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This paper is concerned with a delay Lotka-Volterra model under regime switching diffusion in random environment. By using
generalized Itô formula, Gronwall inequality and Young’s inequality, some sufficient conditions for existence of global positive
solutions and stochastically ultimate boundedness are obtained, respectively. Finally, an example is given to illustrate the main
results.

1. Introduction

The delay differential equation

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑥 (𝑡) (𝑎 − 𝑏𝑥 (𝑡) + 𝑐𝑥 (𝑡 − 𝜏)) (1)

has been used to model the population growth of certain
species and is known as the delay Lotka-Volterramodel or the
delay logistic equation. The delay Lotka-Volterra model for 𝑛
interacting species is described by the 𝑛-dimensional delay
differential equation

𝑑𝑥 (𝑡)

𝑑𝑡
= diag (𝑥

1
(𝑡) , . . . , 𝑥

𝑛
(𝑡)) (𝑏 + 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏)) ,

(2)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛, 𝑏 = (𝑏

1
, . . . , 𝑏

𝑛
)
𝑇
∈ 𝑅
𝑛

+
,

𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛, and 𝐵 = (𝑏

𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛. There is an

extensive literature concernedwith the dynamics of this delay
model and have had lots of nice results.We here onlymention
Ahmad and Rao [1], Bereketoglu and Győri [2], Freedman
and Ruan [3], and in particular, the books by Gopalsamy [4],
Kolmanovskĭı and Myshkis [5], and Kuang [6], among many
others.

In the equations above, the state 𝑥(𝑡) denotes the popula-
tion sizes of the species. Naturally, we focus on the positive
solutions and also require the solutions not to explode at
a finite time. To guarantee the positive solutions without

explosion (i.e., the global positive solutions), some conditions
are in general needed to impose on the system parameters.
For example, it is generally assumed that 𝑎 > 0, 𝑏 > 0, and
𝑐 < 𝑏 for (1) while much more complicated conditions are
required on matrices 𝐴 and 𝐵 for (2) [7] (and the references
cited therein).

On the other hand, population systems are often sub-
ject to environmental noise, and the system will change
significantly, which may change the dynamics of solutions
significantly [8, 9]. It is therefore necessary to reveal how
the noise affects the dynamics of solutions for the delay
population systems. In fact, many authors have discussed
population systems subject to white noise [7–18]. Recall that
the parameter 𝑏

𝑖
in (2) represents the intrinsic growth rate

of species 𝑖. In practice we usually estimate it by an average
value plus an error term.According to thewell-known central
limit theorem, the error term follows a normal distribution.
In term ofmathematics, we can therefore replace the rate 𝑏

𝑖
by

𝑏
𝑖
+𝜎
𝑖
�̇�(𝑡), where �̇�(𝑡) is a white noise (i.e.,𝑤(𝑡) is a Brownian

motion) and 𝜎
𝑖
≥ 0 represents the intensity of noise. As a

result, (2) becomes a stochastic differential equation (SDE, in
short)

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 + 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎𝑑𝑤 (𝑡)] ,

(3)

where 𝜎 = (𝜎
1
, . . . , 𝜎

𝑛
)
𝑇. We refer to [7] for more details.
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To our knowledge, much of the attention paid to envi-
ronmental noise is focused on white noise. But another type
of environmental noise, namely, color noise, say telegraph
noise, has been studied by many authors ([19–25] and the
references cited therein). In this context, telegraph noise can
be described as a random switching between two or more
environmental regimes, which differ in terms of factors such
as nutrition or rain falls [23, 24]. Usually, the switching
between different environments is memoryless and the wait-
ing time for the next switch has an exponential distribution.
This indicates that we may model the random environments
and other random factors in the system by a continuous-
time Markov chain 𝑟(𝑡), 𝑡 ≥ 0 with a finite state space
𝑆 = {1, 2, . . . , 𝑁}. Therefore stochastic delay population
system (3) in random environments can be described by the
following stochastic model with regime switching:

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) ] .

(4)

The mechanism of ecosystem described by (4) can be
explained as follows. Assume that initially, the Markov chain
𝑟(0) = 𝜄 ∈ 𝑆. Then the ecosystem (4) obeys the SDE

𝑑𝑥 (𝑡)

= diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝜄) + 𝐴 (𝜄) 𝑥 (𝑡) + 𝐵 (𝜄) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝜄) 𝑑𝑤 (𝑡)] ,

(5)

until the Markov chain 𝑟(𝑡) jumps to another state, say, 𝜍.
Therefore, the ecosystem (4) satisfies the SDE

𝑑𝑥 (𝑡)

= diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝜍) + 𝐴 (𝜍) 𝑥 (𝑡) + 𝐵 (𝜍) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝜍) 𝑑𝑤 (𝑡)] ,

(6)

for a random amount of time until the Markov chain 𝑟(𝑡)
jumps to a new state again.

It should be pointed out that the stochastic popula-
tion systems under regime switching have received much
attention lately. For instance, the stochastic permanence and
extinction of a logistic model under regime switching were
considered in [20, 24], asymptotic results of a competitive
Lotka-Volterra model in random environment are obtain in
[25], a new single-species model disturbed by both white
noise and colored noise in a polluted environment was
developed and analyzed in [26], and a general stochastic
logistic systemunder regime switchingwas proposed andwas
treated in [27].

Equation (4) describes the dynamics of populations. This
paper is concernedwith the positive global solutions, ultimate
boundedness and extinction.The stochastic permanence and

asymptotic estimations of solutions will be investigated in the
next note [28].

This paper is organized as follows. In the next section,
some sufficient conditions for global positive solutions for
any initial positive value are given by using generalized Itô
formula, Gronwall inequality, and 𝑉-function techniques.
In Section 3, the stochastically ultimate boundedness of
solutions is obtained by virtue of Young’s inequality. Section 4
is devoted to the extinction of solutions. Finally, an example
and its numerical simulation are given to illustrate our main
results.

2. Global Positive Solution

Throughout this paper, unless otherwise specified, let (Ω,F,
{F
𝑡
}
𝑡≥0
, 𝑃) be a complete probability space with a filtration

{F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is right contin-
uous and F

0
contains all 𝑃-null sets). Let 𝑤(𝑡), 𝑡 ≥ 0, be a

scalar standard Brownian motion defined on this probability
space. We also denote by 𝑅𝑛

+
the positive cone in 𝑅𝑛, that is

𝑅
𝑛

+
= {𝑥 ∈ 𝑅

𝑛
: 𝑥
𝑖
> 0 for all 1 ≤ 𝑖 ≤ 𝑛}, and denote by

𝑅
𝑛

+
the nonnegative cone in 𝑅𝑛, that is 𝑅𝑛

+
= {𝑥 ∈ 𝑅

𝑛
: 𝑥
𝑖
≥

0 for all 1 ≤ 𝑖 ≤ 𝑛}. If 𝐴 is a vector or matrix, its transpose
is denoted by 𝐴𝑇. If 𝐴 is a matrix, its trace norm is denoted
by |𝐴| = √trace(𝐴𝑇𝐴), and its operator norm is denoted by
‖ 𝐴 ‖= sup{|𝐴𝑥| : |𝑥| = 1}. Moreover, let 𝜏 > 0 and denote by
𝐶([−𝜏, 0]; 𝑅

𝑛

+
) the family of continuous functions from [−𝜏, 0]

to 𝑅𝑛
+
.

In this paper we will use a lot of quadratic functions
of the form 𝑥

𝑇
𝐴𝑥 for the state 𝑥 ∈ 𝑅

𝑛

+
only. Therefore,

for a symmetric 𝑛 × 𝑛 matrix 𝐴, we naturally introduce the
following definition

𝜆
+

max (𝐴) = sup
𝑥∈𝑅
𝑛

+
,|𝑥|=1

𝑥
𝑇
𝐴𝑥. (7)

For more properties of 𝜆+max(𝐴), refer to the appendix in [7].
Let 𝑟(𝑡) be a right-continuous Markov chain on the

probability space, taking values in a finite state space 𝑆 =

{1, 2, . . . , 𝑁}, with the generator Γ = (𝛾
𝑢V) given by

𝑃 {𝑟 (𝑡 + 𝛿) = V | 𝑟 (𝑡) = 𝑢} = {
𝛾
𝑢V𝛿 + 𝑜 (𝛿) , if 𝑢 ̸= V,

1 + 𝛾
𝑢V𝛿 + 𝑜 (𝛿) , if 𝑢 = V,

(8)

where 𝛿 > 0, 𝛾
𝑢V is the transition rate from 𝑢 to V, and 𝛾

𝑢V ≥ 0

if 𝑢 ̸= V, while 𝛾
𝑢𝑢
= −∑V ̸= 𝑢 𝛾𝑢V. We assume that the Markov

chain 𝑟(⋅) is independent of the Brownian motion 𝑤(⋅). It is
well known that almost every sample path of 𝑟(⋅) is a right-
continuous step functionwith a finite number of jumps in any
finite subinterval of 𝑅

+
. As a standing hypothesis we assume

in this paper that the Markov chain 𝑟(𝑡) is irreducible. This is
a very reasonable assumption as it means that the system can
switch fromany regime to any other regime.This is equivalent
to the condition that for any 𝑢, V ∈ 𝑆, one can find finite
numbers 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
∈ 𝑆 such that 𝛾

𝑢𝑖
1

𝛾
𝑖
1
𝑖
2

⋅ ⋅ ⋅ 𝛾
𝑖
𝑘
V > 0. Under

this condition, the Markov chain has a unique stationary
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(probability) distribution 𝜋 = (𝜋
1
, 𝜋
2
, . . . , 𝜋

𝑁
) ∈ 𝑅
1×𝑁 which

can be determined by solving the following linear equation:

𝜋Γ = 0 (9)

subject to

𝑁

∑

𝑖=1

𝜋
𝑖
= 1, 𝜋

𝑖
> 0, ∀𝑖 ∈ 𝑆. (10)

We refer to [12, 29] for the fundamental theory of stochastic
differential equations.

For convenience and simplicity in the following discus-
sion, for any constant sequence 𝑓

𝑖
(𝑘), (1 ≤ 𝑖 ≤ 𝑛, 𝑘 ∈ 𝑆) let

̌𝑓 = max
1≤𝑖≤𝑛,𝑘∈𝑆

𝑓
𝑖
(𝑘) , ̌𝑓 (𝑘) = max

1≤𝑖≤𝑛

𝑓
𝑖
(𝑘) ,

𝑓 = min
1≤𝑖≤𝑛,𝑘∈𝑆

𝑓
𝑖
(𝑘) , 𝑓 (𝑘) = min

1≤𝑖≤𝑛

𝑓
𝑖
(𝑘) .

(11)

As 𝑥(𝑡) in system (4) denotes populations size at time 𝑡, it
should be nonnegative. Thus for further study, we must give
some condition under which (4) has a unique global positive
solution.

Theorem 1. Assume that there are positive numbers 𝑐
1
, . . . , 𝑐

𝑛

and 𝜃 such that

max
𝑘∈𝑆

{𝜆
+

max [
1

2
𝐶 (𝐴 (𝑘) + 𝐴

𝑇
(𝑘)) 𝐶

+
1

4𝜃
𝐶𝐵 (𝑘) 𝐵

𝑇
(𝑘) 𝐶 + 𝜃𝐼]} ≤ 0,

(12)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
). Then for any given initial data

{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅
𝑛

+
), there is a unique solution

𝑥(𝑡) to (4) on 𝑡 ≥ −𝜏 and the solution will remain in 𝑅𝑛
+
with

probability 1, namely, 𝑥(𝑡) ∈ 𝑅𝑛
+
for all 𝑡 ≥ −𝜏 a.s.

Proof. Since the coefficients of the equation are locally
Lipschitz continuous, for any given initial data {𝑥(𝑡) : −𝜏 ≤
𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

+
), there is a unique maximal local

solution𝑥(𝑡) on 𝑡 ∈ [−𝜏, 𝜏
𝑒
), where 𝜏

𝑒
is the explosion time. To

show that the solution is global, we need to show that 𝜏
𝑒
= ∞

a.s.
Let 𝑘
0
> 0 be sufficiently lager such that

1

𝑘
0

≤ min
−𝜏≤𝑡≤0

|𝑥 (𝑡)| ≤ max
−𝜏≤𝑡≤0

|𝑥 (𝑡)| ≤ 𝑘0. (13)

For each integer 𝑘 ≥ 𝑘
0
, define the stopping time

𝜏
𝑘
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : 𝑥
𝑖
(𝑡) ∉ (

1

𝑘
, 𝑘)

for some 𝑖 = 1, 2, . . . , 𝑛} ,
(14)

where throughout this paper we set inf 0 = ∞ (as usual 0
denotes the empty set). Clearly, 𝜏

𝑘
is increasing as 𝑘 → ∞.

Set 𝜏
∞
= lim
𝑘→∞

𝜏
𝑘
, where 𝜏

∞
≤ 𝜏
𝑒
a.s. If 𝜏

∞
= ∞ a.s., then

𝜏
𝑒
= ∞ a.s. and 𝑥(𝑡) ∈ 𝑅𝑛

+
a.s. for all 𝑡 ≥ 0. In other words, to

complete the proof, one should show that 𝜏
∞
= ∞ a.s. Define

𝑉 : 𝑅
𝑛

+
→ 𝑅
+
by

𝑉 (𝑥) =

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑥
𝑖
− 1 − log𝑥

𝑖
) . (15)

The nonnegativity of this function can be seen from 𝑢 − 1 −

log 𝑢 ≥ 0 on 𝑢 > 0. Let 𝑘 ≥ 𝑘
0
and 𝑇 > 0 be arbitrary. For

0 ≤ 𝑡 ≤ 𝜏
𝑘
∧ 𝑇, it is easy to see by the generalized Itô formula

that
𝐸𝑉 (𝑥 (𝜏

𝑘
∧ 𝑡)) = 𝑉 (𝑥 (0))

+ 𝐸∫

𝜏
𝑘
∧𝑡

0

𝐿𝑉 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏) , 𝑟 (𝑠)) 𝑑𝑠,

(16)

where 𝐿𝑉 : 𝑅𝑛
+
× 𝑅
𝑛

+
× 𝑆 → 𝑅 is defined by

𝐿𝑉 (𝑥, 𝑦, 𝑘) = 𝑥
𝑇
𝐶𝑏 (𝑘) + 𝑥

𝑇
𝐶𝐴 (𝑘) 𝑥 + 𝑥

𝑇
𝐶𝐵 (𝑘) 𝑦

− 𝑐
𝑇
(𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦)

+
1

2
𝜎
𝑇
(𝑘) 𝐶𝜎 (𝑘) ,

(17)

and 𝑐 = (𝑐
1
, . . . , 𝑐

𝑛
)
𝑇. Using condition (12) we compute

𝑥
𝑇
𝐶𝐴 (𝑘) 𝑥 + 𝑥

𝑇
𝐶𝐵 (𝑘) 𝑦

≤
1

2
𝑥
𝑇
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶) 𝑥

+
1

4𝜃
𝑥
𝑇
𝐶𝐵 (𝑘) 𝐵

𝑇
(𝑘) 𝐶𝑥 + 𝜃

𝑦

2

= 𝑥
𝑇
[
1

2
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)

+
1

4𝜃
𝐶𝐵 (𝑘) 𝐵

𝑇
(𝑘) 𝐶 + 𝜃𝐼] 𝑥 − 𝜃|𝑥|

2
+ 𝜃
𝑦

2

≤ −𝜃|𝑥|
2
+ 𝜃
𝑦

2

.

(18)

Moreover, there is a constant𝐾
1
> 0 such that

max
𝑘∈𝑆

(𝑥
𝑇
𝐶𝑏 (𝑘) + 𝑐

𝑇
𝐴 (𝑘) 𝑥 + 𝑐

𝑇
𝐵 (𝑘) 𝑦 − 𝑐

𝑇
𝑏 (𝑘)

+
1

2
𝜎
𝑇
(𝑘) 𝐶𝜎 (𝑘))

≤ 𝐾
1
(1 + |𝑥| +

𝑦
) .

(19)

Substituting these inequalities into (17) yields

𝐿𝑉 (𝑥, 𝑦, 𝑖) ≤ 𝐾
1
(1 + |𝑥| +

𝑦
) − 𝜃|𝑥|

2
+ 𝜃
𝑦

2

. (20)
Noticing that 𝑢 ≤ 2(𝑢 − 1 − log 𝑢) + 2 on 𝑢 > 0, we compute

|𝑥| ≤

𝑛

∑

𝑖=1

𝑥
𝑖
≤

𝑛

∑

𝑖=1

[2 (𝑥
𝑖
− 1 − log𝑥

𝑖
) + 2]

≤ 2𝑛 +
2

𝑐

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑥
𝑖
− 1 − log𝑥

𝑖
)

= 2𝑛 +
2

𝑐
𝑉 (𝑥) .

(21)
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It follows from (20) and (21) that

𝐿𝑉 (𝑥, 𝑦, 𝑘) ≤ 𝐾
2
(1 + 𝑉 (𝑥) + 𝑉 (𝑦)) − 𝜃|𝑥|

2
+ 𝜃
𝑦

2

, (22)

where 𝐾
2
is a positive constant. Substituting this inequality

into (16) yields

𝐸𝑉 (𝑥 (𝜏
𝑘
∧ 𝑡))

≤ 𝑉 (𝑥 (0)) + 𝐾
2
𝐸∫

𝜏
𝑘
∧𝑡

0

[1 + 𝑉 (𝑥 (𝑠)) + 𝑉 (𝑥 (𝑠 − 𝜏))] 𝑑𝑠

+ 𝐸∫

𝜏
𝑘
∧𝑡

0

[−𝜃𝑥
2
(𝑠) + 𝜃𝑥

2
(𝑠 − 𝜏)] 𝑑𝑠.

(23)

Compute

𝐸∫

𝜏
𝑘
∧𝑡

0

𝑉 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

= 𝐸∫

𝜏
𝑘
∧(𝑡−𝜏)

−𝜏

𝑉 (𝑥 (𝑠)) 𝑑𝑠

≤ ∫

0

−𝜏

𝑉 (𝑥 (𝑠)) 𝑑𝑠 + 𝐸∫

𝜏
𝑘
∧𝑡

0

𝑉 (𝑥 (𝑠)) 𝑑𝑠

(24)

and, similarly

𝐸∫

𝜏
𝑘
∧𝑡

0

|𝑥 (𝑠 − 𝜏)|
2
𝑑𝑠 ≤ ∫

0

−𝜏

|𝑥(𝑠)|
2
𝑑𝑠 + 𝐸∫

𝜏
𝑘
∧𝑡

0

|𝑥(𝑠)|
2
𝑑𝑠.

(25)

Substituting these inequalities into (23) gives

𝐸𝑉 (𝑥 (𝜏
𝑘
∧ 𝑡)) ≤ 𝐾

3
+ 2𝐾
2
𝐸∫

𝜏
𝑘
∧𝑡

0

𝑉 (𝑥 (𝑠)) 𝑑𝑠

≤ 𝐾
3
+ 2𝐾
2
𝐸∫

𝑡

0

𝑉 (𝑥 (𝜏
𝑘
∧ 𝑠)) 𝑑𝑠

≤ 𝐾
3
+ 2𝐾
2
∫

𝑡

0

𝐸𝑉 (𝑥 (𝜏
𝑘
∧ 𝑠)) 𝑑𝑠,

(26)

where 𝐾
3

= 𝑉(𝑥(0)) + 𝐾
2
𝑇 + 𝐾

2
∫
0

−𝜏
𝑉(𝑥(𝑠))𝑑𝑠 +

𝜃 ∫
0

−𝜏
|𝑥(𝑠)|
2
𝑑𝑠.

By the Gronwall inequality, we obtain that

𝐸𝑉 (𝑥 (𝜏
𝑘
∧ 𝑇)) ≤ 𝐾

3
𝑒
2𝑇𝐾
2 . (27)

Noting that for every 𝜔 ∈ {𝜏
𝑘
≤ 𝑇},

𝑉 (𝑥 (𝜏
𝑘
, 𝜔)) ≥ 𝑐 [(𝑘 − 1 − log 𝑘) ∧ (1/𝑘 − 1 + log 𝑘)] , (28)

one has by (27) that

𝐾
3
𝑒
2𝑇𝐾
2 ≥ 𝐸𝑉 (𝑥 (𝜏

𝑘
∧ 𝑇))

≥ 𝐸 [1
{𝜏
𝑘
≤𝑇}

(𝜔)𝑉 (𝑥 (𝜏
𝑘
∧ 𝑇, 𝜔))]

= 𝐸 [1
{𝜏
𝑘
≤𝑇}

(𝜔)𝑉 (𝑥 (𝜏
𝑘
, 𝜔))]

≥ 𝑐𝑃 {𝜏
𝑘
≤ 𝑇}

× [(𝑘 − 1 − log 𝑘) ∧ (1/𝑘 − 1 + log 𝑘)] ,

(29)

where 1
{𝜏
𝑘
≤𝑇}

is the indicator function of {𝜏
𝑘
≤ 𝑇}. Letting

𝑘 → ∞ gives lim
𝑘→∞

𝑃{𝜏
𝑘
≤ 𝑇} = 0 and hence𝑃{𝜏

∞
≤ 𝑇} =

0. Since 𝑇 > 0 is arbitrary, we must have 𝑃{𝜏
∞
< ∞} = 0, so

𝑃{𝜏
∞
= ∞} = 1 as required.

Assumption 2. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶)]} +max

𝑘∈𝑆


𝐶𝐵 (𝑘)


≤ 0,

(30)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
).

The following theorem is easy to verify in applications,
which will be used in the sections below.

Theorem 3. Under Assumption 2, for any given initial data
{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

+
), there is a unique solution

𝑥(𝑡) to (4) on 𝑡 ≥ −𝜏 and the solution will remain in 𝑅𝑛
+
with

probability 1, namely, 𝑥(𝑡) ∈ 𝑅𝑛
+
for all 𝑡 ≥ −𝜏 a.s.

Proof. Define𝑉 : 𝑅𝑛
+
→ 𝑅
+
by𝑉(𝑥) = ∑𝑛

𝑖=1
𝑐
𝑖
(𝑥
𝑖
−1− log𝑥

𝑖
).

The non-negativity of this function can be seen from 𝑢 − 1 −

log 𝑢 ≥ 0 on 𝑢 > 0, and then we have (16) and (17).
If 𝐵(𝑘) ̸= 0, 𝑘 ∈ 𝑆, then ‖𝐶𝐵(𝑘)‖ ̸= 0. Consequently

𝑥
𝑇
𝐶𝐴 (𝑘) 𝑥 + 𝑥

𝑇
𝐶𝐵 (𝑘) 𝑦

≤
1

2
𝑥
𝑇
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶) 𝑥

+
1

2

𝐶𝐵 (𝑘)



𝑥
𝑇
𝐶𝐵 (𝑘) 𝐵

𝑇
(𝑘) 𝐶𝑥

+
1

2


𝐶𝐵 (𝑘)



𝑦

2

=
1

2
𝑥
𝑇
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶) 𝑥

+
1

2


𝐶𝐵 (𝑘)


|𝑥|
2
+
1

2


𝐶𝐵 (𝑘)



𝑦

2

.

(31)

Otherwise ‖ 𝐶𝐵(𝑘) ‖= 0 for 𝐵(𝑘) = 0, 𝑘 ∈ 𝑆. In this case, we
also have that

𝑥
𝑇
𝐶𝐴 (𝑘) 𝑥 + 𝑥

𝑇
𝐶𝐵 (𝑘) 𝑦

≤
1

2
𝑥
𝑇
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶) 𝑥 +

1

2


𝐶𝐵 (𝑘)


|𝑥|
2

+
1

2


𝐶𝐵 (𝑘)



𝑦

2

.

(32)

Thus,

𝑥
𝑇
𝐶𝐴 (𝑘) 𝑥 + 𝑥

𝑇
𝐶𝐵 (𝑘) 𝑦

≤
1

2
𝑥
𝑇
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶) 𝑥 +

1

2


𝐶𝐵 (𝑘)


|𝑥|
2

+
1

2


𝐶𝐵 (𝑘)



𝑦

2

.

(33)
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Denote 𝜂 = max
𝑘∈𝑆
‖𝐶𝐵(𝑘)‖. By (33) and Assumption 2, one

has

𝑥
𝑇
𝐶𝐴 (𝑘) 𝑥 + 𝑥

𝑇
𝐶𝐵 (𝑘) 𝑦

≤
1

2
𝑥
𝑇
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶) 𝑥 +

1

2
𝜂|𝑥|
2
+
1

2
𝜂
𝑦

2

≤ max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶)]} |𝑥|

2

+
1

2
𝜂|𝑥|
2
+
1

2
𝜂
𝑦

2

≤ −
1

2
𝜂|𝑥|
2
+
1

2
𝜂
𝑦

2

.

(34)

The rest of the proof is similar to that of Theorem 1 and
omitted.

3. Ultimate Boundness

Theorem 3 shows that solutions of the SDE (4) will remain
in the positive cone 𝑅𝑛

+
. This nice property provides us

with a great opportunity to discuss how solutions vary in
𝑅
𝑛

+
in detail. In this section, we give the definitions of

stochastically ultimate boundedness of the SDE (4) and some
sufficient conditions under which solutions of SDE (4) are
stochastically ultimate bounded.

Definition 4. The solutions of (4) are called stochastically
ultimately bounded, if for any 𝜀 ∈ (0, 1), there exists a positive
constant 𝐻 = 𝐻(𝜀), such that the solutions of (4) with any
positive initial value have the property that

lim sup
𝑡→+∞

𝑃 {|𝑥 (𝑡)| > 𝐻} < 𝜀. (35)

Assumption 5. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

−𝜆 = max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶)]}

+max
𝑘∈𝑆


𝐶𝐵 (𝑘)


< 0,

(36)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
).

Theorem 6. Under Assumption 5, for any given initial data
{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

+
) and any given positive

constant 𝑝, there are two positive constants 𝐾
1
(𝑝) and 𝐾

2
(𝑝),

such that the solution 𝑥(𝑡) of (4) has the properties that

lim sup
𝑡→∞

𝐸|𝑥 (𝑡)|
𝑝
≤ 𝐾
1
(𝑝) , (37)

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝐸|𝑥 (𝑠)|
𝑝+1
𝑑𝑠 ≤ 𝐾

2
(𝑝) . (38)

Proof. By Theorem 3, the solution 𝑥(𝑡) will remain in 𝑅𝑛
+
for

all 𝑡 ≥ −𝜏 with probability 1. If max
𝑘∈𝑆
‖𝐶𝐵(𝑘)‖ > 0, we let

𝜂 = (𝑝 + 1)
−1max

𝑘∈𝑆
‖𝐶𝐵(𝑘)‖ and 𝛾 = 𝜏−1 log((𝜆 + 2𝜂)/2𝜂) >

0. Define 𝑉(𝑥, 𝑡) = 𝑒𝛾𝑡(∑𝑛
𝑖=1
𝑐
𝑖
𝑥
𝑖
)
𝑝
= 𝑒
𝛾𝑡
(𝑐
𝑇
𝑥)
𝑝. It has by the

generalized Itô formula that

𝑑𝑉 (𝑥 (𝑡) , 𝑡) = 𝐿𝑉 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡, 𝑟 (𝑡)) 𝑑𝑡

+ 𝑝𝑒
𝛾𝑡
(𝑐
𝑇
𝑥 (𝑡))
𝑝−1

𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

(39)

where 𝐿𝑉 : 𝑅𝑛
+
× 𝑅
𝑛

+
× 𝑅
+
× 𝑆 → 𝑅 is defined by

𝐿𝑉 (𝑥, 𝑦, 𝑡, 𝑘)

= 𝑒
𝛾𝑡
{𝛾(𝑐
𝑇
𝑥)
𝑝

+ 𝑝(𝑐
𝑇
𝑥)
𝑝−1

𝑥
𝑇
𝐶 (𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦)

+
1

2
𝑝 (𝑝 − 1) (𝑐

𝑇
𝑥)
𝑝−2

(𝑥
𝑇
𝐶𝜎 (𝑘))

2

} .

(40)

Meanwhile, by Assumption 5 and Young’s inequality, one gets

𝐿𝑉 (𝑥, 𝑦, 𝑡, 𝑘)

≤ 𝑒
𝛾𝑡
[𝛾|𝑐|
𝑝
|𝑥|
𝑝
+ 𝑝|𝑐|

𝑝
|𝑏 (𝑘)| |𝑥|

𝑝

+
1

2
𝑝 (𝑝 − 1) |𝑐|

𝑝
|𝜎 (𝑘)|

2
|𝑥|
𝑝

+𝑝(𝑐
𝑇
𝑥)
𝑝−1

𝑥
𝑇
𝐶 (𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦)]

≤ 𝑒
𝛾𝑡
{𝐾 (𝑝) |𝑥|

𝑝
+
1

2
𝑝(𝑐
𝑇
𝑥)
𝑝−1

𝑥

× (𝐶𝐴 (𝑘) + 𝐴
𝑇
(𝑘) 𝐶) 𝑥

𝑇

+𝑝(𝑐
𝑇
𝑥)
𝑝−1 

𝐶𝐵 (𝑘)

|𝑥|
𝑦
 }

≤ 𝑒
𝛾𝑡
𝐾(𝑝) |𝑥|

𝑝
+ 𝑒
𝛾𝑡
𝑝|𝑐|
𝑝−1

×max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶)]} |𝑥|

𝑝+1

+ 𝑒
𝛾𝑡
𝑝|𝑐|
𝑝−1 

𝐶𝐵 (𝑘)

|𝑥|
𝑝 𝑦



≤ 𝑒
𝛾𝑡
𝐾(𝑝) |𝑥|

𝑝
+ 𝑒
𝛾𝑡
𝑝|𝑐|
𝑝−1

×max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶)]} |𝑥|

𝑝+1

+ 𝑒
𝛾𝑡
𝑝|𝑐|
𝑝−1 

𝐶𝐵 (𝑘)

(

𝑝

𝑝 + 1
|𝑥|
𝑝+1

+
1

𝑝 + 1

𝑦

𝑝+1

)

≤ 𝑒
𝛾𝑡
{𝐾 (𝑝) |𝑥|

𝑝
+ 𝑝|𝑐|

𝑝−1
[− (𝜆 + 𝜂) |𝑥|

𝑝+1
+ 𝜂
𝑦

𝑝+1

]}

≤ 𝑒
𝛾𝑡
{𝐾 (𝑝) |𝑥|

𝑝
−
1

2
𝑝𝜆|𝑐|
𝑝−1
|𝑥|
𝑝+1

+ 𝑝|𝑐|
𝑝−1

× [−(
1

2
𝜆 + 𝜂) |𝑥|

𝑝+1
+ 𝜂
𝑦

𝑝+1

]}

≤ 𝐻 (𝑝) 𝑒
𝛾𝑡
+ 𝑝𝜂|𝑐|

𝑝−1
𝑒
𝛾𝑡
(−𝑒
𝛾𝜏
|𝑥|
𝑝+1

+
𝑦

𝑝+1

) ,

(41)
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where

𝐾(𝑝) = max
𝑘∈𝑆

[𝛾|𝑐|
𝑝
+ 𝑝|𝑐|

𝑝
|𝑏 (𝑘)| +

1

2
𝑝 (𝑝 − 1) |𝑐|

𝑝
|𝜎 (𝑘)|

2
] ,

𝐻 (𝑝) = sup
𝑥∈𝑅
+

(𝐾 (𝑝) |𝑥|
𝑝
−
1

2
𝑝𝜆|𝑐|
𝑝−1
|𝑥|
𝑝+1
) ∨ 1.

(42)

On the other hand,

∫

𝑡

0

𝑒
𝛾𝑠
|𝑥 (𝑠 − 𝜏)|

𝑝+1
𝑑𝑠

= 𝑒
𝛾𝜏
∫

𝑡

0

𝑒
𝛾(𝑠−𝜏)

|𝑥 (𝑠 − 𝜏)|
𝑝+1
𝑑𝑠

= 𝑒
𝛾𝜏
∫

𝑡−𝜏

−𝜏

𝑒
𝛾𝑠
|𝑥 (𝑠)|

𝑝+1
𝑑𝑠

≤ 𝑒
𝛾𝜏
∫

0

−𝜏

|𝑥 (𝑠)|
𝑝+1
𝑑𝑠 + 𝑒

𝛾𝜏
∫

𝑡

0

𝑒
𝛾𝑠
|𝑥 (𝑠)|

𝑝+1
𝑑𝑠,

(43)

by (41) and (43), we obtain that

𝑒
𝛾𝑡
𝐸 [𝑉 (𝑥 (𝑡))]

≤ 𝑉 (𝑥 (0)) + ∫

𝑡

0

𝐻(𝑝) 𝑒
𝛾𝑠
𝑑𝑠 + 𝑝|𝑐|

𝑝−1
𝜂

× ∫

𝑡

0

𝑒
𝛾𝑠
(−𝑒
𝛾𝜏
|𝑥 (𝑠)|

𝑝+1
+ |𝑥 (𝑠 − 𝜏)|

𝑝+1
) 𝑑𝑠

≤ 𝑉 (𝑥 (0)) +
𝐻 (𝑝)

𝛾
(𝑒
𝛾𝑡
− 1) + 𝑝|𝑐|

𝑝−1
𝜂𝑒
𝛾𝜏
∫

0

−𝜏

|𝑥 (𝑠)|
𝑝+1
𝑑𝑠,

(44)

which yields

lim sup
𝑡→∞

𝐸𝑉 (𝑥 (𝑡)) ≤
𝐻 (𝑝)

𝛾
. (45)

Since |𝑥(𝑡)| ≤ ∑
𝑛

𝑖=1
𝑥
𝑖
(𝑡) ≤ 𝑉(𝑥(𝑡))/𝑐, it has lim sup

𝑡→∞

𝐸|𝑥(𝑡)|
𝑝
≤ 𝐻(𝑝)/𝑐𝛾 and the desired assertion (37) follows

by setting 𝐾
1
(𝑝) = 𝐻(𝑝)/𝑐𝛾. It is easy to verify this result, if

max
𝑘∈𝑆
‖𝐶𝐵(𝑘)‖ = 0. We omit its proof here.

Define 𝑉(𝑥) = (𝑐𝑇𝑥)𝑝. By the generalized Itô formula, it
follows

𝑑𝑉 (𝑥 (𝑡)) = 𝐿𝑉 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝑝(𝑐
𝑇
𝑥 (𝑡))
𝑝−1

𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

(46)

where 𝐿𝑉 : 𝑅𝑛
+
× 𝑅
𝑛

+
× 𝑆 → 𝑅 is defined by

𝐿𝑉 (𝑥, 𝑦, 𝑘) = 𝑝(𝑐
𝑇
𝑥)
𝑝−1

𝑥
𝑇
𝐶 [𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦]

+
1

2
𝑝 (𝑝 − 1) (𝑐

𝑇
𝑥)
𝑝−2

(𝑥
𝑇
𝐶𝜎 (𝑘))

2

.

(47)

By Assumption 5 and Young’s inequality again,

𝐿𝑉 (𝑥, 𝑦, 𝑘)

≤ 𝑝|𝑐|
𝑝
|𝑏 (𝑘)| |𝑥|

𝑝
+
1

2
𝑝 (𝑝 − 1) |𝑐|

𝑝
|𝜎 (𝑘)|

2
|𝑥|
𝑝

+ 𝑝(𝑐
𝑇
𝑥)
𝑝−1

𝑥
𝑇
𝐶 (𝐴 (𝑘) 𝑥 + 𝐵 (𝑘)) 𝑦

≤ 𝑝|𝑐|
𝑝
|𝑏 (𝑘)| |𝑥|

𝑝
+
1

2
𝑝 (𝑝 − 1) |𝑐|

𝑝
|𝜎 (𝑘)|

2
|𝑥|
𝑝

+ 𝑝|𝑐|
𝑝−1

[− (𝜆 + 𝜂) |𝑥|
𝑝+1

+ 𝜂
𝑦

𝑝+1

] .

(48)

It is easy to compute

0 ≤ 𝐸𝑉 (𝑥 (0))

+ 𝐸∫

𝑡

0

[𝑝�̌�|𝑐|
𝑝
|𝑥 (𝑠)|

𝑝

+
1

2
𝑝
𝑝 − 1

 |𝑐|
𝑝
�̌�
2
|𝑥 (𝑠)|

𝑝

− 𝑝|𝑐|
𝑝−1

(𝜆 + 𝜂) |𝑥 (𝑠)|
𝑝+1

+𝑝|𝑐|
𝑝−1
𝜂|𝑥 (𝑠 − 𝜏)|

𝑝+1
] 𝑑𝑠.

(49)

Moreover,

∫

𝑡

0

|𝑥 (𝑠 − 𝜏)|
𝑝+1
𝑑𝑠 ≤ ∫

0

−𝜏

|𝑥 (𝑠)|
𝑝+1
𝑑𝑠 + ∫

𝑡

0

|𝑥 (𝑠)|
𝑝+1
𝑑𝑠, (50)

hence, we get

1

2
𝜆𝑝|𝑐|
𝑝−1
𝐸∫

𝑡

0

|𝑥 (𝑠)|
𝑝+1
𝑑𝑠

≤ 𝐸𝑉 (𝑥 (0))

+ 𝐸∫

𝑡

0

[𝑝|𝑐|
𝑝
�̌�|𝑥 (𝑠)|

𝑝

+
1

2
𝑝
𝑝 − 1

 |𝑐|
𝑝
�̌�
2
|𝑥 (𝑠)|

𝑝

− 𝑝(
𝜆

2
+ 𝜂) |𝑐|

𝑝−1
|𝑥 (𝑠)|

𝑝+1

+𝑝𝜂|𝑐|
𝑝−1
|𝑥 (𝑠 − 𝜏)|

𝑝+1
] 𝑑𝑠

≤ 𝐸𝑉 (𝑥 (0)) + 𝑝𝜂|𝑐|
𝑝−1

∫

0

−𝜏

|𝑥 (𝑠)|
𝑝+1
𝑑𝑠

+ 𝐸∫

𝑡

0

(𝑝|𝑐|
𝑝
�̌�|𝑥 (𝑠)|

𝑝
+
1

2
𝑝
𝑝 − 1

 |𝑐|
𝑝
�̌�
2
|𝑥 (𝑠)|

𝑝

−
1

2
𝑝𝜆|𝑐|
𝑝−1
|𝑥 (𝑠)|

𝑝+1
)𝑑𝑠

≤ 𝐸𝑉 (𝑥 (0)) + 𝑝𝜂|𝑐|
𝑝−1

× ∫

0

−𝜏

|𝑥 (𝑠)|
𝑝+1
𝑑𝑠 + 𝐻 (𝑝) 𝑡,

(51)
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where 𝐻(𝑝) = sup
𝑥∈𝑅
+

(𝑝|𝑐|
𝑝
�̌�|𝑥|
𝑝
+ (1/2)𝑝|𝑝 − 1||𝑐|

𝑝
�̌�
2

|𝑥(𝑠)|
𝑝
− (1/2)𝜆𝑝|𝑐|

𝑝−1
|𝑥|
𝑝+1
). This implies immediately that

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

|𝑥 (𝑠)|
𝑝+1
𝑑𝑠 ≤

2𝐻 (𝑝)

𝑝𝜆|𝑐|
𝑝−1

(52)

and the desired assertion (38) follows by setting 𝐾
2
(𝑝) =

2𝐻(𝑝)/𝑝𝜆|𝑐|
𝑝−1.

Remark 7. From (37) ofTheorem 6, there is a 𝑇 > 0 such that

𝐸|𝑥 (𝑡)|
𝑝
≤ 2𝐾
1
(𝑝) , ∀𝑡 ≥ 𝑇. (53)

Since 𝐸|𝑥(𝑡)|𝑝 is continuous, there is a𝐾
1
(𝑝, 𝑥
0
) such that

𝐸|𝑥 (𝑡)|
𝑝
≤ 𝐾
1
(𝑝, 𝑥
0
) for 𝑡 ∈ [0, 𝑇] . (54)

Let 𝐿(𝑝, 𝑥
0
) = max(2𝐾

1
(𝑝), 𝐾

1
(𝑝, 𝑥
0
)), we have

𝐸|𝑥 (𝑡)|
𝑝
≤ 𝐿 (𝑝, 𝑥

0
) , ∀𝑡 ∈ [0,∞) , (55)

which implies that the 𝑝th moment of any positive solution
of (4) is bounded.

Remark 8. Conclusion (38) of Theorem 6 shows that the
average in time of the 𝑝th (𝑝 > 1) moment of solutions of
(4) will be bounded.

Theorem 9. Solutions of (4) are stochastically ultimately
bounded under Assumption 5.

Proof. This can be easily verified by Chebyshev’s inequality
andTheorem 6.

4. Extinction

Assumption 10. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

|𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆


𝐶𝐵 (𝑘)


≤ 0,

(56)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
) and 𝑐 = min

1≤𝑖≤𝑛
𝑐
𝑖
.

Theorem 11. Under Assumption 10, for any given initial data
{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

+
), the solution 𝑥(𝑡) of (4)

has the properties that

lim sup
𝑡→∞

1

𝑡
log |𝑥 (𝑡)| ≤

𝑛

∑

𝑖=1

𝜋
𝑘
𝛽 (𝑘) a.s., (57)

where𝛽(𝑘) = �̌�(𝑘)−(1/2)�̂�2(𝑘). Particularly, if ∑𝑁
𝑘=1

𝜋
𝑘
𝛽(𝑘) <

0, then

lim sup
𝑡→∞

1

𝑡
log |𝑥 (𝑡)| < 0 a.s. (58)

That is, the population will become extinct exponentially with
probability 1.

Proof. ByTheorem 3, the solution 𝑥(𝑡) will remain in 𝑅𝑛
+
for

all 𝑡 ≥ −𝜏 with probability 1. Define

𝑉 (𝑥) = 𝑐
𝑇
𝑥 =

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑖

on 𝑥 ∈ 𝑅𝑛
+
, (59)

where 𝑐 = (𝑐
1
, . . . , 𝑐

𝑛
)
𝑇. Then

𝑑𝑉 (𝑥 (𝑡)) = 𝑥
𝑇
(𝑡) 𝐶 [(𝑏 (𝑟 (𝑡) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏))) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] .

(60)

By the generalized Itô formula,

𝑑 log𝑉 (𝑥 (𝑡))

=
1

𝑉 (𝑥 (𝑡))
𝑑𝑉 (𝑥 (𝑡)) −

1

2𝑉2 (𝑥 (𝑡))
(𝑑𝑉 (𝑥 (𝑡)))

2

=
1

𝑉 (𝑥 (𝑡))
𝑥
𝑇
(𝑡) 𝐶

× [(𝑏 (𝑟 (𝑡) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏))) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)]

−
1

2𝑉2 (𝑥 (𝑡))


𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡))



2

𝑑𝑡.

(61)

It is computed

𝑥
𝑇
(𝑡) 𝐶𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

𝑉 (𝑥 (𝑡))
+
𝑥
𝑇
(𝑡) 𝐶𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)

𝑉 (𝑥 (𝑡))

≤
𝑥
𝑇
(𝑡) (𝐶𝐴 (𝑟 (𝑡)) + 𝐴

𝑇
(𝑟 (𝑡)) 𝐶) 𝑥 (𝑡)

2𝑉 (𝑥 (𝑡))

+


𝐶𝐵 (𝑟 (𝑡))


|𝑥 (𝑡 − 𝜏)|

𝑐

≤ (|𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]}

+𝑐
−1max
𝑘∈𝑆

(

𝐶𝐵 (𝑘)


)) |𝑥 (𝑡)|

+ 𝑐
−1max
𝑘∈𝑆


𝐶𝐵 (𝑘)


(− |𝑥 (𝑡)| + |𝑥 (𝑡 − 𝜏)|) ,

(62)

𝑥
𝑇
(𝑡) 𝐶𝑏 (𝑟 (𝑡))

𝑉 (𝑥 (𝑡))
−


𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡))



2

2𝑉2 (𝑡)

≤ �̌� (𝑟 (𝑡)) −
1

2
�̂�
2
(𝑟 (𝑡)) = 𝛽 (𝑟 (𝑡)) .

(63)
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Substituting these two inequalities into (61) yields

log𝑉 (𝑥 (𝑡))

≤ log𝑉 (𝑥 (0)) + ∫
𝑡

0

𝛽 (𝑟 (𝑠)) 𝑑𝑠 + 𝑐
−1max
𝑘∈𝑆


𝐶𝐵 (𝑘)



× ∫

𝑡

0

[− |𝑥 (𝑠)| + |𝑥 (𝑠 − 𝜏)|] 𝑑𝑠 +𝑀 (𝑡)

≤ log𝑉 (𝑥 (0)) + 𝑐−1max
𝑘∈𝑆


𝐶𝐵 (𝑘)


∫

0

−𝜏

𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝛽 (𝑟 (𝑠)) 𝑑𝑠 + 𝑀 (𝑡) ,

(64)

where𝑀(𝑡) is a martingale defined by

𝑀(𝑡) = ∫

𝑡

0

𝑥
𝑇
(𝑠) 𝐶𝜎 (𝑟 (𝑠))

𝑉 (𝑥 (𝑠))
𝑑𝑤 (𝑡) . (65)

The quadratic variation of this martingale is

⟨𝑀,𝑀⟩
𝑡
= ∫

𝑡

0


𝑥
𝑇
(𝑠) 𝐶𝜎 (𝑟 (𝑠))



2

𝑉2 (𝑥 (𝑠))
𝑑𝑠 ≤ �̌�

2
𝑡, (66)

hence

lim sup
𝑡→∞

⟨𝑀,𝑀⟩𝑡

𝑡
≤ �̌�
2 a.s. (67)

Applying the strong law of large numbers for martingales
[29], we therefore have

lim
𝑡→∞

𝑀(𝑡)

𝑡
= 0 a.s. (68)

It finally follows from (64) by dividing 𝑡 on the both sides and
then letting 𝑡 → ∞ that

lim sup
𝑡→∞

log𝑉 (𝑥 (𝑡))
𝑡

≤ lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝛽 (𝑟 (𝑠)) 𝑑𝑠

=

𝑁

∑

𝑘=1

𝜋
𝑘
𝛽 (𝑘) a.s.,

(69)

which is the required assertion (57).

Similarly, we can prove the following conclusions.

Theorem 12. Assume that Assumption 10 holds. Assume
moreover that the noise intensities 𝜎(𝑖) are sufficiently large in
the sense that

𝜎
𝑖
(𝑘) 𝜎
𝑗
(𝑘) − 𝑏

𝑖
(𝑘) − 𝑏

𝑗
(𝑘) > 0,

1 ≤ 𝑖, 𝑗 ≤ 𝑛, for each 𝑘 ∈ 𝑆,
(70)

then for any given initial data {𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈

𝐶([−𝜏, 0]; 𝑅
𝑛

+
), the solution 𝑥(𝑡) of (4) has the properties that

lim sup
𝑡→∞

1

𝑡
log |𝑥 (𝑡)| ≤ −1

2

𝑁

∑

𝑘=1

𝜋
𝑘
𝜑 (𝑘) a.s., (71)

where

𝜑 (𝑘) = min
1≤𝑖,𝑗≤𝑛

(𝜎
𝑖
(𝑘) 𝜎
𝑗
(𝑘) − 𝑏

𝑖
(𝑘) − 𝑏

𝑗
(𝑘)) > 0. (72)

That is, the population will become extinct exponentially with
probability 1.

Proof. Let 𝑉 : 𝑅
𝑛

+
→ 𝑅

+
be the same as defined in the

proof of Theorem 11, so we have (60), (61), and (62). It is also
computed

𝑥
𝑇
(𝑡) 𝐶𝑏 (𝑟 (𝑡))

𝑉 (𝑥 (𝑡))
−


𝑥
𝑇
(𝑥 (𝑡)) 𝐶𝜎 (𝑟 (𝑡))



2

2𝑉2 (𝑥 (𝑡))

=
2𝑥
𝑇
(𝑡) 𝐶𝑏 (𝑟 (𝑡)) 𝑐

𝑇
𝑥 (𝑡)

2𝑉2 (𝑥 (𝑡))

−
𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝜎

𝑇
(𝑟 (𝑡)) 𝐶𝑥 (𝑡)

2𝑉2 (𝑥 (𝑡))

=
2𝑥
𝑇
(𝑡) 𝐶𝑏 (𝑟 (𝑡)) 1⃗𝐶𝑥 (𝑡)

2𝑉2 (𝑥 (𝑡))

−
𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝜎

𝑇
(𝑟 (𝑡)) 𝐶𝑥 (𝑡)

2𝑉2 (𝑥 (𝑡))

=
𝑥
𝑇
(𝑡) 𝐶𝑏 (𝑟 (𝑡)) 1⃗ + 1⃗

𝑇
𝑏
𝑇
(𝑟 (𝑡)) 𝐶𝑥 (𝑡)

2𝑉2 (𝑥 (𝑡))

−
𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝜎

𝑇
(𝑟 (𝑡)) 𝐶𝑥 (𝑡)

2𝑉2 (𝑥 (𝑡))

= −
𝑥
𝑇
(𝑡) 𝐶𝑄 (𝑟 (𝑡)) 𝐶𝑥 (𝑡)

2𝑉2 (𝑥 (𝑡))
,

(73)

where 1⃗ = (1, . . . , 1) and 𝑄(𝑘) = 𝜎(𝑘)𝜎
𝑇
(𝑘) − (𝑏(𝑘)1⃗ +

1⃗
𝑇
𝑏
𝑇
(𝑘)). Substituting (62) and (73) into (61) yields

log𝑉 (𝑥 (𝑡))

≤ log𝑉 (𝑥 (0)) − ∫
𝑡

0

𝑥
𝑇
(𝑠) 𝐶𝑄 (𝑟 (𝑠)) 𝐶𝑥 (𝑠)

2𝑉2 (𝑥 (𝑠))
𝑑𝑠

+ 𝑐
−1max
𝑘∈𝑆


𝐶𝐵 (𝑘)


∫

𝑡

0

[− |𝑥 (𝑠)| + |𝑥 (𝑠 − 𝜏)|] 𝑑𝑠 + 𝑀 (𝑡) .

(74)

Note that 𝜎
𝑖
(𝑘)𝜎
𝑗
(𝑘) − 𝑏

𝑖
(𝑘) − 𝑏

𝑗
(𝑘), the 𝑖𝑗th element of the

matrix 𝑄(𝑘) is positive by (70). It is therefore easy to verify

𝑥
𝑇
(𝑡) 𝐶𝑄 (𝑘) 𝐶𝑥 (𝑡) ≥ 𝜑 (𝑘)𝑉

2
(𝑥 (𝑡)) , (75)

where 𝜑(⋅) has been defined in the statement of the theorem.
Substituting this inequality into (74) yields

log𝑉 (𝑥 (𝑡))

≤ log𝑉 (𝑥 (0)) − ∫
𝑡

0

1

2
𝜑 (𝑘) 𝑑𝑠 + 𝑐

−1max
𝑘∈𝑆


𝐶𝐵 (𝑘)



× ∫

𝑡

0

(− |𝑥 (𝑠)| + |𝑥 (𝑠 − 𝜏)|) 𝑑𝑠 + 𝑀 (𝑡) .

(76)
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The rest of the proof is similar to that of Theorem 11 and
omitted.

5. Examples

In this section, an example and corresponding numerical
simulations are given to illustrate our main results.

Example 13. Consider the two-species Lotka-Volterra system
with regime switching described by

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , 𝑥
2
(𝑡))

× [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] ,

(77)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇, 𝑏(𝑟(𝑡)) = (𝑏

1
(𝑟(𝑡)), 𝑏

2
(𝑟(𝑡)))

𝑇,
𝜎(𝑟(𝑡)) = (𝜎

1
(𝑟(𝑡)), 𝜎

2
(𝑟(𝑡)))

𝑇,

𝐴 (𝑟 (𝑡)) = (
𝑎
11
(𝑟 (𝑡)) 𝑎

12
(𝑟 (𝑡))

𝑎
21
(𝑟 (𝑡)) 𝑎

22
(𝑟 (𝑡))

) ,

𝐵 (𝑟 (𝑡)) = (
𝑏
11
(𝑟 (𝑡)) 𝑏

12
(𝑟 (𝑡))

𝑏
21
(𝑟 (𝑡)) 𝑏

22
(𝑟 (𝑡))

)

(78)

and 𝑟(𝑡) is a right-contiuous Markov chain taking values in
𝑆 = {1, 2}, and 𝑟(𝑡) and 𝑤(𝑡) are independent. Here

𝑏
1
(1) = 5, 𝑎

11
(1) = −5, 𝑎

12
(1) = 3,

𝑏
11
(1) = 0, 𝑏

12
(1) =

1

2
, 𝜎

1
(1) = √2,

𝑏
2
(1) = 8, 𝑎

21
(1) = 3, 𝑎

22
(1) = −5,

𝑏
21
(1) = 1, 𝑏

22
(1) = 0, 𝜎

2
(1) = 2,

𝑏
1
(2) = 4, 𝑎

11
(2) = −3, 𝑎

12
(2) = 1,

𝑏
11
(2) = 0, 𝑏

12
(2) = 1, 𝜎

1
(2) = √14,

𝑏
2
(2) = 5, 𝑎

21
(2) = 1, 𝑎

22
(2) = −3,

𝑏
21
(2) =

1

2
, 𝑏

22
(2) = 0, 𝜎

2
(2) = 4.

(79)

Let 𝐶 = 𝐼 ∈ 𝑅2×2, the identity matrix. It is easy to compute

|𝑐| = √2, 𝑐 = 1, 𝛽 (1) = 7, 𝛽 (2) = −2,

max
𝑘∈𝑆

𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶)] ≤ −2,

max
𝑘∈𝑆


𝐶𝐵 (𝑘)


≤
√5

2
.

(80)

Then

|𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆


𝐶𝐵 (𝑘)


< 0.

(81)
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Figure 1

By Theorems 3 and 9, the solutions of (77) will remain in
𝑅
2

+
for all 𝑡 ≥ −𝜏 with probability 1 and are stochastically

ultimately bounded.
Let the generator of the Markov chain 𝑟(𝑡) be

Γ = (
−4 4

1 −1
) . (82)

By solving the linear equation 𝜋Γ = 0, we obtain the
unique stationary (probability) distribution 𝜋 = (𝜋

1
, 𝜋
2
) =

(1/5, 4/5). Then ∑2
𝑘=1

𝜋
𝑘
𝛽(𝑘) = −1/5 < 0. Therefore, by

Theorems 11, (77) is extinctive, shown in Figure 1.

In Figure 1, for numerical solutions of (77), step size Δ𝑡 =
0.001, delay 𝜏 = 1. Initial datum of (𝑥

1
(𝑡), 𝑥
2
(𝑡)) are random

numbers in [1, 200] × [1, 600]. Initial datum are not shown in
Figure 1.

6. Conclusion

This work is concerned with delay Lotka-Volterra model
under regime switching diffusion in random environment.
It should be pointed out that (77) is more difficult to handle
than (3) in [23]. Fortunately, the difficulties caused by delay
term are overcome by using Young’s inequality. The model in
[7] is similar to (4), while the coefficients in (4) are variedwith
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regime switching. Similar results are technically obtained by
making use of comparison principle.
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[5] V. Kolmanovskĭı and A. Myshkis, AppliedTheory of Functional-
Differential Equations, vol. 85, Kluwer Academic, Dordrecht,
The Netherlands, 1992.

[6] Y. Kuang, Delay Differential Equations with Applications in
Population Dynamics, vol. 191 of Mathematics in Science and
Engineering, Academic Press, Boston, MA, USA, 1993.

[7] A. Bahar and X. Mao, “Stochastic delay population dynamics,”
International Journal of Pure and Applied Mathematics, vol. 11,
no. 4, pp. 377–400, 2004.

[8] X. Mao, S. Sabanis, and E. Renshaw, “Asymptotic behaviour of
the stochastic Lotka-Volterra model,” Journal of Mathematical
Analysis and Applications, vol. 287, no. 1, pp. 141–156, 2003.

[9] X. Mao, G. Marion, and E. Renshaw, “Environmental Brownian
noise suppresses explosions in population dynamics,” Stochastic
Processes and their Applications, vol. 97, no. 1, pp. 95–110, 2002.

[10] D. Jiang and N. Shi, “A note on nonautonomous logistic
equation with random perturbation,” Journal of Mathematical
Analysis and Applications, vol. 303, no. 1, pp. 164–172, 2005.

[11] D. Jiang, N. Shi, and X. Li, “Global stability and stochas-
tic permanence of a non-autonomous logistic equation with
random perturbation,” Journal of Mathematical Analysis and
Applications, vol. 340, no. 1, pp. 588–597, 2008.

[12] T. C. Gard, Introduction to stochastic differential equations,
vol. 114 of Monographs and Textbooks in Pure and Applied
Mathematics, Marcel Dekker, New York, NY, USA, 1988.

[13] A. Bahar and X. Mao, “Stochastic delay Lotka-Volterra model,”
Journal of Mathematical Analysis and Applications, vol. 292, no.
2, pp. 364–380, 2004.

[14] X.Mao, “Delay population dynamics and environmental noise,”
Stochastics and Dynamics, vol. 5, no. 2, pp. 149–162, 2005.

[15] S. Pang, F.Deng, andX.Mao, “Asymptotic properties of stochas-
tic population dynamics,” Dynamics of Continuous, Discrete &
Impulsive Systems A, vol. 15, no. 5, pp. 603–620, 2008.

[16] H. Huang, Z.Wu, and L.Wang, “𝜓𝛾 stability analysis for neutral
stochastic neural networks withmultiple delays based on LMI
approach” (Chinese), Journal of Biomathmatics. In press.

[17] Z. Wu, H. Huang, and L. Wang, “Dynamical behavior of a
stochastic ratio-dependent predator-prey system,” Journal of
Applied Mathematics, Article ID 857134, 17 pages, 2012.

[18] Z. Wu, H. Huang, and L. Wang, “Exponential stability of
impulsive stochastic functional differential systems,” Abstract
and Applied Analysis, vol. 2012, Article ID 678536, 12 pages,
2012.

[19] Z.Wu, H. Huang, and L.Wang, “Stochastic delay logistic model
withMarkovian switching,” International Journal of Information
and Systems Science, vol. 8, no. 2, pp. 174–180, 2012.

[20] Z.Wu, H. Huang, and L.Wang, “Stochastic delay logistic model
under regime switching,” Abstract and Applied Analysis, vol.
2012, Article ID 241702, 26 pages, 2012.

[21] Y. Takeuchi, N. H. Du, N. T. Hieu, and K. Sato, “Evolution of
predator-prey systems described by a Lotka-Volterra equation
under random environment,” Journal of Mathematical Analysis
and Applications, vol. 323, no. 2, pp. 938–957, 2006.

[22] Q. Luo and X. Mao, “Stochastic population dynamics under
regime switching,” Journal of Mathematical Analysis and Appli-
cations, vol. 334, no. 1, pp. 69–84, 2007.

[23] X. Li, D. Jiang, and X. Mao, “Population dynamical behavior
of Lotka-Volterra system under regime switching,” Journal of
Computational and Applied Mathematics, vol. 232, no. 2, pp.
427–448, 2009.

[24] X. Li, A. Gray, D. Jiang, and X. Mao, “Sufficient and neces-
sary conditions of stochastic permanence and extinction for
stochastic logistic populations under regime switching,” Journal
ofMathematical Analysis and Applications, vol. 376, no. 1, pp. 11–
28, 2011.

[25] C. Zhu and G. Yin, “On hybrid competitive Lotka-Volterra
ecosystems,” Nonlinear Analysis. Theory, Methods & Applica-
tions, vol. 71, no. 12, pp. e1370–e1379, 2009.

[26] M. Liu and K.Wang, “Persistence and extinction of a stochastic
single-specie model under regime switching in a polluted
environment,” Journal of Theoretical Biology, vol. 264, no. 3, pp.
934–944, 2010.

[27] M. Liu and K.Wang, “Asymptotic properties and simulations of
a stochastic logistic model under regime switching,”Mathemat-
ical and Computer Modelling, vol. 54, no. 9-10, pp. 2139–2154,
2011.

[28] Z. Wu, H. Huang, and L. Wang, “Stochastic delay population
dynamics under regime switching-permanence and asymptotic
estimation,” Abstract and Applied Analysis. In press.

[29] X. Mao and C. Yuan, Stochastic Differential Equations with
Markovian Switching, Imperial College Press, London, UK,
2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


