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The initial-boundary value problem for the density-dependent flow of nematic crystals is studied in a 2-D bounded smooth domain.
For the initial density away from vacuum, the existence and uniqueness is proved for the global strong solution with the large initial
velocity 𝑢

0
and small ∇𝑑

0
. We also give a regularity criterion ∇𝑑 ∈ 𝐿

𝑝
(0, 𝑇; 𝐿

𝑞
(Ω)) ((2/𝑞) + (2/𝑝) = 1, 2 < 𝑞 ≤ ∞) of the problem

with the Dirichlet boundary condition 𝑢 = 0, 𝑑 = 𝑑
0
on 𝜕Ω.

1. Introduction and Main Results

Let Ω ⊆ R2 be a bounded domain with smooth boundary
𝜕Ω, and 𝜈 is the unit outward normal vector on 𝜕Ω. We
consider the global strong solution to the density-dependent
incompressible liquid crystal flow [1–4] as follows:

div 𝑢 = 0, (1)

𝜕
𝑡
𝜌 + div (𝜌𝑢) = 0, (2)

𝜕
𝑡
(𝜌𝑢) + div (𝜌𝑢 ⊗ 𝑢) + ∇𝜋 − Δ𝑢 = −∇ ⋅ (∇𝑑 ⊙ ∇𝑑) , (3)

𝜕
𝑡
𝑑 + 𝑢 ⋅ ∇𝑑 − Δ𝑑 = |∇𝑑|

2
𝑑, (4)

in (0,∞) × Ω with initial and boundary conditions

(𝜌, 𝑢, 𝑑) (⋅, 0) = (𝜌
0
, 𝑢
0
, 𝑑
0
) in Ω, (5)

𝑢 = 0, 𝜕
𝜈
𝑑 = 0 on 𝜕Ω, (6)

where 𝜌 denotes the density, 𝑢 the velocity, 𝑑 the unit vector
field that represents the macroscopic molecular orientations,
and 𝜋 the pressure. The symbol ∇𝑑 ⊙ ∇𝑑 denotes a matrix
whose (𝑖, 𝑗)th entry is 𝜕

𝑖
𝑑𝜕
𝑗
𝑑, and it is easy to find that ∇𝑑 ⊙

∇𝑑 = ∇𝑑
𝑇
∇𝑑.

When 𝑑 is a given constant unit vector, then (1), (2),
and (3) represent the well-known density-dependent Navier-
Stokes system,which has receivedmany studies; see [5–7] and
references therein.

When 𝜌 ≡ 1 and Ω := R2, Xu and Zhang [8] proved
global existence of weak solutions to the problem if 𝑢

0
∈

𝐿
2
, ∇𝑑
0
∈ 𝐿
2
, |𝑑
0
| = 1, and

exp(216(
󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 +

1

16

)

2

)
󵄩
󵄩
󵄩
󵄩
∇𝑑
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 <

1

16

. (7)

When 𝜌 ≡ 1 and (6) is replaced by
𝑢 = 0, 𝑑 = 𝑑

0
on 𝜕Ω. (8)

Lin et al. [9] proved the global existence of weak solutions
to the system (1)–(5) and (8), which are smooth away from
at most finitely many singular times, and they also prove a
regularity criterion

𝑑 ∈ 𝐿
2
(0, 𝑇;𝐻

2
(Ω)) . (9)

When 𝜌 = 1 and the term |∇𝑑|
2 in (4) is replaced by (1 −

|𝑑|
2
)𝑑, then the problem has been studied in [10–15].
Very recently, Wen and Ding [16] proved the global exist-

ence and uniqueness of strong solutions to the problem (1)–
(6) with small 𝑢

0
and ∇𝑑

0
and the local strong solutions with

large initial data whenΩ ⊆ R2 is a smooth bounded domain.
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Fan et al. [17] studied the regularity criterion of the
Cauchy problem (1)–(5) when Ω := R2.

We will prove the following.

Theorem 1. Let 0 < 𝑚 ≤ 𝜌
0
≤ 𝑀 < ∞, 𝜌

0
∈ 𝑊
1,𝑟 for some

𝑟 ∈ (2,∞), 𝑢
0
∈ 𝐻
1

0
∩ 𝐻
2, and 𝑑

0
∈ 𝐻
3 with div 𝑢0=0, and

|𝑑
0
| = 1 in Ω. If

󵄩
󵄩
󵄩
󵄩
∇𝑑
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 exp[216

𝐶
2

0

𝑚

(
󵄩
󵄩
󵄩
󵄩
√𝜌
0
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 +

1

8𝐶
2

0

)

2

] ≤

1

8𝐶
2

0

, (10)

with an absolute constant 𝐶
0
in (22), then the problem (1)–(6)

has a unique global-in-time strong solution (𝜌, 𝑢, 𝑑) satisfying
󵄩
󵄩
󵄩
󵄩
𝜌
󵄩
󵄩
󵄩
󵄩𝐿
∞
(0,𝑇;𝑊

1,𝑟
)
≤ 𝐶,

󵄩
󵄩
󵄩
󵄩
𝜌
𝑡

󵄩
󵄩
󵄩
󵄩𝐿
∞
(0,𝑇;𝐿

𝑟
)
≤ 𝐶,

‖𝑢‖𝐿
∞
(0,𝑇;𝐻

2
)∩𝐿
2
(0,𝑇;𝑊

2,𝑠
)
≤ 𝐶, 𝑓𝑜𝑟𝑠𝑜𝑚𝑒 𝑠 > 2,

‖𝑑‖𝐿
∞
(0,𝑇;𝐻

3
)
≤ 𝐶.

(11)

Remark 2. When Ω := R2, Theorem 1 is also correct, thus
improving the result in [18], where 𝑢

0
and ∇𝑑

0
are assumed

to be small.

Next, we consider (1)–(4) with 𝜌 ≡ 1 as follows:

div 𝑢 = 0, (12)

𝜕
𝑡
𝑢 + 𝑢 ⋅ ∇𝑢 + ∇𝜋 − Δ𝑢 = −∇ ⋅ (∇𝑑 ⊙ ∇𝑑) , (13)

𝜕
𝑡
𝑑 + 𝑢 ⋅ ∇𝑑 − Δ𝑑 = |∇𝑑|

2
𝑑, (14)

𝑢 = 0, 𝑑 = 𝑑
0

on 𝜕Ω, (15)

(𝑢, 𝑑) (⋅, 0) = (𝑢
0
, 𝑑
0
) in Ω. (16)

We will prove the following.

Theorem 3. Let 𝑢
0
∈ 𝐿
2 and 𝑑

0
∈ 𝐻
1 with div 𝑢

0
= 0 and

|𝑑
0
| = 1 in Ω and 𝑑

0
∈ 𝐶
2,𝛽

(𝜕Ω) for some 𝛽 ∈ (0, 1). If 𝑑
satisfies

∇𝑑 ∈ 𝐿
𝑞
(0, 𝑇; 𝐿

𝑝
) ,

2

𝑞

+

2

𝑝

= 1, 2 < 𝑝 ≤ ∞, (17)

then the strong solution (𝑢, 𝑑) can be extended beyond 𝑇 > 0.

Remark 4. In [9], the authors prove the regularity criterion
(9) for the problem (12)–(16), and our condition (17) is weaker
than (9). Moreover, (17) is scaling invariant for (12)–(14).

2. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Since the
local-in-time well-posedness has been proved in [16], we
only need to establish a priori estimates. Also, by the local
well-posedness result in [16], we note that ∇𝑑 is absolutely
continuous on [0, 𝑇] for any given 𝑇 > 0.

By themaximumprinciple, it follows from (1) and (2) that

0 < 𝑚 ≤ 𝜌 ≤ 𝑀 < ∞. (18)

Testing (3) by 𝑢 and using (1) and (2), we see that

1

2

𝑑

𝑑𝑡

∫ 𝜌𝑢
2
𝑑𝑥 + ∫ |∇𝑢|

2
𝑑𝑥 = −∫ (𝑢 ⋅ ∇) 𝑑 ⋅ Δ𝑑 𝑑𝑥. (19)

Testing (4) by −Δ𝑑 − |∇𝑑|
2
𝑑, using |𝑑| = 1, we find that

1

2

𝑑

𝑑𝑡

∫ |∇𝑑|
2
𝑑𝑥 + ∫

󵄨
󵄨
󵄨
󵄨
󵄨
Δ𝑑 + |∇𝑑|

2
𝑑

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 = ∫ (𝑢 ⋅ ∇) 𝑑 ⋅ Δ𝑑 𝑑𝑥.

(20)

Summing up (19) and (20) and integrating over (0, 𝑇), we
get

∫ (𝜌𝑢
2
+ |∇𝑑|

2
) 𝑑𝑥 + 2∫

𝑇

0

∫ (|∇𝑢|
2
+

󵄨
󵄨
󵄨
󵄨
󵄨
Δ𝑑 + |∇𝑑|

2
𝑑

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑥 𝑑𝑡

≤ ∫ (𝜌
0
𝑢
2

0
+
󵄨
󵄨
󵄨
󵄨
∇𝑑
0

󵄨
󵄨
󵄨
󵄨

2
) 𝑑𝑥.

(21)

Since 𝜕
𝜈
𝑑 = 0 on (0,∞) × 𝜕Ω, we have the following

Gagliardo-Nirenberg inequality:

‖∇𝑑‖
2

𝐿
4 ≤ 𝐶
0‖
∇𝑑‖𝐿

2‖Δ𝑑‖𝐿
2 . (22)

By (20) and the Ladyzhenskaya inequality in 2D, we
derive

1

2

𝑑

𝑑𝑡

∫ |∇𝑑|
2
𝑑𝑥 + ∫

󵄨
󵄨
󵄨
󵄨
󵄨
Δ𝑑 + |∇𝑑|

2
𝑑

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥

≤ ‖𝑢‖𝐿
4‖∇𝑑‖𝐿

4‖Δ𝑑‖𝐿
2

≤ √2‖𝑢‖
1/2

𝐿
2 ‖∇𝑢‖

1/2

𝐿
2 ⋅ √𝐶

0‖
∇𝑑‖
1/2

𝐿
2 ‖Δ𝑑‖

3/2

𝐿
2

≤

‖Δ𝑑‖
2

𝐿
2

8

+ 216𝐶
2

0
‖𝑢‖
2

𝐿
2‖∇𝑢‖

2

𝐿
2‖∇𝑑‖

2

𝐿
2

≤

‖Δ𝑑‖
2

𝐿
2

8

+ 216

𝐶
2

0

𝑚

(
󵄩
󵄩
󵄩
󵄩
√𝜌
0
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 +

󵄩
󵄩
󵄩
󵄩
∇𝑑
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2) ‖∇𝑢‖

2

𝐿
2‖∇𝑑‖

2

𝐿
2 .

(23)

On the other hand, since (𝑎 + 𝑏)
2
≥ (𝑎
2
/2) − 𝑏

2, we have

∫

󵄨
󵄨
󵄨
󵄨
󵄨
Δ𝑑 + |∇𝑑|

2
𝑑

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 ≥

‖Δ𝑑‖
2

𝐿
2

2

− ‖∇𝑑‖
4

𝐿
4

≥

‖Δ𝑑‖
2

𝐿
2

2

− 𝐶
2

0
‖∇𝑑‖
2

𝐿
2‖Δ𝑑‖

2

𝐿
2 .

(24)

If the initial data ‖∇𝑑
0
‖
2

𝐿
2 < (1/𝐶

2

0
)(1/8), then there exists

𝑇
1
> 0 such that for any 𝑡 ∈ [0, 𝑇

1
],

‖∇𝑑 (𝑡)‖
2

𝐿
2 ≤

1

𝐶
2

0

⋅

1

4

. (25)
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We denote by 𝑇
∗

1
the maximal time such that (25) holds

on [0, 𝑇
∗

1
].Therefore, by (23), (24), and (25), it follows that for

any 𝑡 ∈ [0, 𝑇
∗

1
],

𝑑

𝑑𝑡

∫ |∇𝑑|
2
𝑑𝑥 +

1

4

‖Δ𝑑‖
2

𝐿
2

≤ 432

𝐶
2

0

𝑚

(
󵄩
󵄩
󵄩
󵄩
√𝜌
0
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 +

󵄩
󵄩
󵄩
󵄩
∇𝑑
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2) ‖∇𝑢‖

2

𝐿
2‖∇𝑑‖

2

𝐿
2

≤ 432

𝐶
2

0

𝑚

(
󵄩
󵄩
󵄩
󵄩
√𝜌
0
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 +

1

8𝐶
2

0

) ‖∇𝑢‖
2

𝐿
2‖∇𝑑‖

2

𝐿
2 ,

(26)

which gives

‖∇𝑑 (𝑡)‖
2

𝐿
2 +

1

4

∫

𝑡

0

‖Δ𝑑(𝜏)‖
2

𝐿
2𝑑𝜏

≤
󵄩
󵄩
󵄩
󵄩
∇𝑑
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 exp[432

𝐶
2

0

𝑚

(
󵄩
󵄩
󵄩
󵄩
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0
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 +

1

8𝐶
2

0

)

× ∫

𝑇
∗

1

0

‖∇𝑢‖
2

𝐿
2𝑑𝜏]

≤
󵄩
󵄩
󵄩
󵄩
∇𝑑
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 exp[216

𝐶
2

0

𝑚

(
󵄩
󵄩
󵄩
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0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 +

1

8𝐶
2

0

)

2

]

≤

1

8𝐶
2

0

,

(27)

which implies that 𝑇∗
1
= 𝑇 if the initial data satisfies

󵄩
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0
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2
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2 exp[216
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2

0

𝑚

(
󵄩
󵄩
󵄩
󵄩
√𝜌
0
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 +

1

8𝐶
2

0

)

2

] ≤

1

8𝐶
2

0

. (28)

Let 𝑇
∗ be a maximal existence time for the solution

(𝜌, 𝑢, 𝑑). Then, (18), (21), and (27) ensure that 𝑇∗ = ∞ by
continuity argument.

Testing (3) by 𝑢
𝑡
, using (1), (18), (21), (22), |𝑑| = 1, and the

Gagliardo-Nirenberg inequalities, we obtain

1

2

𝑑

𝑑𝑡

∫ |∇𝑢|
2
𝑑𝑥 + ∫𝜌𝑢

2

𝑡
𝑑𝑥

= −∫𝜌𝑢 ⋅ ∇𝑢 ⋅ 𝑢
𝑡
𝑑𝑥 − ∫𝑢

𝑡
⋅ ∇𝑑 ⋅ Δ𝑑 𝑑𝑥

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
√𝜌𝑢
𝑡

󵄩
󵄩
󵄩
󵄩𝐿
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4‖∇𝑢‖𝐿
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𝑡

󵄩
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1/2

𝐿
2 ‖∇𝑢‖𝐿

2 (‖Δ𝑢‖
1/2

𝐿
2 + ‖𝑢‖

1/2

𝐿
2 )

+ ‖∇𝑑‖
1/2

𝐿
2 ‖Δ𝑑‖

𝐿
2
(‖∇Δ𝑑‖

1/2

𝐿
2 + ‖𝑑‖

1/2

𝐿
2 )]

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
√𝜌𝑢
𝑡

󵄩
󵄩
󵄩
󵄩𝐿
2 (‖∇𝑢‖𝐿

2‖Δ𝑢‖
1/2

𝐿
2 + ‖∇𝑢‖𝐿

2+ ‖Δ𝑑‖𝐿
2

× ‖∇Δ𝑑‖
1/2

𝐿
2 + ‖Δ𝑑‖𝐿

2) .

(29)

On the other hand, (3) can be rewritten as

−Δ𝑢 + ∇𝜋 = 𝑓 := −𝜌𝑢
𝑡
− 𝜌𝑢 ⋅ ∇𝑢 − ∇ ⋅ (∇𝑑 ⊙ ∇𝑑) . (30)

By the𝐻2-theory of Stokes system, we have

‖Δ𝑢‖𝐿
2 ≤ 𝐶
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2 ,
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which yields
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Inserting (32) into (29), we deduce that
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2 (‖∇𝑢‖

2

𝐿
2 + ‖∇𝑢‖𝐿

2)

+ 𝐶
󵄩
󵄩
󵄩
󵄩
√𝜌𝑢
𝑡

󵄩
󵄩
󵄩
󵄩𝐿
2‖Δ𝑑‖𝐿

2‖∇Δ𝑑‖
1/2

𝐿
2 + 𝐶

󵄩
󵄩
󵄩
󵄩
√𝜌𝑢
𝑡

󵄩
󵄩
󵄩
󵄩𝐿
2‖Δ𝑑‖𝐿

2

≤

1

8

󵄩
󵄩
󵄩
󵄩
√𝜌𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 + 𝐶‖∇𝑢‖

4

𝐿
2 + 𝐶 +

1

8

‖∇Δ𝑑‖
2

𝐿
2 + 𝐶‖Δ𝑑‖

4

𝐿
2 .

(33)

Applying Δ to (4), testing by Δ𝑑, using |𝑑| = 1, (21) and
(22), and the Gagliardo-Nirenberg inequalities, we have

1

2

𝑑

𝑑𝑡

∫ |Δ𝑑|
2
𝑑𝑥 + ∫ |∇Δ𝑑|

2
𝑑𝑥

≤ ∫

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (|∇𝑑|

2
𝑑)

󵄨
󵄨
󵄨
󵄨
󵄨
|∇Δ𝑑| 𝑑𝑥 + ∫ |∇ (𝑢 ⋅ ∇𝑑)| |∇Δ𝑑| 𝑑𝑥

≤ 𝐶 (‖∇𝑑‖
3

𝐿
6 + ‖∇𝑑‖𝐿

4‖Δ𝑑‖𝐿
4 + ‖𝑢‖𝐿

4‖Δ𝑑‖𝐿
4

+‖∇𝑢‖𝐿
2‖∇𝑑‖𝐿

∞) ‖∇Δ𝑑‖𝐿
2

≤ 𝐶 (‖∇𝑑‖𝐿
2‖Δ𝑑‖

2

𝐿
2 + ‖Δ𝑑‖𝐿

2‖∇Δ𝑑‖
1/2

𝐿
2 + ‖Δ𝑑‖𝐿

2

+ ‖∇𝑢‖
1/2

𝐿
2 ‖Δ𝑑‖

1/2

𝐿
2 ‖∇Δ𝑑‖

1/2

𝐿
2

+ ‖∇𝑢‖
1/2

𝐿
2 ‖Δ𝑑‖

1/2

𝐿
2 + ‖∇𝑢‖𝐿

2

× ‖∇𝑑‖
1/2

𝐿
2 ‖∇Δ𝑑‖

1/2

𝐿
2 ) ‖∇Δ𝑑‖𝐿

2

≤

1

8

‖∇Δ𝑑‖
2

𝐿
2 + 𝐶‖Δ𝑑‖

4

𝐿
2 + 𝐶 + 𝐶‖∇𝑢‖

4

𝐿
2 .

(34)

Here, we have used the Gagliardo-Nirenberg inequalities

‖∇𝑑‖
3

𝐿
6 ≤ 𝐶‖∇𝑑‖𝐿

2‖Δ𝑑‖
2

𝐿
2 ,

‖∇𝑑‖
2

𝐿
∞ ≤ ‖∇𝑑‖𝐿

2‖∇Δ𝑑‖𝐿
2 ,

‖Δ𝑑‖
2

𝐿
4 ≤ 𝐶‖Δ𝑑‖𝐿

2‖∇Δ𝑑‖𝐿
2 + 𝐶‖Δ𝑑‖𝐿

2 .

(35)
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Combining (33) and (34) and using theGronwall inequal-
ity, we have

‖𝑢‖𝐿
∞
(0,𝑇;𝐻

1
)
+ ‖𝑢‖𝐿

2
(0,𝑇;𝐻

2
)
≤ 𝐶, (36)

󵄩
󵄩
󵄩
󵄩
√𝜌𝑢
𝑡

󵄩
󵄩
󵄩
󵄩𝐿
2
(0,𝑇;𝐿

2
)
≤ 𝐶, (37)

‖𝑑‖𝐿
∞
(0,𝑇;𝐻

2
)
+ ‖𝑑‖𝐿

2
(0,𝑇;𝐻

3
)
≤ 𝐶. (38)

Now, by the similar calculations as those in [17], we arrive
at

󵄩
󵄩
󵄩
󵄩
(𝑢
𝑡
, ∇𝑑
𝑡
)
󵄩
󵄩
󵄩
󵄩𝐿
∞
(0,𝑇;𝐿

2
)∩𝐿
2
(0,𝑇;𝐻

1
)
≤ 𝐶,

‖(𝑢, ∇𝑑)‖𝐿
∞
(0,𝑇;𝐻

2
)
≤ 𝐶,

‖𝑢‖𝐿
2
(0,𝑇;𝑊

2,𝑠
)
≤ 𝐶 for some 𝑠 > 2,

󵄩
󵄩
󵄩
󵄩
𝜌
󵄩
󵄩
󵄩
󵄩𝐿
∞
(0,𝑇;𝑊

1,𝑟
)
≤ 𝐶,

󵄩
󵄩
󵄩
󵄩
𝜌
𝑡

󵄩
󵄩
󵄩
󵄩𝐿
∞
(0,𝑇;𝐿

𝑟
)
≤ 𝐶.

(39)

This completes the proof.

3. Proof of Theorem 3

This section is devoted to the proof of Theorem 3. By the
results in [9], we only need to prove (9).

Similar to (21), we still have

∫ (𝑢
2
+ |∇𝑑|

2
) 𝑑𝑥 + 2∫

𝑇

0

∫ (|∇𝑢|
2
+

󵄨
󵄨
󵄨
󵄨
󵄨
Δ𝑑 + |∇𝑑|

2
𝑑

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝑑𝑥 𝑑𝑡

≤ ∫ (𝑢
2

0
+
󵄨
󵄨
󵄨
󵄨
∇𝑑
0

󵄨
󵄨
󵄨
󵄨

2
) 𝑑𝑥.

(40)

We will use the following Gagliardo-Nirenberg inequali-
ties:

‖𝑢‖
𝐿
2𝑝/(𝑝−2) ≤ 𝐶‖𝑢‖

1−(2/𝑝)

𝐿
2 ‖∇𝑢‖

2/𝑝

𝐿
2
, (41)

‖∇𝑑‖
𝐿
2𝑝/(𝑝−2) ≤ 𝐶‖∇𝑑‖

1−(2/𝑝)

𝐿
2 ‖Δ𝑑‖

2/𝑝

𝐿
2

+ 𝐶‖∇𝑑‖𝐿
2 . (42)

Testing (14) by −Δ𝑑, using |𝑑| = 1, (40), (41), and (42), we
have

1

2

𝑑

𝑑𝑡

∫ |∇𝑑|
2
𝑑𝑥 + ∫ |Δ𝑑|

2
𝑑𝑥

= ∫ (𝑢 ⋅ ∇𝑑 − |∇𝑑|
2
𝑑)Δ𝑑𝑑𝑥

≤ (‖𝑢‖
𝐿
2𝑝/(𝑝−2)‖∇𝑑‖𝐿

𝑝 + ‖∇𝑑‖𝐿
𝑝‖∇𝑑‖

𝐿
2𝑝/(𝑝−2)) ‖Δ𝑑‖𝐿

2

≤ 𝐶‖∇𝑑‖𝐿
𝑝 (‖𝑢‖

1−(2/𝑝)

𝐿
2 ‖∇𝑢‖

2/𝑝

𝐿
2

+ ‖∇𝑑‖𝐿
2

+ ‖∇𝑑‖
1−(2/𝑝)

𝐿
2 ‖Δ𝑑‖

2/𝑝

𝐿
2
) ‖Δ𝑑‖𝐿

2

≤ 𝐶‖∇𝑑‖𝐿
𝑝 (‖∇𝑢‖

2/𝑝

𝐿
2

+ 1 + ‖Δ𝑑‖
2/𝑝

𝐿
2
) ‖Δ𝑑‖𝐿

2

≤

1

4

‖Δ𝑑‖
2

𝐿
2 + 𝐶‖∇𝑑‖

2

𝐿
𝑝 (‖∇𝑢‖

4/𝑝

𝐿
2

+ 1 + ‖Δ𝑑‖
4/𝑝

𝐿
2
)

≤

1

2

‖Δ𝑑‖
2

𝐿
2 + ‖∇𝑢‖

2

𝐿
2 + 𝐶‖∇𝑑‖

2𝑝/(𝑝−2)

𝐿
𝑝 + 𝐶,

(43)

which gives (9).
This completes the proof.
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