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Themain objective of this paper is to further investigate the exponential stability of a class of impulsive delay differential equations.
Several new criteria for the exponential stability are analytically established based on Razumikhin techniques. Some sufficient
conditions, under which a class of linear impulsive delay differential equations are exponentially stable, are also given. An Euler
method is applied to this kind of equations and it is shown that the exponential stability is preserved by the numerical process.

1. Introduction

Impulsive differential equations arise widely in the study of
medicine, biology, economics, engineering, and so forth. In
recent years, theory of impulsive differential delay equations
(IDDEs) has been an object of active research (see [1–18]
and references therein). The results about the existence and
uniqueness of IDDEs have been studied in [2, 7].The stability
of IDDEs has attracted increasing interest in both theoretical
research and practical applications (see [1, 3, 5–18] and
references therein). In particular, special attention has been
focused on exponential stability of IDDEs (see [1, 3, 8, 9, 15])
because it has played an important role in many areas.

There is a little work done on exponential stability for
IDDEs by the Lyapunov-Razumikhin method.Wang and Liu
[15] have extended Lyapunov-Razumikhin method to IDDEs
and established some exponential stability criteria. In this
paper we restrict the length of each impulsive interval instead
of some conditions in [15]. As a result, several new criteria on
exponential stability are analytically derived.

There are a few papers on numerical methods of impul-
sive differential equations. In [19], Covachev et al. obtained a
convergent difference approximation for a nonlinear impul-
sive ordinary system in a Banach space. In [20, 21], the
authors studied the stability of Runge-Kutta methods for
linear impulsive ordinary differential equations. In [4], Ding
et al. studied the convergence property of an Euler method
for IDDEs. In [18], asymptotic stability of numerical solutions

and exact solutions of a class of linear IDDEs was studied
by the property of DDEs without impulsive perturbations.
The convergence of the numerical methods for this kind of
equations was studied. In this paper, we study exponential
stability of the numerical solutions of linear IDDEs.

The rest of the paper is organized as follows. In Section 2,
we obtained two criteria on exponential stability for IDDEs
by the Lyapunov-Razumikhin method. The results obtained
are applied to a class of linear IDDEs. In the last section, we
prove that the Euler method for the linear IDDEs preserves
the analytic exponential stability.

2. Stability of Analytic Solutions

Consider the impulsive delay differential system

𝑥


(𝑡) = 𝑓 (𝑡, 𝑥
𝑡
) , 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) , 𝑘 = 1, 2, 3, . . . ,

Δ𝑥 (𝑡) = 𝐼
𝑘
(𝑡, 𝑥
𝑡
−) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, 3, . . . ,

(1)

where𝑓:𝑅
+
× PC([−𝜏, 0], 𝑅

𝑑
) → 𝑅

𝑑; 𝐼
𝑘
: PC([−𝜏, 0], 𝑅

𝑑
) →

𝑅
𝑑; 0 ≤ 𝑡

0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅, with 𝑡

𝑘
→ ∞ as 𝑘 →

∞; PC([−𝜏, 0], 𝑅
𝑑
) is a set of piecewise continuous functions

𝑔(𝑡) which have a finite number of points of discontinuity in
a finite interval and 𝑔(𝑡) = 𝑔(𝑡

+
) for all 𝑡. We assume that

𝑓(𝑡, 0) ≡ 0, 𝐼
𝑘
(𝑡, 0) ≡ 0, so that 𝑥 ≡ 0 is a solution of (1) as

𝑥
𝑡
0

= Φ ≡ 0, which we call the zero solution.
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Definition 1 (see [15]). A function 𝑉: 𝑅
+
× 𝑅
𝑑

→ 𝑅
+
is said

to belong to the class 𝑣
0
if

(i) 𝑉 is continuous in each of the sets [𝑡
𝑘−1

, 𝑡
𝑘
) × 𝑅
𝑑 and

for each 𝑥 ∈ 𝑅
𝑑, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
), lim
(𝑡,𝑦)→ (𝑡

−

𝑘

,𝑥)
𝑉(𝑡, 𝑦) =

𝑉(𝑡
−

𝑘
, 𝑥) exists, 𝑘 = 1, 2, . . .;

(ii) 𝑉(𝑡, 𝑥) is locally Lipschitzian in all 𝑥 ∈ 𝑅
𝑑, and for all

𝑡 ≥ 𝑡
0
, 𝑉(𝑡, 0) ≡ 0.

Definition 2 (see [15]). Given a function 𝑉: 𝑅
+
× 𝑅
𝑑

→ 𝑅
+
,

the upper right-hand derivative of 𝑉 with respect to system
(1) is defined by

𝐷
+
𝑉 (𝑡, Ψ(0))

= lim sup
ℎ→0

+

1

ℎ

[𝑉 (𝑡 + ℎ, Ψ (0) + ℎ𝑓 (𝑡, Ψ)) − 𝑉 (𝑡, Ψ (0))] ,

(2)

for (𝑡, Ψ) ∈ 𝑅
+
× PC([−𝜏, 0], 𝑅

𝑑
).

Definition 3 (see [15]). The zero solution of (1) is said to be
exponentially stable, if there exist constants 𝜆 > 0 and𝑀 ≥ 1,
such that for any initial data 𝑥

𝑡
0

= Φ ∈ PC([−𝜏, 0], 𝑅
𝑑
),





𝑥 (𝑡, 𝑡
0
, Φ)





≤ 𝑀‖Φ‖

𝜏
𝑒
−𝜆(𝑡−𝑡

0

)
, 𝑡 ≥ 𝑡

0
. (3)

Theorem 4. Assume that there exist a function 𝑉 ∈ 𝑣
0
;

constants 𝑑
𝑘
> −1, 𝑘 = 1, 2, . . .; positive constants 𝐶

1
, 𝐶
2
, 𝜆, 𝑙
1
;

and a function𝑚(𝑡) ∈ 𝑃𝐶([𝑡
0
−𝜏,∞), 𝑅

+
)with inf

𝑡≥𝑡
0

−𝜏
𝑚(𝑡) ≥

𝜆, such that for any Ψ(𝑡) ∈ 𝑃𝐶([−𝜏, 0], 𝑅
𝑑
) with Ψ(0

−
) = Ψ(0)

the following conditions hold:

(i) 𝐶
1
‖𝑥‖ ≤ 𝑉(𝑡, 𝑥) ≤ 𝐶

2
‖𝑥‖ for all 𝑡 ∈ 𝑅

+
, 𝑥 ∈ 𝑅

𝑑;
(ii) 𝐷

+
𝑉(𝑡, Ψ(0)) ≤ −𝑚(𝑡)𝑉(𝑡, Ψ(0)) for all 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

),
whenever𝑉(𝑡, Ψ(0)) ≥ 𝑉(𝑡+𝑠, Ψ(𝑠))𝑒

−∫
𝑡

𝑡−𝜏

𝑚(𝑠)𝑑𝑠 for 𝑠 ∈

[−𝜏, 0];
(iii) 𝑉(𝑡

𝑘
, Ψ(0) + 𝐼

𝑘
(𝑡
𝑘
, Ψ(0))) ≤ (1 + 𝑑

𝑘
)𝑉(𝑡
−

𝑘
, Ψ(0)) for

𝑘 = 1, 2, . . .;
(iv) 𝑡
𝑘
− 𝑡
𝑘−1

≥ 𝑙
1
for 𝑘 = 1, 2, . . ., and −𝜆𝑙

1
+ ln𝐻

1
< 0,

where𝐻
1
= sup

𝑘
{1 + 𝑑

𝑘
}.

Then the zero solution of (1) is exponentially stable.

Proof. Similar to the proof of Theorem 3.1 in [15], we obtain
that

𝑉 (𝑡, 𝑥) ≤ 𝐶
2

𝑘

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
−∫
𝑡

𝑡

0

𝑚(𝑠)𝑑𝑠

,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 1, 2, . . . .

(4)

Since −𝜆𝑙
1
+ ln𝐻

1
< 0, there exists 𝛼 such that 0 < 𝛼 < 𝜆 and

−(𝜆 − 𝛼)𝑙
1
+ ln𝐻

1
< 0. So

𝐶
1
‖𝑥‖ ≤ 𝑉 (𝑡, 𝑥) ≤ 𝐶

2
𝐻
𝑘

1
‖Φ‖
𝜏
𝑒
−𝜆(𝑡−𝑡

0

)

≤ 𝐶
2
‖Φ‖
𝜏
𝑒
−𝜆(𝑡−𝑡

0

)+𝑘 ln𝐻
1

< 𝐶
2
‖Φ‖
𝜏
𝑒
−𝜆(𝑡−𝑡

0

)+(𝜆−𝛼)𝑘𝑙
1

≤ 𝐶
2
‖Φ‖
𝜏
𝑒
−𝛼(𝑡−𝑡

0

)
.

(5)

Hence the zero solution of (1) is exponentially stable.

Remark 5. Theorem 3.1 in [15] requires that 𝑑
𝑖

≥ 0, and
∑
∞

𝑖=0
𝑑
𝑖

< ∞, which implies lim
𝑘→∞

𝑑
𝑘

= 0. In our
Theorem 4, we require 𝑡

𝑘
− 𝑡
𝑘−1

≥ 𝑙
1
for 𝑘 = 1, 2, . . .,

and sup
𝑘
{1 + 𝑑

𝑘
} < 𝑒

𝜆𝑙
1 instead. This means that the

impulsive effects are bounded instead of tending to zero (see
Example 13).

Theorem 6. Assume that there exist a function 𝑉 ∈ 𝑣
0
;

constants 𝑑
𝑘

∈ (−1, 0), 𝑘 = 1, 2, . . .; positive constants 𝑙
1
, 𝑙
2
,

𝐶
1
, 𝐶
2
, 𝜆; and a function 𝑚(𝑡) ∈ PC([𝑡

0
− 𝜏,∞), 𝑅

+
) with

sup
𝑡≥𝑡
0

−𝜏
𝑚(𝑡) ≤ 𝜆, such that for any Ψ(𝑡) ∈ PC([−𝜏, 0], 𝑅

𝑑
)

with Ψ(0
−
) = Ψ(0), the following conditions hold:

(i) 𝐶
1
‖𝑥‖ ≤ 𝑉(𝑡, 𝑥) ≤ 𝐶

2
‖𝑥‖ for all 𝑡 ∈ 𝑅

+
, 𝑥 ∈ 𝑅

𝑑;

(ii) 𝐷
+
𝑉(𝑡, Ψ(0)) ≤ 𝑚(𝑡)𝑉(𝑡, Ψ(0)) for all 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

),
𝑘 = 1, 2, . . ., whenever 𝑉(𝑡, Ψ(0)) ≥ 𝛾𝑉(𝑡 + 𝑠, Ψ(𝑠))

for 𝑠 ∈ [−𝜏, 0], where 𝛾 is a constant and 0 < 𝛾 <

𝐻
𝑞

2
, 𝐻
2

= inf
𝑘
{1 + 𝑑

𝑘
} and 𝑞 is the smallest integer

larger than or equal to 𝜏/𝑙
1
;

(iii) 𝑉(𝑡
𝑘
, Ψ(0) + 𝐼

𝑘
(𝑡
𝑘
, Ψ)) ≤ (1 + 𝑑

𝑘
)𝑉(𝑡
−

𝑘
, Ψ(0)), 𝑘 =

1, 2, . . .;

(iv) 𝑙
1
≤ 𝑡
𝑘
− 𝑡
𝑘−1

≤ 𝑙
2
for 𝑘 = 1, 2, . . ., and 0 < 𝐻

2
≤ 𝐻
1
<

𝑒
−𝜆𝑙
2 , where 𝐻

1
= sup

𝑘
{1 + 𝑑

𝑘
}, 𝐻
2
= inf
𝑘
{1 + 𝑑

𝑘
}.

Then the zero solution of (1) is exponentially stable.

Proof. Let 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, Φ) be the solution of system (1) and

𝑉(𝑡) = 𝑉(𝑡, 𝑥(𝑡)). We will prove

𝑉 (𝑡) ≤ 𝐶
2

𝑘

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
∫
𝑡

𝑡

0

𝑚(𝑠)𝑑𝑠

,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 1, 2, . . . .

(6)

Let

𝑄 (𝑡) =

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝑉 (𝑡) − 𝐶
2

𝑘

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
∫
𝑡

𝑡

0

𝑚(𝑠)𝑑𝑠

,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 1, 2, . . . ,

𝑉 (𝑡) − 𝐶
2
‖Φ‖
𝜏
𝑒
∫
𝑡

𝑡

0

𝑚(𝑠)𝑑𝑠

, 𝑡 ∈ [𝑡
0
, 𝑡
1
) ,

𝑉 (𝑡) − 𝐶
2
‖Φ‖
𝜏
, 𝑡 ∈ [𝑡

0
− 𝜏, 𝑡
0
] .

(7)

We need to show that 𝑄(𝑡) ≤ 0 for all 𝑡 ≥ 𝑡
0
. It is clear that

𝑄(𝑡) ≤ 0 for 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
], since 𝑄(𝑡) = 𝑉(𝑡) − 𝐶

2
‖Φ‖
𝜏
≤ 0

by condition (i).
Next we shall show 𝑄(𝑡) ≤ 0, for 𝑡 ∈ [𝑡

0
, 𝑡
1
). Suppose

this is not true. Then there is a 𝑡
∗ such that 𝑡

∗
≤ inf{𝑡 ∈

[𝑡
0
, 𝑡
1
), 𝑄(𝑡) > 0}, 𝑄(𝑡

∗
) ≤ 0, 𝑄(𝑡

∗
) ≥ (𝛾 − 1)𝐶

2
‖Φ‖
𝜏
, and

𝐷
+
𝑄 (𝑡
∗
) > 0. (8)
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Note that 𝑉(𝑡
∗
) = 𝑄(𝑡

∗
) + 𝐶

2
‖Φ‖
𝜏
𝑒
∫
𝑡

∗

𝑡

0

𝑚(𝜎)𝑑𝜎. Then 𝑉(𝑡
∗
+

𝑠) ≤ 𝐶
2
‖Φ‖
𝜏
𝑒
∫
𝑡

∗

𝑡

0

𝑚(𝜎)𝑑𝜎

≤ 𝛾
−1
(𝑄(𝑡
∗
) + 𝐶
2
‖Φ‖
𝜏
𝑒
∫
𝑡

∗

𝑡

0

𝑚(𝜎)𝑑𝜎

) =

𝛾
−1
𝑉(𝑡
∗
) for 𝑠 ∈ [−𝜏, 0]. By condition (ii), 𝐷

+
𝑉(𝑡
∗
) ≤

𝑚(𝑡
∗
)𝑉(𝑡
∗
). So

𝐷
+
𝑄 (𝑡
∗
) = 𝐷

+
𝑉 (𝑡
∗
) − 𝑚 (𝑡

∗
) 𝐶
2
‖Φ‖
𝜏
𝑒
∫
𝑡

∗

𝑡

0

𝑚(𝑠)𝑑𝑠

≤ 𝑚 (𝑡
∗
) (𝑉 (𝑡

∗
) − 𝐶
2
‖Φ‖
𝜏
𝑒
∫
𝑡

∗

𝑡

0

𝑚(𝑠)𝑑𝑠

)

= 𝑚 (𝑡
∗
) 𝑄 (𝑡
∗
)

= 0,

(9)

which contradicts (8). Hence 𝑄(𝑡) ≤ 0, for all 𝑡 ∈ [𝑡
0
, 𝑡
1
).

Assume that 𝑄(𝑡) ≤ 0, for 𝑡 ∈ [𝑡
0
, 𝑡
𝑚
), 𝑚 ≥ 1. We shall

show that𝑄(𝑡) ≤ 0, for 𝑡 ∈ [𝑡
0
, 𝑡
𝑚+1

). Obviously, by condition
(iii)

𝑄 (𝑡
𝑚
) = 𝑉 (𝑡

𝑚
) − 𝐶
2

𝑚

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
∫
𝑡

𝑚

𝑡

0

𝑚(𝑠)𝑑𝑠

≤ (1 + 𝑑
𝑚
) 𝑉 (𝑡
−

𝑚
) − 𝐶
2

𝑚

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
∫
𝑡

𝑚

𝑡

0

𝑚(𝑠)𝑑𝑠

= (1 + 𝑑
𝑚
) 𝑄 (𝑡
−

𝑚
)

≤ 0.

(10)

Suppose that there exists a 𝑡 such that 𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

) and
𝑄(𝑡) > 0. There is a 𝑡

∗ such that 𝑡
∗

≤ inf{𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚

+

1), 𝑄(𝑡) > 0}, 𝑄(𝑡
∗
) ≤ 0, 𝑄(𝑡

∗
) ≥ (𝛾𝐻

−𝑞

2
− 1)𝐶

2
∏
𝑚

𝑖=1
(1 +

𝑑
𝑖
)‖Φ‖
𝜏
, and

𝐷
+
𝑄 (𝑡
∗
) > 0. (11)

Since 𝑉(𝑡
∗
) = 𝑄(𝑡

∗
) + 𝐶
2
∏
𝑚

𝑖=1
(1 + 𝑑

𝑖
)‖Φ‖
𝜏
𝑒
∫
𝑡

∗

𝑡

0

𝑚(𝑠)𝑑𝑠, then
for any 𝑠 ∈ [−𝜏, 0], we have

𝑉 (𝑡
∗
+ 𝑠) ≤ 𝑄 (𝑡

∗
+ 𝑠) + 𝐶

2

𝑚−𝑞

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
∫
𝑡

∗

+𝑠

𝑡

0

𝑚(𝜎)𝑑𝜎

≤ 𝐻
−𝑞

2
𝐶
2

𝑚

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
∫
𝑡

∗

𝑡

0

𝑚(𝜎)𝑑𝜎

≤ 𝛾
−1

(𝑄 (𝑡
∗
) + 𝐶
2

𝑚

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
∫
𝑡

∗

𝑡

0

𝑚(𝜎)𝑑𝜎

)

≤ 𝛾
−1
𝑉 (𝑡
∗
) .

(12)

Thus by condition (ii),𝐷+𝑉(𝑡
∗
) ≤ 𝑚(𝑡

∗
)𝑉(𝑡
∗
), then

𝐷
+
𝑄 (𝑡
∗
) = 𝐷

+
𝑉 (𝑡
∗
) + 𝑚 (𝑡

∗
) 𝐶
2

𝑚

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
∫
𝑡

∗

𝑡

0

𝑚(𝑠)𝑑𝑠

≤ 𝑚 (𝑡
∗
)(𝑉 (𝑡

∗
) − 𝐶
2

𝑚

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
∫
𝑡

∗

𝑡

0

𝑚(𝑠)𝑑𝑠

)

= 𝑚 (𝑡
∗
) 𝑄 (𝑡
∗
)

= 0,

(13)

which contradicts (11). Hence 𝑄(𝑡) ≤ 0 for all 𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

).
By induction, 𝑄(𝑡) ≤ 0 for all 𝑡 ≥ 𝑡

0
. In view of 𝑚(𝑡) ≤ 𝜆 for

all 𝑡 ≥ 𝑡
0
− 𝜏, we obtain

𝑉 (𝑡) ≤ 𝐶
2

𝑘

∏

𝑖=1

(1 + 𝑑
𝑖
) ‖Φ‖
𝜏
𝑒
∫
𝑡

𝑡

0

𝑚(𝑠)𝑑𝑠

≤ 𝐶
2
‖Φ‖
𝜏
𝐻
𝑘

1
𝑒
∫
𝑡

𝑡

0

𝑚(𝑠)𝑑𝑠

≤ 𝐶
2
𝐻
𝑘

1
‖Φ‖
𝜏
𝑒
𝜆(𝑡−𝑡
0

)
,

(14)

for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 1, 2, . . .. Since 𝐻
1
< 𝑒
−𝜆𝑙
2 , there exists 𝛼

such that 0 < 𝛼 < 𝜆 and 𝜆𝑙
2
+ ln𝐻

2
< −𝛼𝑙

2
. By condition (i)

𝐶
1
‖𝑥‖ ≤ 𝑉 (𝑡, 𝑥)

≤ 𝐶
2
𝐻
𝑘

1
‖Φ‖
𝜏
𝑒
𝜆(𝑡−𝑡
0

)
≤ 𝐶
2
‖Φ‖
𝜏
𝑒
𝜆(𝑡−𝑡
0

)+𝑘 ln𝐻
1

≤ 𝐶
2
‖Φ‖
𝜏
𝑒
𝜆(𝑡−𝑡
0

)−(𝜆+𝛼)𝑘𝑙
2

≤ 𝑀‖Φ‖
𝜏
𝑒
−𝛼(𝑡−𝑡

0

)
,

(15)

where 𝑀 = 𝐶
2
𝑒
(𝜆+𝛼)𝑙

2 . Hence the zero solution of (1) is
exponentially stable.

Remark 7. Theorem 6 says that the delay differential equation
is unstable and the suitable impulse effects are given, then
it will become stable (see Example 14). Compared with the
Theorem 3.1 in [16], we do not require that 𝜏 ≤ 𝑡

𝑘
− 𝑡
𝑘−1

. For
example, byTheorem 6 we know that the zero solution of the
following system is exponentially stable:

𝑥


(𝑡) =

1

2

𝑥 (𝑡) +

1

8

𝑥 (𝑡 − 1) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑡
𝑘
=

𝑘

2

, 𝑘 = 1, 2, . . . ,

𝑥 (𝑡
𝑘
) =

1

3

𝑥 (𝑡
−

𝑘
) , 𝑡

𝑘
=

𝑘

2

, 𝑘 = 1, 2, . . . .

(16)

In the following we consider

𝑥


(𝑡) = 𝑎𝑥 (𝑡) + 𝑏𝑥 (𝑡 − 𝜏) ,

𝑡 ≥ 0, 𝑡 ∈ [(𝑘 − 1) 𝜏, 𝑘𝜏) 𝑘 = 1, 2, . . . ,

𝑥 (𝑡
𝑘
) = (1 + 𝑐

𝑘
) 𝑥 (𝑡
−

𝑘
) , 𝑡

𝑘
= 𝑘𝜏, 𝑘 = 1, 2, . . . ,

(17)

where 𝜏 > 0, and 𝑑
𝑘
, 𝑎, 𝑏 ∈ 𝑅 are constants.
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Theorem 8. Assume that 𝑐
𝑘

̸= − 1, 𝑘 = 1, 2, . . ., and there is a
constant 𝜆 > 0 such that 𝑎 + |𝑏|𝑒

𝜆𝜏
≤ −𝜆 and 0 < 𝐻

1
< 𝑒
𝜆𝜏,

where 𝐻
1

= sup
𝑘
{|1 + 𝑐

𝑘
|}. Then the zero solution of (17) is

exponentially stable.

Proof. Assume that 𝑉(𝑥) = 𝑉(𝑡, 𝑥) = |𝑥|.

(i) Obviously, there exist 𝐶
1
= 𝐶
2
= 1, such that 𝐶

1
|𝑥| ≤

𝑉(𝑥) ≤ 𝐶
2
|𝑥|.

(ii) Assume that 𝑚(𝑡) = 𝜆 for all 𝑡 ≥ −𝜏. For any Ψ ∈

PC([−𝜏, 0], 𝑅), if

𝑉 (𝑡, Ψ (0)) ≥ 𝑉 (𝑡 + 𝑠, Ψ (𝑠)) 𝑒
−∫
𝑡

𝑡−𝜏

𝑚(𝑠)𝑑𝑠

= 𝑉 (𝑡 + 𝑠, Ψ (𝑠)) 𝑒
−𝜆𝜏

,

(18)

we have |Ψ(−𝜏)| ≤ 𝑒
𝜆𝜏
|Ψ(0)|. For 𝑠 ∈ [−𝜏, 0], we have

𝐷
+
𝑉 (𝑡, Ψ (0)) ≤ 𝑎 |Ψ (0)| + |𝑏| |Ψ (−𝜏)|

≤ 𝑎 |Ψ (0)| + |𝑏| 𝑒
𝜆𝜏

|Ψ (0)|

= (𝑎 + |𝑏| 𝑒
𝜆𝜏
) |Ψ (0)|

≤ − 𝜆 |Ψ (0)|

= − 𝑚 (𝑡) 𝑉 (𝑡, Ψ (0)) .

(19)

(iii) Suppose that 1 + 𝑑
𝑘
= |(1 + 𝑐

𝑘
)|. Hence

𝑉 (𝑥 (𝑡
𝑘
)) =





𝑥 (𝑡
𝑘
)




=





(1 + 𝑐
𝑘
)









𝑥 (𝑡
−

𝑘
)





= (1 + 𝑑
𝑘
)




𝑥 (𝑡
−

𝑘
)




= (1 + 𝑑

𝑘
) 𝑉 (𝑥 (𝑡

−

𝑘
)) .

(20)

(iv) Obviously, 𝑙
1
= 𝜏 = 𝑡

𝑘
− 𝑡
𝑘−1

and −𝜆𝑙
1
+ ln𝐻

1
< 0.

ByTheorem 4, the zero solution of (11) is exponentially stable.

Similarly, by Theorem 6 we have the following theorem.

Theorem 9. Assume that 0 < |1 + 𝑐
𝑘
| < 1, 𝑘 = 1, 2, . . ., and

there are constants𝜆 and 𝛾 such that𝜆 > 0, 0 < 𝛾 < 𝐻
2
≤ 𝐻
1
<

𝑒
−𝜆𝜏, and 𝑎 + |𝑏|𝛾

−1
≤ 𝜆, where 𝐻

1
= sup

𝑘
{|1 + 𝑐

𝑘
|}, 𝐻
2

=

inf
𝑘
{|1 + 𝑐

𝑘
|}. Then the zero solution of (17) is exponentially

stable.

3. The Euler Method for Linear IDDEs

In this section, we consider the exponential stability of the
Euler method for (17). The convergence property can be
proved similarly to [4]. The Euler method for (17) with initial
functionΦ ∈ PC([−𝜏, 0], 𝑅) is given by

𝑥
𝑘, 𝑙+1

= 𝑥
𝑘, 𝑙

+ ℎ𝑎𝑥
𝑘, 𝑙

+ ℎ𝑏𝑥
𝑘−1, 𝑙

,

𝑙 = 0, 1, . . . , 𝑚 − 1, 𝑘 = 0, 1, . . . ,

𝑥
(𝑘+1), 0

= (1 + 𝑐
𝑘+1

) 𝑥
𝑘,𝑚

, 𝑘 = 0, 1, 2, . . . ,

𝑥
−1, 𝑙

= Φ (−𝜏 + 𝑙ℎ) ,

(21)

where ℎ = 𝜏/𝑚. Let 𝑛 = 𝑘𝑚 + 𝑙, then 𝑥
𝑛

= 𝑥
𝑘𝑚+𝑙

= 𝑥
𝑘,𝑙

is
an approximation for the exact solution 𝑥((𝑘𝑚 + 𝑙)ℎ) for 𝑘 =

0, 1, 2, . . . , 𝑙 = 0, 1, 2, . . . , 𝑚−1, and 𝑥
𝑘,𝑚

is an approximation
for 𝑥((𝑘 + 1)𝜏

−
).

Definition 10. TheEulermethod for (11) is said to be exponen-
tially stable if there exist positive constants 𝜆, 𝑀, and 𝑀

1
,

for anyΦ ∈ PC([−𝜏, 0], 𝑅), such that ‖𝑥
𝑛
‖ ≤ 𝑀‖Φ‖

𝜏
𝑒
−𝑛𝜆ℎ for

ℎ = 𝜏/𝑚,𝑚 ≥ 𝑀
1
, and 𝑛 = 1, 2, . . ..

The following theorem indicates that the Euler method
preserves the property of exact solutions which was obtained
above.

Theorem 11. Under the conditions of Theorem 8, the Euler
method for (17) is exponentially stable.

Proof. If 𝑎 < 0, then 𝑀
1

= −𝑎𝜏. (i) If 𝐻
1

> 1, we want to
prove that





𝑥
𝑘,𝑙





≤ ‖Φ‖

𝜏
𝐻
𝑘

1
𝑒
−(𝑘𝑚+𝑙)𝜆ℎ

, (22)

for 𝑘 = 0, 1, 2, . . ., 𝑙 = 0, 1, 2, . . . , 𝑚. Obviously, |𝑥
0,0

| =

|Φ(0)| ≤ ‖Φ‖
𝜏
. Firstly, we consider the case 𝑘 = 0 and 𝑙 = 1.

Because ℎ = 𝜏/𝑚 and𝑚 ≥ 𝑀
1
, so 1 + ℎ𝑎 ≥ 0. Hence we have





𝑥
0,1





=





𝑥
0,0

+ ℎ𝑎𝑥
0,0

+ ℎ𝑏𝑥
−1,0






≤ (1 + ℎ𝑎)




𝑥
0,0





+ ℎ |𝑏|





𝑥
−1,0






≤ (1 + ℎ𝑎) ‖Φ‖
𝜏
+ ℎ |𝑏| ‖Φ‖

𝜏

≤ (1 + ℎ𝑎 + ℎ |𝑏| 𝑒
𝜆𝜏
) ‖Φ‖
𝜏
.

(23)

Because 𝑎+ |𝑏|𝑒
𝜆𝜏

≤ −𝜆, we have |𝑥
0,1

| ≤ (1−ℎ𝜆)‖Φ‖
𝜏
. By the

inequality 𝑒
−𝑥

≥ 1 − 𝑥 holding for all 𝑥 ∈ 𝑅, we get |𝑥
0,1

| ≤

‖Φ‖
𝜏
𝑒
−𝜆ℎ.

Assume that |𝑥
0,𝑝

| ≤ ‖Φ‖
𝜏
𝑒
−𝜆𝑝ℎ for 𝑝 < 𝑙 ≤ 𝑚. Then





𝑥
0,𝑙





=





𝑥
0,𝑙−1

+ ℎ𝑎𝑥
0, 𝑙−1

+ ℎ𝑏𝑥
−1, 𝑙−1






≤ (1 + ℎ𝑎)




𝑥
0, 𝑙−1





+ ℎ |𝑏|





𝑥
−1, 𝑙−1






≤ (1 + ℎ𝑎) ‖Φ‖
𝜏
𝑒
−𝜆(𝑙−1)ℎ

+ ℎ |𝑏| ‖Φ‖
𝜏

≤ (1 + ℎ𝑎 + ℎ |𝑏| 𝑒
𝜆𝜏
) ‖Φ‖
𝜏
𝑒
−𝜆(𝑙−1)ℎ

≤ (1 − ℎ𝜆) ‖Φ‖
𝜏
𝑒
−𝜆(𝑙−1)ℎ

≤ ‖Φ‖
𝜏
𝑒
−𝜆𝑙ℎ

.

(24)

So (22) holds for 𝑘 = 0, 𝑙 = 0, 1, 2, . . . , 𝑚. Suppose that (22)
holds for 𝑛 < 𝑘, 𝑙 = 0, 1, 2, . . . , 𝑚. Next, we shall prove (22)
holds, when 𝑛 = 𝑘, 𝑙 = 0, 1, 2, . . . , 𝑚. Hence





𝑥
𝑘,0





=





1 + 𝑐
𝑘










𝑥
𝑘−1,𝑚





≤ ‖Φ‖

𝜏
𝐻
𝑘

1
𝑒
−𝑘𝑚𝜆ℎ

. (25)
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Figure 1: The solutions of (29), as Φ ≡ 1, ℎ = 1/10.

Assume that |𝑥
𝑘,𝑢

| ≤ ‖Φ‖
𝜏
𝐻
𝑘

1
𝑒
−(𝑘𝑚+𝑢)𝜆ℎ for 𝑢 < 𝑙 ≤ 𝑚. Then





𝑥
𝑘,𝑙





=





𝑥
𝑘,𝑙−1

+ ℎ𝑎𝑥
𝑘,𝑙−1

+ ℎ𝑏𝑥
𝑘−1, 𝑙−1






≤ (1 + ℎ𝑎)




𝑥
𝑘,𝑙−1





+ ℎ |𝑏|





𝑥
𝑘−1, 𝑙−1






≤ (1 + ℎ𝑎) ‖Φ‖
𝜏
𝐻
𝑘

1
𝑒
−(𝑘𝑚+𝑙−1)𝜆ℎ

+ ℎ |𝑏| ⋅ ‖Φ‖
𝜏
𝐻
𝑘−1

1





1 + 𝑑
𝑖





𝑒
−(𝑘𝑚−𝑚+𝑙−1)𝜆ℎ

≤ (1 + ℎ𝑎 + ℎ |𝑏| 𝑒
𝜆𝜏
) ‖Φ‖
𝜏
𝐻
𝑘

1
𝑒
−(𝑘𝑚+𝑙−1)𝜆ℎ

≤ (1 − ℎ𝜆) ‖Φ‖
𝜏
𝐻
𝑘

1
𝑒
−(𝑘𝑚+𝑙−1)𝜆ℎ

≤ ‖Φ‖
𝜏
𝐻
𝑘

1
𝑒
−(𝑘𝑚+𝑙)𝜆ℎ

.

(26)

Hence (22) holds. Since −𝜆𝑙
1
+ ln𝐻

1
< 0, there exists 𝛼 such

that 0 < 𝛼 < 𝜆 and −(𝜆 − 𝛼)𝑙
1
+ ln𝐻

1
< 0. Hence





𝑥
𝑘,𝑙





≤ ‖Φ‖

𝜏
𝐻
𝑘

1
𝑒
−(𝑘𝑚+𝑙)𝜆ℎ

≤ ‖Φ‖
𝜏
(𝑒

ln𝐻
1

−𝜆𝑚ℎ
)

𝑘

𝑒
−𝜆𝑙ℎ

≤ ‖Φ‖
𝜏
𝑒
−𝛼(𝑚𝑘+𝑙)ℎ

.

(27)

(ii) If 𝐻
1
≤ 1, we can prove that





𝑥
𝑘,𝑙





≤ ‖Φ‖

𝜏
𝑒
−𝜆(𝑘𝑚+𝑙)ℎ

. (28)

Consequently, the theorem holds.

Theorem 12. Under the conditions of Theorem 9, the Euler
method for (17) is exponentially stable.

Example 13. Consider the system

𝑥


(𝑡) = − 4𝑥 (𝑡) + 𝑥 (𝑡 − 1) , 𝑡 ≥ 0, 𝑡 ̸= 𝑘, 𝑘 = 1, 2, . . . ,

𝑥 (𝑘) = 2𝑥 (𝑘
−
) , 𝑘 = 1, 2, . . . .

(29)

0 1 2 3 4
1

2

3

4

5

6

7

8

9

10

𝑥

𝑡

−1

Figure 2: The solution of (30) as Φ(𝑡) ≡ 1, 𝑡 ∈ [−𝜏, 0].
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Figure 3: The solutions of (31), as Φ ≡ 1, ℎ = 1/10.

Obviously, 𝜆 = 1 satisfies the Theorem 8. Therefore the
zero solution of (29) is exponentially stable. By Theorem 11,
the Euler method for (29) is also exponentially stable (see
Figure 1).

Example 14. Obviously, the zero solution of the system

𝑥


(𝑡) =

1

2

𝑥 (𝑡) +

1

8

𝑥 (𝑡 − 1) , 𝑡 ≥ 0, (30)

is unstable (see Figure 2) while the zero solution of the
following system

𝑥


(𝑡) =

1

2

𝑥 (𝑡) +

1

8

𝑥 (𝑡 − 1) , 𝑡 ≥ 0, 𝑡 ̸= 𝑘, 𝑘 = 1, 2, . . . ,

𝑥 (𝑘) =

1

3

𝑥 (𝑘
−
) , 𝑘 = 1, 2, . . . ,

(31)



6 Abstract and Applied Analysis

is exponentially stable by Theorem 9 with 𝜆 = 1. By
Theorem 12, the Euler method for (31) is also exponentially
stable (see Figure 3).

Acknowledgments

The authors wish to thank referees for valuable comments.
The research was supported by the NSF of China no.
11071050.

References

[1] A. Anokhin, L. Berezansky, and E. Braverman, “Exponential
stability of linear delay impulsive differential equations,” Journal
of Mathematical Analysis and Applications, vol. 193, no. 3, pp.
923–941, 1995.

[2] G. Ballinger and X. Liu, “Existence and uniqueness results for
impulsive delay differential equations,” Dynamics of Continu-
ous, Discrete and Impulsive Systems, vol. 5, no. 1–4, pp. 579–591,
1999.

[3] L. Berezansky and L. Idels, “Exponential stability of some
scalar impulsive delay differential equations,” Communications
in Applied Analysis, vol. 2, no. 3, pp. 301–308, 1998.

[4] X. Ding, K. Wu, and M. Liu, “The Euler scheme and its
convergence for impulsive delay differential equations,”Applied
Mathematics and Computation, vol. 216, no. 5, pp. 1566–1570,
2010.

[5] M. De La Sen and N. Luo, “A note on the stability of linear
time-delay systems with impulsive inputs,” IEEE Transactions
on Circuits and Systems. I, vol. 50, no. 1, pp. 149–152, 2003.

[6] M. De la Sen, “Stability of impulsive time-varying systems and
compactness of the operators mapping the input space into the
state and output spaces,” Journal of Mathematical Analysis and
Applications, vol. 321, no. 2, pp. 621–650, 2006.

[7] X. Liu, “Stability results for impulsive differential systems
with applications to population growth models,” Dynamics and
Stability of Systems, vol. 9, no. 2, pp. 163–174, 1994.

[8] X. Liu, X. Shen, and Y. Zhang, “Exponential stability of singu-
larly perturbed systems with time delay,” Applicable Analysis,
vol. 82, no. 2, pp. 117–130, 2003.

[9] X. Liu and Q. Wang, “The method of Lyapunov functionals
and exponential stability of impulsive systems with time delay,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 66, no.
7, pp. 1465–1484, 2007.

[10] X. Liu, X. Shen, Y. Zhang, and Q. Wang, “Stability criteria
for impulsive systems with time delay and unstable system
matrices,” IEEE Transactions on Circuits and Systems. I, vol. 54,
no. 10, pp. 2288–2298, 2007.

[11] Z. Luo and J. Shen, “Stability of impulsive functional differential
equations via the Liapunov functional,” Applied Mathematics
Letters, vol. 22, no. 2, pp. 163–169, 2009.

[12] I. M. Stamova and G. T. Stamov, “Lyapunov-Razumikhin
method for impulsive functional differential equations and
applications to the population dynamics,” Journal of Computa-
tional and Applied Mathematics, vol. 130, no. 1-2, pp. 163–171,
2001.

[13] J. H. Shen, “Razumikhin techniques in impulsive functional-
differential equations,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 36, no. 1, pp. 119–130, 1999.

[14] J. Shen and J. Yan, “Razumikhin type stability theorems for
impulsive functional-differential equations,” Nonlinear Analy-
sis: Theory, Methods & Applications, vol. 33, no. 5, pp. 519–531,
1998.

[15] Q. Wang and X. Liu, “Exponential stability for impulsive
delay differential equations by Razumikhin method,” Journal of
Mathematical Analysis andApplications, vol. 309, no. 2, pp. 462–
473, 2005.

[16] Q.Wang andX. Liu, “Impulsive stabilization of delay differential
systems via the Lyapunov-Razumikhin method,”AppliedMath-
ematics Letters, vol. 20, no. 8, pp. 839–845, 2007.

[17] Y. Zhang and J. Sun, “Stability of impulsive functional dif-
ferential equations,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 68, no. 12, pp. 3665–3678, 2008.

[18] G. L. Zhang, M. H. Song, and M. Z. Liu, “Asymptotical stability
of a class impulsive delay differential equations,” Journal of
AppliedMathematics, vol. 2012, Article ID 723893, 9 pages, 2012.

[19] V. Covachev, H. Akça, and F. Yeniçerioğlu, “Difference approx-
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