract the conditions for 𝑦 and so we expand the
modified method (14) in Taylor series. The result from the
computations is given below:

𝑦 (𝑡
𝑛
+ ℎ)

= 𝑦 (𝑡) 𝑔
4
+ (

𝑑

𝑑𝑡

𝑦 (𝑡)) ℎ

+ (𝑏
1
𝐺1 + 𝑏

2
𝐺2 + 𝑏

3
𝐺3 + 𝑏

4
𝐺4) ℎ
2

+ (𝑏
2
(𝐺2
𝑡
𝑐
2
+ 𝐺2
𝑦
𝑐
2

𝑑

𝑑𝑡

𝑦 (𝑡))

+ 𝑏
3
(𝐺3
𝑡
𝑐
3
+ 𝐺3
𝑦
𝑐
3

𝑑

𝑑𝑡

𝑦 (𝑡))

+ 𝑏
4
(𝐺4
𝑡
𝑐
4
+ 𝐺4
𝑦
𝑐
4

𝑑

𝑑𝑡

𝑦 (𝑡))) ℎ
3

+ (𝑏
2
(

1

2

𝐺2
𝑡,𝑡
𝑐
2

2
+ 𝐺2
𝑡,𝑦
𝑐
2

2

𝑑

𝑑𝑡

𝑦 (𝑡)



6 Abstract and Applied Analysis

+

1

2

𝑐
2

2
(

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐺2
𝑦,𝑦

+ 𝐺2
𝑦
𝑎
21
𝐺1)

+ 𝑏
3
(𝐺3
𝑦
𝑎
31
𝐺1 + 𝐺3

𝑦
𝑎
32
𝐺2

+ 𝐺3
𝑡,𝑦
𝑐
2

3

𝑑

𝑑𝑡

𝑦 (𝑡)

+

1

2

𝑐
2

3
(

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐺3
𝑦,𝑦

+

1

2

𝐺3
𝑡,𝑡
𝑐
2

3
)

+ 𝑏
4
(𝐺4
𝑦
𝑎
42
𝐺2 + 𝐺4

𝑦
𝑎
43
𝐺3

+ 𝐺4
𝑡,𝑦
𝑐
2

4

𝑑

𝑑𝑡

𝑦 (𝑡) + 𝐺4
𝑦
𝑎
41
𝐺1

+

1

2

𝑐
2

4
(

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐺4
𝑦,𝑦

+

1

2

𝐺4
𝑡,𝑡
𝑐
2

4
)) ℎ
4
+ 𝑂 (ℎ

5
) .

(29)

By equating (20) and (29) with respect to ℎ, we obtain
the algebraic order conditions of a fourth algebraic order
modifiedRunge-Kutta-Nyströmmethodof the form (14).The
equations obtained for 𝑦 are.

Order 2:
4

∑

𝑖=1

𝑏
𝑖
𝐺𝑖 =

1

2

𝐹, (30)

order 3:
4

∑

𝑖=1

𝑏
𝑖
𝑐
𝑖
(𝐺𝑖
𝑡
+ 𝐺𝑖
𝑦

𝑑

𝑑𝑡

𝑦 (𝑡)) =

1

6

(𝐹
𝑡
+ 𝐹
𝑦

𝑑

𝑑𝑡

𝑦 (𝑡)) , (31)

order 4:
4

∑

𝑖=1

𝑏
𝑖
𝑐
2

𝑖
(𝐺𝑖
𝑡,𝑡
+ 𝐺𝑖
𝑡,𝑦
+ (

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐺𝑖
𝑦,𝑦
)

=

1

12

(𝐹
𝑡,𝑡
+ 𝐹
𝑡,𝑦
+ (

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐹
𝑦,𝑦
) ,

4

∑

𝑖=1

𝑏
𝑖
𝑎
𝑖𝑗
𝐺𝑖
𝑦
𝐺𝑗 =

1

24

𝐹
𝑦
𝐹.

(32)

By following the same procedure for the approximate
solution of 𝑦󸀠, we obtain the algebraic order conditions for
𝑦
󸀠, which are.
Order 1:

4

∑

𝑖=1

𝑏
󸀠

𝑖
𝐺𝑖 = 𝐹, (33)

order 2:
4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑐
𝑖
(𝐺𝑖
𝑡
+ 𝐺𝑖
𝑦

𝑑

𝑑𝑡

𝑦 (𝑡)) =

1

2

(𝐹
𝑡
+ 𝐹
𝑦

𝑑

𝑑𝑡

𝑦 (𝑡)) , (34)

order 3:
4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑐
2

𝑖
(𝐺𝑖
𝑡,𝑡
+ 2𝐺𝑖

𝑡,𝑦

𝑑

𝑑𝑡

𝑦 (𝑡) + (

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐺𝑖
𝑦,𝑦
)

=

1

3

(𝐹
𝑡,𝑡
+ 2𝐹
𝑡,𝑦

𝑑

𝑑𝑡

𝑦 (𝑡) + (

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝐹
𝑦,𝑦
) ,

4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑎
𝑖𝑗
𝐺𝑖
𝑦
𝐺𝑗 =

1

6

𝐹
𝑦
𝐹,

(35)

order 4:
4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑐
3

𝑖
(𝐺𝑖
𝑡,𝑡,𝑡

+ 𝐺𝑖
𝑡,𝑡,𝑦

𝑑

𝑑𝑡

𝑦 (𝑡)

+𝐺𝑖
𝑡,𝑦,𝑦

(

𝑑

𝑑𝑡

𝑦 (𝑡))

2

+ 𝐺𝑖
𝑦,𝑦,𝑦

(

𝑑

𝑑𝑡

𝑦 (𝑡))

3

)

=

1

4

(𝐹
𝑡,𝑡,𝑡

+ 𝐹
𝑡,𝑡,𝑦

𝑑

𝑑𝑡

𝑦 (𝑡)

+𝐹
𝑡,𝑦,𝑦

(

𝑑

𝑑𝑡

𝑦 (𝑡))

2

+ 𝐹
𝑦,𝑦,𝑦

(

𝑑

𝑑𝑡

𝑦 (𝑡))

3

) ,

4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑐
𝑖
𝑎
𝑖𝑗
𝐺𝑗(𝐺𝑖

𝑡,𝑦
+

𝑑

𝑑𝑡

𝑦 (𝑡) 𝐺𝑖
𝑦,𝑦
) =

1

8

𝐹 (𝐹
𝑡,𝑦
+ 𝐹
𝑦,𝑦
) ,

4

∑

𝑖=1

𝑏
󸀠

𝑖
𝑎
𝑖𝑗
𝑐
𝑗
(𝐺𝑖
𝑦
𝐺𝑗
𝑡
+ 𝐺𝑖
𝑦
𝐺𝑗
𝑦

𝑑

𝑑𝑡

𝑦 (𝑡))

=

1

24

(𝐹
𝑦
𝐹
𝑡
+ 𝐹
2

𝑦

𝑑

𝑑𝑡

𝑦 (𝑡)) .

(36)

As it is proved, in order to construct an explicit modified
Runge-Kutta-Nyström method of fourth algebraic order,
(30)–(36) must be satisfied.

For the proposed modified RKN method (16) developed
in Section 4, we observe that the Taylor expansions for 𝑔

𝑖

parameters that were obtained are dependent on 𝑧. What is
important for the new modified method is to maintain the
fourth algebraic order as the step size ℎ takes small values. As
already mentioned, 𝑧 is the product of the frequency 𝑤 and
the step size ℎ; thus for 𝑧 → 0 (30)–(36) should verify the
fourth algebraic order of the new modified method.

For 𝑧 → 0 it is easy to prove that lim
𝑧→0

𝑔
𝑖
= 1, 𝑖 = 1(1)4.

From the last relation, it is extracted that lim
𝑧→0

𝐺𝑖 = 𝐹,
𝑖 = 1(1)4, and thus (30)–(36) reduced to (22)–(28) which are
satisfied for the constant coefficients of DEP algorithm [15].

So it is proved that the new RKN method is of fourth
algebraic order. Moreover the local truncation error in 𝑦 is
given from the following equation:

LTE = 𝑦
𝑛+1

− 𝑦 (𝑡
𝑛
+ ℎ) , (37)

accordingly the local truncation error in its first derivative
(𝑦
󸀠
) is given from the following equation:

LTEder = 𝑦
󸀠

𝑛+1
− 𝑦
󸀠
(𝑡
𝑛
+ ℎ) . (38)
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At this point, we have already compute the Taylor expan-
sions of

(a) the exact solution 𝑦(𝑡
𝑛
+ ℎ) and the corresponding

numerical solution 𝑦
𝑛+1

,

(b) the first derivative 𝑦(𝑡
𝑛
+ ℎ) of the exact solution and

the first derivative 𝑦󸀠
𝑛+1

of the corresponding numer-
ical solution.

The LTE verifies the fourth algebraic order of the new
modified method. From the above procedure the local trun-
cation error in 𝑦 is

LTE = 1

2160

𝑓
𝑦
(𝑓
𝑡
+ 𝑓
𝑦

𝑑

𝑑𝑡

𝑦 (𝑡)) ℎ
5
+ 𝑂 (ℎ

6
) . (39)

Respectively, the local truncation error in 𝑦󸀠 is

LTEder =
1

25920

(31 𝑓
2

𝑦
𝑓 − 12 𝑓

𝑡,𝑦
𝑓
𝑡
+ 31 𝑓

𝑦
𝑓
𝑡,𝑡

+ 19 (

𝑑

𝑑𝑡

𝑦 (𝑡))

2

𝑓
𝑦,𝑦
𝑓
𝑦

+ 50 𝑓
𝑦
(

𝑑

𝑑𝑡

𝑦 (𝑡))𝑓
𝑡,𝑦

−12 (

𝑑

𝑑𝑡

𝑦 (𝑡))𝑓
𝑦,𝑦
𝑓
𝑡
)ℎ
5
+ 𝑂 (ℎ

6
) .

(40)

From (30)–(36) and for 𝑧 → 0 we prove that the new
method is of fourth algebraic order. Moreover the forms (39)
and (40) show that the new modified RKN method is of
fourth algebraic order, because all the coefficients up to the
power of ℎ4 vanish.

6. Numerical Results

6.1. Schrödinger Equation. The one-dimensional or radial
Schrödinger equation has the form

𝑦
󸀠󸀠
(𝑥) + (𝐸 −

𝑙 (𝑙 + 1)

𝑥
2

− 𝑉 (𝑥)) 𝑦 (𝑥) = 0,

where 0 ≤ 𝑥 < ∞.

(41)

We call the term 𝑙(𝑙 + 1)/𝑥
2 the centrifugal potential, and

the function 𝑉(𝑥) the electric potential. In (41), 𝐸 is a real
number denoting the energy, and 𝑙 is a quantum number. The
function 𝑊(𝑥) = 𝑙(𝑙 + 1)/𝑥

2
+ 𝑉(𝑥) denotes the effective

potential, where lim
𝑥→∞

𝑉(𝑥) = 0 and so lim
𝑥→∞

𝑊(𝑥) = 0.
The boundary condition 𝑦(0) = 0, together with a second
boundary condition, for large values of 𝑥, is determined by
the physical considerations.

6.1.1. Woods-Saxon Potential with Positive Energies. For the
purpose of our numerical illustration wewill take the domain

of integration as 𝑥 ∈ [0, 15], using the Woods-Saxon
potential:

𝑉 (𝑥) =

𝑢
0

1 + 𝑞

+

𝑢
1
𝑞

(1 + 𝑞)
2
, 𝑞 = exp (

𝑥 − 𝑥
0

𝛼

) ,

where 𝑢
0
= −50, 𝛼 = 0.6, 𝑥

0
= 7, 𝑢

1
= −

𝑢
0

𝛼

.

(42)

In the case of positive energies (𝐸 = 𝑘
2
), the potential

(𝑉(𝑥)) dies away faster than the centrifugal potential (𝑙(𝑙 +
1)/𝑥
2
), so for a large number for 𝑥, Schrödinger equation

effectively reduces to

𝑦
󸀠󸀠
(𝑥) + (𝑘

2
−

𝑙 (𝑙 + 1)

𝑥
2

)𝑦 (𝑥) = 0. (43)

(43) has two linearly independent solutions, 𝑘𝑥𝑗
𝑙
(𝑘𝑥)

and 𝑘𝑥𝑛
𝑙
(𝑘𝑥), where 𝑗

𝑙
and 𝑛

𝑙
are the spherical Bessel and

Neumann functions, respectively. When 𝑥 → ∞, the
solution of (41) takes the following asymptotic form:
𝑦 (𝑥) ≃ 𝐴𝑘𝑥𝑗

𝑙
(𝑘𝑥) − 𝐵𝑘𝑥𝑛

𝑙
(𝑘𝑥)

≃ 𝐷[sin(𝑘𝑥 − 𝑙𝜋

2

) + tan (𝛿
𝑙
) cos(𝑘𝑥 − 𝑙𝜋

2

)] ,

(44)

where 𝛿
𝑙
is the scattering phase shift that may be calculated

from the below formula:

tan (𝛿
𝑙
) =

𝑦 (𝑥
𝑖
) 𝑆 (𝑥
𝑖+1
) − 𝑦 (𝑥

𝑖+1
) 𝑆 (𝑥
𝑖
)

𝑦 (𝑥
𝑖+1
) 𝐶 (𝑥

𝑖
) − 𝑦 (𝑥

𝑖
) 𝐶 (𝑥

𝑖+1
)

, (45)

where 𝑆(𝑥) = 𝑘𝑥𝑗
𝑙
(𝑘𝑥) and 𝐶(𝑥) = 𝑘𝑥𝑛

𝑙
(𝑘𝑥) and 𝑥

𝑖
< 𝑥
𝑖+1

both exist in the asymptotic region.
For positive energies and for 𝑙 = 0, we calculate the phase

shift (𝛿
𝑙
) and then we compare it with the accurate value

which is 𝜋/2. The boundary conditions for this eigenvalue
problem are 𝑦(0) = 0 and 𝑦(𝑥) = cos(√𝐸𝑥) for large 𝑥.

We use the following eigenenergies:
𝐸
1
= 53.588872,

𝐸
2
= 163.215341,

𝐸
3
= 341.495874,

𝐸
4
= 989.701916.

(46)

6.1.2. Woods-Saxon Potential with Negative Energies. In the
case of negative energies (𝐸 < 0), we consider the eigenvalue
problem with boundary conditions:

𝑦 (0) = 0,

𝑦 (𝑥) = exp (−√−𝐸𝑥) for large 𝑥.
(47)

In order to solve this problem numerically, by a chosen
eigenvalue, we integrate forward from the point 𝑥 = 0 and
backward from the point 𝑥 = 15, matching up the solution at
some internal point in the range of integration.

For this problem we use the following eigenenergies:
𝐸
1
= −49.457788728, 𝐸

2
= −38.122785096,

𝐸
3
= −22.588602257, 𝐸

4
= −3.908232481,

(48)
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Table 1: Lennard-Jones potential with 𝐸 = 25.

𝑙(𝐸 = 25) Kobeissi et al. [16] MRKNDPAF4 EFRKN4 DEPRKN4 RKNPAF4
0 −0.48302543 2.35 1.74 1.88 1.74

1 0.92824634 2.33 1.75 1.89 1.75

2 −0.96354014 2.26 1.77 1.91 1.77

3 0.12073704 2.30 1.79 1.93 1.79

4 1.03290370 2.27 1.82 1.97 1.82

5 −1.37840550 2.29 1.85 2.01 1.86

6 −0.84398975 2.45 1.90 2.07 1.91

7 −0.52543971 2.53 1.95 2.13 1.95

8 −0.45743790 2.62 2.00 2.19 2.00

9 −0.75702397 2.70 2.05 2.26 2.03

10 1.41486080 3.02 2.17 2.42 2.16

Table 2: Lennard-Jones potential with 𝐸 = 100.

𝑙(𝐸 = 100) Kobeissi et al. [16] MRKNDPAF4 EFRKN4 DEPRKN4 RKNPAF4
0 −0.43100436 2.13 0.60 0.88 0.63

1 1.04500840 2.15 0.61 0.88 0.62

2 −0.71580773 2.14 0.61 0.88 0.62

3 0.56880667 2.17 0.61 0.89 0.63

4 −1.38576670 2.25 0.46 0.90 0.47

5 −0.29834254 2.28 0.62 0.90 0.64

6 0.68682901 2.26 0.63 0.92 0.65

7 1.56630270 2.30 0.64 0.93 0.66

8 −0.80594020 2.32 0.66 0.95 0.67

9 −0.15240790 2.57 0.67 0.96 0.68

10 0.37789982 2.70 0.68 0.98 0.69

6.1.3. Lennard-Jones Potential. In order to investigate the case
of 𝑙 ̸= 0, we examine the Lennard-Jones potential which is
given by the equation

𝑉 (𝑥) = 𝑚(

1

𝑥
12
−

1

𝑥
6
) , (49)

where 𝑚 = 500, for 𝑙 = {0, 1, 2, . . . , 10}, 𝐸 = {25, 100},
and step length of integration ℎ = 0.1. We compare the
phase shifts with the values found in [16] and present the
decimal digits that the approximate solutions that agree with
the reference solution.

6.2. Numerical Results. In this section four Runge-Kutta-
Nyströmmethods are compared (including the newmethod).
These methods have four algebraic orders with four stages;
also all of them are using the FSAL properties. The methods
used in the comparison have been denoted by

(i) MRKNDPAF4: the new fourth-order RKN method
with four stages (three effective stages with FSAL
property), derived in Section 3,

(ii) RKNPAF4: the fourth-order RKN method with four
stages (three effective stages with FSAL property),
phase lag, and amplification error of order infinity of
Papadopoulos et al. [7],

(iii) DEPRKN4: the high-ordermethod of pair RKN 4(3)4

method of Dormand et al. [15],

(iv) EFRKN4: the fourth-order exponential fitted RKN
method with four stages (three effective stages with
FSAL property) of Franco [4].

One way to measure the efficiency of the method is to
compute the accuracy in the decimal digits, that is, −log

10

(error at the end point), when comparing the phase shift to
the actual value𝜋/2 versus the computational effortmeasured
by the log

10
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑒V𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑).

The range of integration steps that have been used is
ℎ = 1/2

𝑁, 𝑁 = 3(1)8 for the Woods-Saxon potential
with positive energies and ℎ = 1/2

𝑁
, 𝑁 = 2(1)6 for the

Woods-Saxon potential with negative energies.
In the case of Lennard-Jones potential, we compare the

phase shifts with the values found in [16] and present the
decimal digits that the approximate solutions that agree with
the reference solution.The results are given in Tables 1 and 2.
The step length of integration is ℎ = 0.1.

The frequency is given by the suggestion of Ixaru and
Rizea [17]:

𝑤 = {

√𝐸 + 50, 𝑥 ∈ [0, 6.5] ,

√𝐸, 𝑥 ∈ [6.5, 15] .

(50)
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Figure 1: Efficiency for the Schrödinger equation using E =
53.588872.
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Figure 2: Efficiency for the Schrödinger equation using E =
163.215341.

The numerical results were obtained by using the high-
level language MATLAB. In Figures 1, 2, 3, 4, 5, 6, 7 and 8
we display the efficiency curves, that is, the accuracy versus
the computational cost measured by the number of function
evaluations required by each method.

Numerical results indicate that the new method derived
in Section 4 is very efficient in solving numerically the
Schrödinger equation and more accurate than the other
methods at all the eigenvalues.
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Figure 3: Efficiency for the Schrödinger equation using E =
341.495874.
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Figure 4: Efficiency for the Schrödinger equation using E =
989.701916.

More specifically in the case of Woods-Saxon potential
with positive energies, the new method remains more accu-
rate than the RKNPAF4 and EFRKN4 methods up to two
decimals at all eigenvalues. Also ourmethod is more accurate
than the classical DEPRKN4 method, by two decimals for
the eigenvalue 𝐸 = 53.588872, by three decimals for the
eigenvalue 𝐸 = 163.215341, and by four decimals for the next
two eigenvalues 𝐸 = {341.495874, 989.701916}.

In the case of Woods-Saxon potential with negative
energies, the new method has almost the same accuracy
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Figure 5: Efficiency for the Schrödinger equation using E =
− 49.457788728.
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Figure 6: Efficiency for the Schrödinger equation using E =
− 38.122785096.

with the RKNPAF4 and EFRKN4 methods, but it remains
(even a little) more accurate at the majority of the negative
eigenvalues. In comparison with the DEPRKN4 method, the
new method is much more accurate and specifically by one
digit for the eigenvalue 𝐸 = −49.457788728 and by two digits
for the rest of the negative eigenvalues.

At last, for the Lennard-Jones potential the new method
is more accurate than all the other methods for eigenvalues
𝐸 = {25, 100} and 𝑙 = {0, 1, 2, . . . , 10}.
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Figure 7: Efficiency for the Schrödinger equation using E =
− 22.588602257.
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Figure 8: Efficiency for the Schrödinger equation using E =
− 3.908232481.

7. Conclusions

Themodified RKNmethod, developed in this paper, is much
more efficient than the classical one, in any case. The new
method remained more efficient for all the eigenvalues and
in some cases was more accurate than the other methods
up to two decimals. Moreover we observe that the accuracy
difference between the new method and the other methods
increased as the eigenvalue increased (for details about the
original proof see [17]).
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