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Double Laplace transform is applied to solve general linear telegraph and partial integrodifferential equations.The scheme is tested
through some examples, and the results demonstrate reliability and efficiency of the proposed method.

1. Introduction

The wave equation is known as one of three fundamental
equations in mathematical physics and occurs in many
branches of physics, applied mathematics, and engineering.
It is also known that there are two types of these equation:
the homogenous equation that has constant coefficient with
many classical solutions such as separation of variables [1], the
methods of characteristics [2, 3], single Laplace transform,
and Fourier transform [4] and nonhomogenous equations
with constant coefficient solved by double Laplace transform
[5] and operation calculus [6].

In this study, we use double Laplace transform to solve
telegraph equation and partial integrodifferential equation.
We follow the method that was proposed by Kılıçman and
Eltayeb [7] where they extended one-dimensional convolu-
tion theorem to two-dimensional case [8].

First of all, we recall the following definitions given by
Kılıçman and Gadain [9]. The double Laplace transform is
defined by

𝐿
𝑥
𝐿
𝑡
[𝑓 (𝑥, 𝑠)] = 𝐹 (𝑝, 𝑠) = ∫

∞

0

𝑒
−𝑝𝑥

∫

∞

0

𝑒
−𝑠𝑡

𝑓 (𝑥, 𝑡) 𝑑𝑡 𝑑𝑥,

where 𝑥, 𝑡 > 0 and 𝑝, 𝑠 are complex numbers,
(1)

and the first-order partial derivative is defined as follows:

𝐿
𝑥
𝐿
𝑡
[
𝜕𝑓 (𝑥, 𝑡)

𝜕𝑥
] = 𝑝𝐹 (𝑝, 𝑠) − 𝐹 (0, 𝑠) . (2)

Double Laplace transform for second partial derivative
with respect to 𝑥 is given by

𝐿
𝑥𝑥
[
𝜕
2

𝑓 (𝑥, 𝑡)

𝜕2𝑥
] = 𝑝

2

𝐹 (𝑝, 𝑠) − 𝑝𝐹 (0, 𝑠) −
𝜕𝐹 (0, 𝑠)

𝜕𝑥
, (3)

and double Laplace transform for second partial derivative
with respect to 𝑡 similarly as the previous is given by

𝐿
𝑡𝑡
[
𝜕
2

𝑓 (𝑥, 𝑡)

𝜕2𝑡
] = 𝑠
2

𝐹 (𝑝, 𝑠) − 𝑠𝐹 (𝑝, 0) −
𝜕𝐹 (𝑝, 0)

𝜕𝑡
. (4)

In a similar manner, the double Laplace transform of a
mixed partial derivative can be deduced from a single Laplace
transform as

𝐿
𝑥
𝐿
𝑡
[
𝜕
2

𝑓 (𝑥, 𝑡)

𝜕𝑥𝜕𝑡
]

= 𝑝𝑠𝐹 (𝑝, 𝑠) − 𝑝𝐹 (𝑝, 0) − 𝑠𝐹 (0, 𝑠) − 𝐹 (0, 0) .

(5)

Theorem 1. If at the point (𝑝, 𝑞) the integral

𝐹
1
(𝑝, 𝑞) = ∫

∞

0

∫

∞

0

𝑒
−𝑝𝑥−𝑞𝑦

𝑓
1
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (6)

is convergent and the integral

𝐹
2
(𝑝, 𝑞) = ∫

∞

0

∫

∞

0

𝑒
−𝑝𝑥−𝑞𝑦

𝑓
2
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (7)
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is absolutely convergent, then

𝐹 (𝑝, 𝑞) = 𝐹
1
(𝑝, 𝑞) 𝐹

2
(𝑝, 𝑞) (8)

is the Laplace transform of the function

𝑓 (𝑥, 𝑦) = ∫

𝑥

0

∫

𝑦

0

𝑓
1
(𝑥 − 𝜁, 𝑦 − 𝜂) 𝑓

2
(𝜁, 𝜂) 𝑑𝜁 𝑑𝜂 (9)

and the integral

𝐹 (𝑝, 𝑞) = ∫

∞

0

∫

∞

0

𝑒
−𝑝𝑥−𝑞𝑦

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (10)

is convergent at the point (𝑝, 𝑞).

Proof. See [4].

Next, we study the uniqueness and existences of double
Laplace transform. First of all, let 𝑓(𝑥, 𝑡) be a continuous
function on the interval [0,∞)which is of exponential order,
that is, for some 𝑎, 𝑏 ∈ R. Consider

sup
𝑡>0

𝑥>0

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

𝑒𝑎𝑥+𝑏𝑡
< ∞. (11)

In this case, the double Laplace transform of

𝐹 (𝑝, 𝑠) = ∫

∞

0

∫

∞

0

𝑒
−𝑠𝑡−𝑝𝑥

𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 (12)

exists for all 𝑝 > 𝑎 and 𝑠 > 𝑏 and is in fact infinitely
differentiable with respect to 𝑝 > 𝑎 and 𝑠 > 𝑏. All
functions in this study are assumed to be of exponential order.
The following theorem shows that 𝑓(𝑥, 𝑡) can be uniquely
recovered from 𝐹(𝑝, 𝑠).

Theorem 2. Let 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) be continuous functions
defined for𝑥, 𝑡 ≥ 0 and having Laplace transforms,𝐹(𝑝, 𝑠), and
𝐺(𝑝, 𝑠), respectively. If𝐹(𝑝, 𝑠) = 𝐺(𝑝, 𝑠), then𝑓(𝑥, 𝑡) = 𝑔(𝑥, 𝑡).

Proof. If 𝛼 and 𝛽 are sufficiently large, then the integral
representation, by

𝑓 (𝑥, 𝑡) =
1

2𝜋𝑖
∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

(
1

2𝜋𝑖
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝑒
𝑠𝑡

𝐹 (𝑝, 𝑠) 𝑑𝑠) 𝑑𝑝

(13)

for the double inverse Laplace transform, can be used to
obtain

𝑓 (𝑥, 𝑡) =
1

2𝜋𝑖
∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

(
1

2𝜋𝑖
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝑒
𝑠𝑡

𝐹 (𝑝, 𝑠) 𝑑𝑠) 𝑑𝑝

=
1

2𝜋𝑖
∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

(
1

2𝜋𝑖
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝑒
𝑠𝑡

𝐺 (𝑝, 𝑠) 𝑑𝑠) 𝑑𝑝

= 𝑔 (𝑥, 𝑡) ,

(14)

and the theorem is proven.

Theorem 3. A function 𝑓(𝑥, 𝑡) which is continuous on [0,∞)
and satisfies the growth condition (11) can be recovered from
𝐹(𝑝, 𝑠) as

𝑓 (𝑥, 𝑡) = lim
𝑚→∞

𝑛→∞

(−1)
𝑚+𝑛

𝑚!𝑛!
(
𝑚

𝑥
)

𝑚+1

(
𝑛

𝑡
)

𝑛+1

Ψ
𝑚+𝑛

(
𝑚

𝑥
,
𝑛

𝑡
) ,

(15)

where Ψ𝑚+𝑛 is denoted by (𝑚 + 𝑛)𝑡ℎ mixed partial derivatives
of 𝐹(𝑝, 𝑠), defined byΨ𝑚+𝑛 = 𝜕𝑚+𝑛𝐹(𝑝, 𝑠)/𝜕𝑝𝑚𝜕𝑠𝑛 for 𝑥, 𝑡 ≥ 0
since the previous theorem obtains 𝑓(𝑥, 𝑡) in terms of 𝐹(𝑝, 𝑠).

Of course, the main difficulty in using Theorem 3 for
computing the inverse Laplace transform is the repeated
symbolic differentiation of 𝐹(𝑝, 𝑠). However, one can apply
Theorem 3 in the next type of examples.

Example 4. Let 𝑓(𝑥, 𝑡) = 𝑒
−𝑎𝑥−𝑏𝑡. The Laplace transform is

easily found to be as follows:

𝐹 (𝑝, 𝑠) =
1

(𝑝 + 𝑎) (𝑠 + 𝑏)
. (16)

It is also simple to verify that

𝜕
𝑚+𝑛

𝐹 (𝑝, 𝑠)

𝜕𝑝𝑚𝜕𝑠𝑛
= 𝑚!𝑛!(−1)

𝑚+𝑛

(𝑝 + 𝑎)
−𝑚−1

(𝑠 + 𝑏)
−𝑛−1

. (17)

Putting this expression for 𝜕𝑚+𝑛𝐹(𝑝, 𝑠)/𝜕𝑝𝑚𝜕𝑠𝑛 into Theo-
rem 3 gives the following:

𝑓 (𝑥, 𝑡) = lim
𝑚→∞

𝑛→∞

𝑚
𝑚+1

𝑛
𝑛+1

𝑥𝑚+1𝑡𝑛+1
(𝑎 +

𝑚

𝑥
)

−𝑚−1

(𝑏 +
𝑛

𝑡
)

−𝑛−1

= lim
𝑚→∞

𝑛→∞

(1 +
𝑎𝑥

𝑚
)

−𝑚−1

(1 +
𝑏𝑡

𝑛
)

−𝑛−1

.

(18)

The last limit is easy to evaluate. Take the natural log of
both sides, and write the result in the form of −(ln(1 +
𝑎𝑥/𝑚)/(1/(𝑚+1)))−(ln(1+𝑏𝑡/𝑛)/(1/(𝑛+1))). L’Hopital’s rule
reveals that the indeterminate from approaches −𝑎𝑥−𝑏𝑡. The
continuity of the natural logarithm shows that ln(𝑓(𝑥, 𝑡)) =
−𝑎𝑥 − 𝑏𝑡; then, 𝑓(𝑥, 𝑡) = 𝑒−𝑎𝑥−𝑏𝑡.

2. Properties of Double Laplace Transform

In this part, we consider some of the properties of the
double Laplace Transform that will enable us to find further
transform pairs {𝑓(𝑥, 𝑡), 𝐹(𝑝, 𝑠)} without having to compute
consider the following.

(I) 𝐹 (𝑝 + 𝑑, 𝑠 + 𝑐) = 𝐿
𝑥
𝐿
𝑡
[𝑒
−𝑑𝑥−𝑐𝑡

𝑓 (𝑥, 𝑡)] (𝑝, 𝑠) ,

(II) 1
𝑘
𝐹(

𝑝

𝛼
,
𝑠

𝛽
) = 𝐿

𝑥
𝐿
𝑡
[𝑓 (𝛼𝑥, 𝛽𝑡)] (𝑝, 𝑠) ,

where 𝑘 = 𝛼𝛽,

(III)
𝜕
𝑚+𝑛

𝐹 (𝑝, 𝑠)

𝜕𝑝𝑚𝜕𝑛
= 𝐿
𝑥
𝐿
𝑡
[(−1)
𝑚+𝑛

𝑥
𝑚

𝑡
𝑛

𝑓 (𝑥, 𝑡)] (𝑝, 𝑠) .

(19)
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Was first verify (I) as

𝐿
𝑥
𝐿
𝑡
[𝑒
−𝑑𝑥−𝑐𝑡

𝑓 (𝑥, 𝑡)] (𝑝, 𝑠)

= ∫

∞

0

∫

∞

0

𝑒
−𝑠𝑡−𝑝𝑥

𝑒
−𝑑𝑥−𝑐𝑡

𝑓 (𝑥, 𝑡) 𝑑𝑡 𝑑𝑥

= ∫

∞

0

𝑒
−𝑑𝑥−𝑝𝑥

(∫

∞

0

𝑒
−𝑠𝑡−𝑐𝑡

𝑓 (𝑥, 𝑡) 𝑑𝑡) 𝑑𝑥.

(20)

We calculate the integral inside bracket as

∫

∞

0

𝑒
−𝑠𝑡−𝑐𝑡

𝑓 (𝑥, 𝑡) 𝑑𝑡 = 𝐹 (𝑥, 𝑠 + 𝑐) . (21)

By substituting, we obtain

𝐿
𝑥
𝐿
𝑡
[𝑒
−𝑑𝑥−𝑐𝑡

𝑓 (𝑥, 𝑡)] (𝑝, 𝑠) = ∫

∞

0

𝑒
−𝑑𝑥−𝑝𝑥

𝐹 (𝑥, 𝑠 + 𝑐) 𝑑𝑥

= 𝐹 (𝑝 + 𝑑, 𝑠 + 𝑐) .

(22)

Second, the right hand side of (II) can be written in the
form of

𝐿
𝑥
𝐿
𝑡
[𝑓 (𝛼𝑥, 𝛽𝑡)] (𝑝, 𝑠)

= ∫

∞

0

∫

∞

0

𝑒
−𝑠𝑡−𝑝𝑥

𝑓 (𝛼𝑥, 𝛽𝑡) 𝑑𝑥 𝑑𝑡

= ∫

∞

0

𝑒
−𝑠𝑡

(∫

∞

0

𝑒
−𝑝𝑥

𝑓 (𝛼𝑥, 𝛽𝑡) 𝑑𝑥)𝑑𝑡

= ∫

∞

0

𝑒
−𝑠𝑡
1

𝛼
𝐹(

𝑝

𝛼
, 𝛽𝑡) 𝑑𝑡 =

1

𝛼𝛽
𝐹(

𝑝

𝛼
,
𝑠

𝛽
) .

(23)

The last property, from definition of double Laplace
transform

𝐹 (𝑝, 𝑠) = ∫

∞

0

∫

∞

0

𝑒
−𝑠𝑡−𝑝𝑥

𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡, (24)

so that

𝜕
𝑚+𝑛

𝐹 (𝑝, 𝑠)

𝜕𝑝𝑚𝜕𝑠𝑛
=

𝜕
𝑚+𝑛

𝜕𝑝𝑚𝜕𝑠𝑛
∫

∞

0

∫

∞

0

𝑒
−𝑠𝑡−𝑝𝑥

𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡. (25)

Owing to the convergence properties of the improper
integral involved, we can interchange the operation of differ-
entiation and integration and differentiate with respect to 𝑝,
𝑠 under the integral sign. Thus,

𝜕
𝑚+𝑛

𝐹 (𝑝, 𝑠)

𝜕𝑝𝑚𝜕𝑠𝑛
= ∫

∞

0

𝜕
𝑛

𝜕𝑠𝑛
𝑒
−𝑠𝑡

(∫

∞

0

𝜕
𝑚

𝜕𝑝𝑚
𝑒
−𝑝𝑥

𝑓 (𝑥, 𝑡) 𝑑𝑥)𝑑𝑡,

(26)

which, on carrying out the repeated differentiation with
respect to 𝑝, 𝑠, gives the following:

𝜕
𝑚+𝑛

𝐹 (𝑝, 𝑠)

𝜕𝑝𝑚𝜕𝑠𝑛
= (−1)

𝑚+𝑛

∫

∞

0

∫

∞

0

𝑥
𝑚

𝑡
𝑛

𝑒
−𝑠𝑡−𝑝𝑥

𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= (−1)
𝑚+𝑛

𝐿
𝑥
𝐿
𝑡
[𝑥
𝑚

𝑡
𝑛

𝑓 (𝑥, 𝑡)] (𝑝, 𝑠) .

(27)

The previous three properties are very useful at the proof
of Theorem 3.

Proof of Theorem 3. Let us define the set of functions depend-
ing on parameters𝑚, 𝑛 as

𝑔
𝑚,𝑛
(𝑥, 𝑡) =

𝑚
𝑚+1

𝑛
𝑛+1

𝑚!𝑛!
𝑥
𝑚

𝑡
𝑛

𝑒
−𝑚𝑥−𝑛𝑡

so∫
∞

0

∫

∞

0

𝑔
𝑚,𝑛
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 1,

lim
𝑚→∞

lim
𝑛→∞

∫

∞

0

∫

∞

0

𝑔
𝑚,𝑛
(𝑥, 𝑡) 𝜑 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 𝜑 (1, 1) ,

(28)

where 𝜑(𝑥, 𝑡) is any continuous function. Let us denote its
Laplace transform as a function of 𝑝, 𝑠 by 𝐿

𝑥
𝐿
𝑡
[𝜑(𝑥, 𝑡)](𝑝, 𝑠).

Now, we define the function Ψ(𝑥, 𝑡) = 𝑓(𝑥𝑥
0
, 𝑡𝑡
0
), and using

property (II), we have

𝐿
𝑥
𝐿
𝑡
[Ψ (𝑥, 𝑡)] (𝑝, 𝑠)

= 𝐿
𝑥
𝐿
𝑡
[𝑓 (𝑥𝑥

0
, 𝑡𝑡
0
)] (𝑝, 𝑠) =

1

𝑥
0
𝑡
0

𝐹(
𝑝

𝑥
0

,
𝑠

𝑡
0

) .

(29)

We apply property (III) (wemust evaluate the𝑚+𝑛mixed
partial derivatives of 𝐹(𝑝, 𝑠) at the points 𝑝 = 𝑚/𝑥 and 𝑠 =
𝑛/𝑡) as follows:

𝜕
𝑚+𝑛

𝜕𝑝𝑚𝜕𝑠𝑛
(𝐿
𝑥
𝐿
𝑡
[Ψ (𝑥, 𝑡)]) (𝑝, 𝑠)

=
1

𝑥
𝑚+1

0
𝑡
𝑛+1

0

𝜕
𝑚+𝑛

𝜕𝑝𝑚𝜕𝑠𝑛
𝐹(

𝑝

𝑥
0

,
𝑠

𝑡
0

) .

(30)

Let 𝜑(𝑥, 𝑡) = 𝑒−𝑝𝑥−𝑠𝑡Ψ(𝑥, 𝑡). By using (28), we have

𝜑 (1, 1) = 𝑒
−𝑝−𝑠

Ψ (1, 1) = 𝑒
−𝑝−𝑠

𝑓 (𝑥
0
, 𝑡
0
)

= lim
𝑚→∞

lim
𝑛→∞

𝑚
𝑚+1

𝑛
𝑛+1

𝑚!𝑛!

× ∫

∞

0

∫

∞

0

𝑥
𝑚

𝑡
𝑛

𝑒
−𝑝𝑥−𝑠𝑡

𝑒
−𝑚𝑥−𝑛𝑡

Ψ (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

= lim
𝑚→∞

lim
𝑛→∞

𝑚
𝑚+1

𝑛
𝑛+1

𝑚!𝑛!

× 𝐿
𝑥
𝐿
𝑡
[𝑥
𝑚

𝑡
𝑛

𝑒
−𝑚𝑥−𝑛𝑡

Ψ (𝑥, 𝑡)] (𝑝, 𝑠) .

(31)

By using the previous properties (I) and (II) of double Laplace
transform, (30), and the definition of Ψ(𝑥, 𝑡), we have

𝐿
𝑥
𝐿
𝑡
[𝑥
𝑚

𝑡
𝑛

𝑒
−𝑚𝑥−𝑛𝑡

Ψ (𝑥, 𝑡)] (𝑝, 𝑠)

= (−1)
𝑚+𝑛

𝜕
𝑚+𝑛

𝜕𝑝𝑚𝜕𝑠𝑛
(𝐿
𝑥
𝐿
𝑡
(𝑒
−𝑚𝑥−𝑛𝑡

Ψ (𝑥, 𝑡))) (𝑝, 𝑠)

= (−1)
𝑚+𝑛

𝜕
𝑚+𝑛

𝜕𝑝𝑚𝜕𝑠𝑛
(𝐿
𝑥
𝐿
𝑡
(Ψ (𝑥, 𝑡))) (𝑝 + 𝑚, 𝑠 + 𝑛)

= (−1)
𝑚+𝑛

1

𝑧

𝜕
𝑚+𝑛

𝜕𝑝𝑚𝜕𝑠𝑛
(𝐿
𝑥
𝐿
𝑡
(𝑓 (𝑥𝑥

0
, 𝑡𝑡
0
))) (

𝑝 + 𝑚

𝑥
0

,
𝑠 + 𝑛

𝑡
0

)

= (−1)
𝑚+𝑛

1

𝑧

𝜕
𝑚+𝑛

𝜕𝑝𝑚𝜕𝑠𝑛
(𝐹(

𝑝 + 𝑚

𝑥
0

,
𝑠 + 𝑛

𝑡
0

)) ,

(32)
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where 1/𝑧 = 1/𝑥𝑚+1
0

𝑡
𝑛+1

0
. From (31) and (32), with 𝑓(𝑥

0
, 𝑡
0
) =

𝑒
𝑝+𝑠

𝜑(1, 1), we have

𝑓 (𝑥
0
, 𝑡
0
)

= 𝑒
𝑝+𝑠 lim
𝑚→∞

lim
𝑛→∞

(−1)
𝑚+𝑛

𝑚!𝑛!
(
𝑚

𝑥
0

)

𝑚+1

(
𝑛

𝑡
0

)

𝑛+1

×
𝜕
𝑚+𝑛

𝜕𝑝𝑚𝜕𝑠𝑛
(𝐹(

𝑝 + 𝑚

𝑥
0

,
𝑠 + 𝑛

𝑡
0

)) .

(33)

For any 𝑝, 𝑠 the statement in Theorem 3 is actually just the
special case for 𝑝 = 0 and 𝑠 = 0.

Example 5. Find double Laplace transform for a regular
generalized function

𝑓 (𝑥, 𝑡) = 𝐻 (𝑡) ⊗ 𝐻 (𝑥) ln (𝑡) ln (𝑥) , (34)

𝜕
2

𝜕𝑥𝜕𝑡
𝑓 (𝑥, 𝑡) =

𝜕
2

𝜕𝑥 𝜕𝑡
[𝐻 (𝑡) ⊗ 𝐻 (𝑥) ln (𝑡) ln (𝑥)]

= 𝑝𝑓 [
𝐻 (𝑡) ⊗ 𝐻 (𝑥)

𝑥𝑡
] ,

(35)

where 𝐻(𝑥, 𝑡) = 𝐻(𝑡) ⊗ 𝐻(𝑥) is a Heaviside function, and ⊗
is tensor product. The double Laplace transform with respect
to 𝑥, 𝑡 of (1) becomes

𝐿
𝑥
𝐿
𝑡
[𝑓 (𝑥, 𝑡)] = ∫

∞

0

𝑒
−𝑝𝑥 ln (𝑥) ∫

∞

0

𝑒
−𝑠𝑡 ln (𝑡) 𝑑𝑡 𝑑𝑥

= −
1

𝑠
∫

∞

0

𝑒
−𝑝𝑥 ln (𝑥) [𝛾 + ln 𝑠] 𝑑𝑥,

𝐿
𝑥
𝐿
𝑡
[𝑓 (𝑥, 𝑡)] =

1

𝑠𝑝
[𝛾
2

+ ln (𝑝) ln (𝑠)] ,

(36)

where 𝛾 is Euler’s constant [10]. Thus,

𝐿
𝑥
𝐿
𝑡
[𝑓 (𝑥, 𝑡)] =

1

𝑠𝑝
[𝛾
2

+ ln (𝑝) ln (𝑠)] , where 𝑅𝑒 > 0.

(37)

Double Laplace transform of (35) with respect to 𝑥 and 𝑡
is obtained as follows:

𝐿
𝑥
𝐿
𝑡
[
𝜕
2

𝜕𝑥 𝜕𝑡
𝑓 (𝑥, 𝑡)] = 𝐿

𝑥
𝐿
𝑡
[𝐻 (𝑡)𝐻 (𝑥) ln (𝑡) ln (𝑥)]

= 𝑝𝑠 [
1

𝑠𝑝
[𝛾
2

+ ln (𝑝) ln (𝑠)]]

= 𝛾
2

+ ln (𝑝) ln (𝑠) .
(38)

Definition 6. A linear continuous function over the space 𝐿 of
test functions is called a distribution of exponential growth.
This dual space of 𝐿 is denoted by 𝐿󸀠 [10].

Example 7. Let us find double laplace transform of the
function (𝑥𝛼 + 𝑡𝛽) = 𝐻(𝑥)⊗𝐻(𝑡)𝑥𝛼𝑡𝛽, where𝛼, 𝛽 ̸= −1, −2, . . .

Since (𝑥𝛼 + 𝑡𝛽) ∈ 𝐿
󸀠, then double laplace transform of the

function (𝑥𝛼 + 𝑡𝛽) = 𝐻(𝑥) ⊗ 𝐻(𝑡)𝑥𝛼𝑡𝛽 is given by

𝐿
𝑥
𝐿
𝑡
[(𝑥
𝛼

+ 𝑡
𝛽

)] = ∫

∞

0

𝑥
𝛼

𝑒
−𝑝𝑥

∫

∞

0

𝑡
𝛽

𝑒
−𝑠𝑡

𝑑𝑡 𝑑𝑥. (39)

Letting 𝑢 = 𝑝𝑥 and 𝑣 = 𝑠𝑡 for 𝑝, 𝑡 > 0, it follows that

𝐿
𝑥
𝐿
𝑡
[(𝑥
𝛼

+ 𝑡
𝛽

)] =
1

𝑝𝛼+1𝑠𝛽+1
∫

∞

0

𝑢
𝛼

𝑒
−𝑢

∫

∞

0

𝑣
𝛽

𝑒
−𝑣

𝑑𝑣 𝑑𝑢,

=
1

𝑝𝛼+1𝑠𝛽+1
Γ (𝛼 + 1) Γ (𝛽 + 1) .

(40)

In particular, if 𝛼, 𝛽 = 0, (40) becomes

𝐿
𝑥
𝐿
𝑡
[𝐻 (𝑥) ⊗ 𝐻 (𝑡)] = ∫

∞

0

𝑒
−𝑝𝑥

∫

∞

0

𝑒
−𝑠𝑡

𝑑𝑡 𝑑𝑥 =
1

𝑝𝑠
. (41)

Consider the general telegraph equation in the following
form:

𝑢
𝑥𝑥
= 𝑢
𝑡𝑡
+ 𝑢
𝑡
+ 𝑢 + 𝑓 (𝑥, 𝑡) , (42)

with boundary conditions

𝑢 (0, 𝑡) = 𝑓
1
(𝑡) , 𝑢

𝑥
(0, 𝑡) = 𝑓

2
(𝑡) , (43)

and initial conditions

𝑢 (𝑥, 0) = 𝑔
1
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑔

2
(𝑥) . (44)

We apply double Laplace transform for (42) and single
Laplace transform for (43) and (43). after taking double
inverse Laplace transform, we obtain the solution of (42) in
the form

𝑢 (𝑥, 𝑡) = 𝐿
−1

𝑝
𝐿
−1

𝑠
[
𝐹 (𝑝, 𝑠) + 𝑝𝐹

1
(𝑠) + 𝐹

2
(𝑠)

(𝑝2 − 𝑠2 − 𝑠 − 1)

−
𝑠𝐺
1
(𝑝) − 𝐺

2
(𝑝) − 𝐺

1
(𝑝)

(𝑝2 − 𝑠2 − 𝑠 − 1)
] .

(45)

Here, we assume that the double inverse Laplace trans-
form exists for each term in the right side of (45).

Example 8. Consider the homogeneous telegraph equation
given by

𝑢
𝑥𝑥
− 𝑢
𝑡𝑡
− 𝑢
𝑡
− 𝑢 = 0 (46)

with boundary conditions

𝑢 (0, 𝑡) = 𝑒
−𝑡

, 𝑢
𝑥
(0, 𝑡) = 𝑒

−𝑡

, (47)

and initial conditions

𝑢 (𝑥, 0) = 𝑒
𝑥

, 𝑢
𝑥
(𝑥, 0) = −𝑒

𝑥

. (48)
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Solution 1. By taking double Laplace transform for (46) and
single Laplace transform for (47) and (48), we have

𝑈 (𝑝, 𝑠) =

(𝑝
2

− 𝑠
2

− 𝑠 − 1)

(𝑠 + 1) (𝑝 − 1) (𝑝
2 − 𝑠2 − 𝑠 − 1)

=
1

(𝑠 + 1) (𝑝 − 1)
.

(49)

By using double inverse Laplace transform for (49), we get the
solution as follows:

𝑢 (𝑥, 𝑡) = 𝑒
𝑥−𝑡

. (50)

In the next example we apply double Laplace transform
for nonhomogenous telegraphic equation as follows.

Example 9. Consider the nonhomogenous telegraphic equa-
tion denoted by

𝑢
𝑥𝑥
− 𝑢
𝑡𝑡
− 𝑢
𝑡
− 𝑢 = −2𝑒

𝑥+𝑡 (51)

with boundary conditions

𝑢 (0, 𝑡) = 𝑒
𝑡

, 𝑢
𝑥
(0, 𝑡) = 𝑒

𝑡

, (52)

and initial conditions

𝑢 (𝑥, 0) = 𝑒
𝑥

, 𝑢
𝑥
(𝑥, 0) = 𝑒

𝑥

. (53)

By taking double Laplace transform for (51) and single
Laplace transform for (52) and (53), we have

𝑈(𝑝, 𝑠) =

(𝑝
2

− 𝑠
2

− 𝑠 − 1)

(𝑠 − 1) (𝑝 − 1) (𝑝
2 − 𝑠2 − 𝑠 − 1)

=
1

(𝑠 − 1) (𝑝 − 1)
.

(54)

By applying double inverse Laplace transform for (54), we get
the solution of (51) in the following form:

𝑢 (𝑥, 𝑡) = 𝑒
𝑥+𝑡

. (55)

3. An Application to Partial
Integrodifferential Equations

Consider the following partial integrodifferential equation:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+ 𝑢 + ∫

𝑥

0

∫

𝑡

0

𝑔 (𝑥 − 𝛼, 𝑡 − 𝛽) 𝑢 (𝛼, 𝛽) 𝑑𝛼 𝑑𝛽

= 𝑓 (𝑥, 𝑡) ,

(56)

with boundary conditions

𝑢 (0, 𝑡) = 𝑓
1
(𝑡) , 𝑢

𝑥
(0, 𝑡) = 𝑓

2
(𝑡) , (57)

and initial conditions

𝑢 (𝑥, 0) = 𝑔
1
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑔

2
(𝑥) . (58)

By taking double Laplace transform for (56) and single
Laplace transform for (57) and (58), we get

𝑈 (𝑝, 𝑠) =
𝑝/𝐺
1
(𝑝) + 1/𝐺

2
(𝑝)

(𝑝2 − 𝑠2 + 1 + 𝐺 (𝑝, 𝑠))

−
𝑝/𝐹
1
(𝑠) − 1/𝐹

2
(𝑠) + 𝐹 (𝑝, 𝑠)

(𝑝2 − 𝑠2 + 1 + 𝐺 (𝑝, 𝑠))
.

(59)

By applying double inverse Laplace transform for (59), we
obtain the solution of (56) in the following form:

𝑢 (𝑥, 𝑡) = 𝐿
−1

𝑝
𝐿
−1

𝑠
[
𝑝/𝐺
1
(𝑝) + 1/𝐺

2
(𝑝)

(𝑝2 − 𝑠2 + 1 + 𝐺 (𝑝, 𝑠))

−
𝑝/𝐹
1
(𝑠) − 1/𝐹

2
(𝑠) + 𝐹 (𝑝, 𝑠)

(𝑝2 − 𝑠2 + 1 + 𝐺 (𝑝, 𝑠))
] .

(60)

We provide the double inverse Laplace transform existing for
each terms in the right side of (60). In particular, consider the
following example.

Example 10. Consider the partial integro-differential equa-
tion

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+ 𝑢 + ∫

𝑥

0

∫

𝑡

0

𝑒
𝑥−𝛼+𝑡−𝛽

𝑢 (𝛼, 𝛽) 𝑑𝛼 𝑑𝛽 = 𝑒
𝑥+𝑡

+ 𝑥𝑡𝑒
𝑥+𝑡

(61)

with conditions
𝑢 (𝑥, 0) = 𝑒

𝑥

, 𝑢
𝑡
(𝑥, 0) = 𝑒

𝑥

,

𝑢 (0, 𝑡) = 𝑒
𝑡

, 𝑢
𝑥
(0, 𝑡) = 𝑒

𝑡

.

(62)

By taking double Laplace transform for (61) and single
Laplace transform for (62), we have

(𝑠
2

− 𝑝
2

+ 1 +
1

(𝑝 − 1) (𝑠 − 1)
)𝑈 (𝑝, 𝑠)

=
𝑠

𝑝 − 1
+

1

𝑝 − 1
−

𝑝

𝑠 − 1
−

1

𝑠 − 1

+
1

(𝑝 − 1) (𝑠 − 1)
+

1

(𝑝 − 1)
2

(𝑠 − 1)
2

.

(63)

By simplifying (63), we obtain

𝑈(𝑝, 𝑠) =
1

(𝑝 − 1) (𝑠 − 1)
. (64)

By using double inverse Laplace transform for (64), we obtain
the solution of (61) as follows:

𝑢 (𝑥, 𝑡) = 𝑒
𝑥+𝑡

. (65)
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