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Weput into practice a relatively new analytical technique, the homotopy decompositionmethod, for solving the nonlinear fractional
coupled-Korteweg-de-Vries equations. Numerical solutions are given, and some properties exhibit reasonable dependence on the
fractional-order derivatives’ values. The fractional derivatives are described in the Caputo sense. The reliability of HDM and the
reduction in computations give HDM a wider applicability. In addition, the calculations involved in HDM are very simple and
straightforward. It is demonstrated that HDM is a powerful and efficient tool for FPDEs. It was also demonstrated that HDM is
more efficient than the adomian decomposition method (ADM), variational iteration method (VIM), homotopy analysis method
(HAM), and homotopy perturbation method (HPM).

1. Introduction

Fractional calculus has been used tomodel physical and engi-
neering processes, which are found to be best described by
fractional differential equations. It is worth nothing that the
standard mathematical models of integer-order derivatives,
including nonlinear models, do not work adequately in many
cases. In the recent years, fractional calculus has played a very
important role in various fields such asmechanics, electricity,
chemistry, biology, economics, notably control theory, signal
image processing, and groundwater problems. In the past
several decades, the investigation of travelling-wave solutions
for nonlinear equations has played an important role in the
study of nonlinear physical phenomena. In [1], homotopy
analysis method is applied to obtain approximate analytical
solution of the modified Kuramoto-Sivashinsky equation.
In addition to that an excellent literature of this can be
found in [2–11]. Analytical solutions of these equations are
usually not available. Since only limited classes of equa-
tions are solved by analytical means, numerical solution of
these nonlinear partial differential equations is of practical
importance.

In this paper, we extend the application of the homotopy
decomposition method (HDM) in order to derive analytical

approximate solutions to nonlinear time-fractional coupled-
KDV equations. This coupled system is used to describe
iterations of water waves proposed by Hirota and Satsuma
[12]. The HDM was recently applied to solve the fractional
modified Kawahara equation, fractional model of HIV infec-
tion of CD4+T cells, the attractor fractional one-dimensional
Keller-Segel equations, the fractional Jaulent-Miodek and
Whitham-Broer-Kaup equations, the fractional Riccati dif-
ferential equation, fractional nonlinear predator-prey pop-
ulation, and the fractional nonlinear system predator-prey
population.The relatively new technique that approached the
HDM is a promising analytical technique to solve nonlinear
fractional partial and ordinary differential equations. The
fractional systems of partial differential equations under
investigation here are given as

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 6𝑎𝑢 (𝑥, 𝑡) 𝑢

𝑥
(𝑥, 𝑡) − 2𝑏V (𝑥, 𝑡) V

𝑥
(𝑥, 𝑡)

+ 𝑎𝑢
𝑥,𝑥,𝑥

(𝑥, 𝑡) = 0, 0 < 𝛼 ≤ 1,

𝜕
𝛽V (𝑥, 𝑡)

𝜕𝑡𝛽
+ 3𝑏𝑢 (𝑥, 𝑡) V

𝑥
(𝑥, 𝑡)

+ 𝑏V
𝑥,𝑥,𝑥

(𝑥, 𝑡) = 0, 0 < 𝛽 ≤ 1.

(1)
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Subject to the initial conditions

𝑢 (𝑥, 0) =
𝜆

𝑎
(sech(1

2
√
𝜆

𝑎
𝑥))

2

,

V (𝑥, 0) =
𝜆

√2𝑎
(sech(1

2
√
𝜆

𝑎
𝑥))

2

.

(2)

The remaining of this paper is structured as follows: in
Section 2we present a brief history of the fractional derivative
order and their properties. We present the basic ideal of
the homotopy decomposition method for solving high-order
nonlinear fractional partial differential equations.We present
the application of the HDM for system fractional nonlinear
differential equations (1) and numerical results in Section 4.
The conclusions are then given in Section 5.

2. Fractional Derivative Order

2.1. Brief History. In the literature, one can find several
definitions of fractional derivatives. The most common used
are the Riemann-Liouville and the Caputo derivatives. For
Caputo we have

𝐶

0
𝐷
𝛼

𝑥
(𝑓 (𝑥)) =

1

Γ (𝑛 − 𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑑
𝑛

𝑓 (𝑡)

𝑑𝑡𝑛
𝑑𝑡. (3)

For the case of Riemann-Liouville we have the following
definition:

𝐷
𝛼

𝑥
(𝑓 (𝑥)) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑓 (𝑡) 𝑑𝑡. (4)

Each fractional derivative presents some advantages and
disadvantages [13, 14]. The Riemann-Liouville derivative of a
constant is not zero while Caputo’s derivative of a constant
is zero but demands higher conditions of regularity for
differentiability: to compute the fractional derivative of a
function in the Caputo sense, we must first calculate its
derivative. Caputo derivatives are defined only for differ-
entiable functions while functions that have no first-order
derivative might have fractional derivatives of all orders less
than one in the Riemann-Liouville sense [15, 16]. Recently,
Jumarie (see [17, 18]) proposed a simple alternative definition
to the Riemann-Liouville derivative:

𝐷
𝛼

𝑥
(𝑓 (𝑥))=

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

{𝑓 (𝑡) − 𝑓 (0)} 𝑑𝑡.

(5)

His modified Riemann-Liouville derivative seems to have
advantages of both the standard Riemann-Liouville and
Caputo fractional derivatives: it is defined for arbitrary
continuous (nondifferentiable) functions and the fractional
derivative of a constant is equal to zero. However, the Jumarie
fractional derivative gives the fractional derivative of 𝑓(𝑥) −
𝑓(0) not for 𝑓(𝑥), this implies that, there is no fractional
derivative for some functions that are not defined at the
origin, for instance ln(𝑥) [19].

We can point out that Caputo and Riemann-Liouville
may have their disadvantages but they still remain the best
definitions of the fractional derivative. Every definition must
be used accordingly [19].

2.2. Properties and Definitions

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0 is said to be in the
space 𝐶

𝜇
, 𝜇 ∈ R if there exists a real number 𝑝 > 𝜇, such that

𝑓(𝑥) = 𝑥
𝑝

ℎ(𝑥), where ℎ(𝑥) ∈ 𝐶[0,∞), and it is said to be in
space 𝐶𝑚

𝜇
if 𝑓(𝑚) ∈ 𝐶

𝜇
, 𝑚 ∈ N.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is defined

as

𝐽
𝛼

𝑓 (𝑥) =
1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0, 𝑥 > 0,

𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(6)

Properties of the operator can be found in [15, 16], and one
mentions only the following:

for 𝑓 ∈ 𝐶
𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, and 𝛾 > −1:

𝐽
𝛼

𝐽
𝛽

𝑓 (𝑥) = 𝐽
𝛼+𝛽

𝑓 (𝑥) ,

𝐽
𝛼

𝐽
𝛽

𝑓 (𝑥) = 𝐽
𝛽

𝐽
𝛼

𝑓 (𝑥) 𝐽
𝛼

𝑥
𝛾

=
Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

.

(7)

Lemma 3. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N and 𝑓 ∈ 𝐶𝑚
𝜇
, 𝜇 ≥

−1, then

𝐷
𝛼

𝐽
𝛼

𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝛼

𝐷
𝛼

0
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)

(0
+

)
𝑥
𝑘

𝑘!
, 𝑥 > 0.

(8)

Definition 4 (partial derivatives of fractional order). Assume
now that 𝑓(x) is a function of 𝑛 variables 𝑥

𝑖
, 𝑖 = 1, . . . , 𝑛 also

of class 𝐶 on 𝐷 ∈ R
𝑛
. As an extension of Definition 4, one

defines partial derivative of order 𝛼 for 𝑓 with respect to 𝑥
𝑖

the function

𝑎𝜕
𝛼

x𝑓 =
1

Γ (𝑚 − 𝛼)
∫

𝑥𝑖

𝑎

(𝑥
𝑖
− 𝑡)
𝑚−𝛼−1

𝜕
𝑚

𝑥𝑖

𝑓 (𝑥
𝑗
)

𝑥𝑗=𝑡
𝑑𝑡, (9)

if it exists, where 𝜕𝑚
𝑥𝑖

is the usual partial derivative of integer-
order𝑚.

3. Basic Idea of the HDM

To illustrate the basic idea of this method, we consider a
general nonlinear nonhomogeneous fractional partial differ-
ential equation with initial conditions of the following form:

𝜕
𝛼

𝑈 (𝑥, 𝑡)

𝜕𝑡𝛼
= 𝐿 (𝑈 (𝑥, 𝑡)) + 𝑁 (𝑈 (𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) , 𝛼 > 0.

(10)



Abstract and Applied Analysis 3

Subject to the initial condition

𝐷
𝛼−𝑘

0
𝑈 (𝑥, 0) = 𝑓

𝑘
(𝑥) , (𝑘 = 0, . . . , 𝑛 − 1) ,

𝐷
𝛼−𝑛

0
𝑈 (𝑥, 0) = 0, 𝑛 = [𝛼] ,

𝐷
𝑘

0
𝑈 (𝑥, 0) = 𝑔

𝑘
(𝑥) , (𝑘 = 0, . . . , 𝑛 − 1) ,

𝐷
𝑛

0
𝑈 (𝑥, 0) = 0, 𝑛 = [𝛼] ,

(11)

where 𝜕𝛼/𝜕𝑡𝛼 denotes the Caputo or Riemann-Liouville
fraction derivative operator, 𝑓 is a known function, 𝑁 is
the general nonlinear fractional differential operator, and
𝐿 represents a linear fractional differential operator. The
method first step here is to transform the fractional partial
differential equation to the fractional partial integral equation
by applying the inverse operator 𝜕𝛼/𝜕𝑡𝛼 of both sides of (10)
to obtain the following. In the case of Riemann-Liouville
fractional derivative

𝑈 (𝑥, 𝑡) =

𝑛−1

∑

𝑗=1

𝑓
𝑗
(𝑥)

Γ (𝛼 − 𝑗 + 1)
𝑡
𝛼−𝑗

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+𝑓 (𝑥, 𝜏) ] 𝑑𝜏.

(12)

In the case of Caputo fractional derivative

𝑈 (𝑥, 𝑡) =

𝑛−1

∑

𝑗=1

𝑔
𝑗
(𝑥)

Γ (𝛼 − 𝑗 + 1)
𝑡
𝑗

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+𝑓 (𝑥, 𝜏) ] 𝑑𝜏,

(13)

or in general by putting

𝑛−1

∑

𝑗=1

𝑓
𝑗
(𝑥)

Γ (𝛼−𝑗+1)
𝑡
𝛼−𝑗

=𝑓 (𝑥, 𝑡) or 𝑓 (𝑥, 𝑡)=

𝑛−1

∑

𝑗=1

𝑔
𝑗
(𝑥)

Γ (𝛼−𝑗+1)
𝑡
𝑗

,

(14)

we obtain the following:

𝑈 (𝑥, 𝑡) = 𝑇 (𝑥, 𝑡)

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+𝑓 (𝑥, 𝜏) ] 𝑑𝜏.

(15)

In the homotopy decomposition method, the basic assump-
tion is that the solutions can be written as a power series in
𝑝

𝑈 (𝑥, 𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡) , (16a)

𝑈 (𝑥, 𝑡) = lim
𝑝→1

𝑈 (𝑥, 𝑡, 𝑝) , (16b)

and the nonlinear term can be decomposed as

𝑁𝑈(𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑈) , (17)

where 𝑝 ∈ (0, 1] is an embedding parameter. H
𝑛
(𝑈) is the

He’s polynomials that can be generated by

H
𝑛
(𝑈
0
, . . . , 𝑈

𝑛
)

=
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[

[

𝑁(

∞

∑

𝑗=0

𝑝
𝑗

𝑈
𝑗
(𝑥, 𝑡))]

]

, 𝑛 = 0, 1, 2, . . . .
(18)

The homotopy decomposition method is obtained by the
graceful coupling of homotopy technique with the Abel
integral and is given by

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡) − 𝑇 (𝑥, 𝑡)

=
𝑝

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝑓 (𝑥, 𝜏) + 𝐿(

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝜏))

+𝑁(

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝜏))] 𝑑𝜏.

(19)

Comparison of the terms of same powers of 𝑝 gives solutions
of various orders with the first term:

𝑈
0
(𝑥, 𝑡) = 𝑇 (𝑥, 𝑡) . (20)

3.1. Convergence of the Method and Unicity of the Solution

Theorem 5 (see [19]). Assuming that 𝑋 × 𝑇 ⊂ R × R+ is a
Banach space with a well-defined norm ‖ ⋅ ‖, over which the
series sequence of the approximate solution of (1) is defined,
and the operator 𝐺 (𝑈

𝑛
(𝑥, 𝑡)) = 𝑈

𝑛+1
(𝑥, 𝑡) defining the series

solution of (16b) satisfies the Lipschitzian conditions that is
‖𝐺(𝑈
∗

𝑘
) − 𝐺(𝑈

𝑘
)‖ ≤ 𝜀‖𝑈

∗

𝑘
(𝑥, 𝑡) − 𝑈

𝑘
(𝑥, 𝑡)‖ for all (𝑥, 𝑡, 𝑘) ∈

𝑋 × 𝑇 × N, then series solution obtained (16b) is unique.

Proof. Assume that 𝑈(𝑥, 𝑡) and 𝑈∗(𝑥, 𝑡) are the series so-
lution satisfying (1), then 𝑈∗(𝑥, 𝑡, 𝑝) = ∑

∞

𝑛=0
𝑝
𝑛

𝑈
∗

𝑛
(𝑥, 𝑡)

with initial guess 𝑇(𝑥, 𝑡); 𝑈(𝑥, 𝑡, 𝑝) = ∑
∞

𝑛=0
𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡) also

with initial guess 𝑇(𝑥, 𝑡); therefore,
𝑈
∗

𝑛
(𝑥, 𝑡) − 𝑈

𝑛
(𝑥, 𝑡)

 = 0, 𝑛 = 0, 1, 2, . . . . (21)
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By the recurrence for 𝑛 = 0, 𝑈∗
𝑛
(𝑥, 𝑡) = 𝑈

𝑛
(𝑥, 𝑡) = 𝑇(𝑥, 𝑡),

assume that for 𝑛 > 𝑘 ≥ 0, ‖𝑈∗
𝑘
(𝑥, 𝑡) − 𝑈

𝑘
(𝑥, 𝑡)‖ = 0. Then

𝑈
∗

𝑘+1
(𝑥, 𝑡) − 𝑈

𝑘+1
(𝑥, 𝑡)

 =
𝐺 (𝑈

∗

𝑘
) − 𝐺 (𝑈

𝑘
)


≤ 𝜀
𝑈
∗

𝑘
(𝑥, 𝑡) − 𝑈

𝑘
(𝑥, 𝑡)

 = 0,

(22)

which completes the proof.

3.2. Complexity of the Homotopy Decomposition Method. It
is very important to test the computational complexity of
a method or algorithm. Complexity of an algorithm is the
study of how long a program will take to run, depending
on the size of its input and long of loops made inside the
code. We compute a numerical example which is solved by
the homotopy decomposition method. The code has been
presented with Mathematica 8 according to the following
code [19].

Step 1. Set𝑚 ← 0.

Step 2. Calculating the recursive relation after the compari-
son of the terms of the same power is done.

Step 3. If ‖𝑈
𝑛+1
(𝑥, 𝑡) − 𝑈

𝑛
(𝑥, 𝑡)‖ < 𝑟 with 𝑟 the ratio of the

neighbourhood of the exact solution [5] then go to Step 4,
else𝑚 ← 𝑚 + 1 and go to Step 2

Step 4. Print out

𝑈 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑈
𝑛
(𝑥, 𝑡) , (23)

as the approximate of the exact solution.

Lemma 6. If the exact solution of the fractional partial
differential equation (10) exists, then

𝑈𝑛+1 (𝑥, 𝑡) − 𝑈𝑛 (𝑥, 𝑡)
 < 𝑟 ∀ (𝑥, 𝑡) ∈ 𝑋 × 𝑇. (24)

Proof. Let (𝑥, 𝑡) ∈ 𝑋 × 𝑇, then since the exact solution exists,
then we have that following:
𝑈𝑛+1 (𝑥, 𝑡) − 𝑈𝑛 (𝑥, 𝑡)



=
𝑈𝑛+1 (𝑥, 𝑡) − 𝑈 (𝑥, 𝑡) + 𝑈 (𝑥, 𝑡) − 𝑈𝑛 (𝑥, 𝑡)



≤
𝑈𝑛+1 (𝑥, 𝑡) − 𝑈 (𝑥, 𝑡)

 +
−𝑈𝑛 (𝑥, 𝑡) + 𝑈 (𝑥, 𝑡)



≤
𝑟

2
+
𝑟

2
= 𝑟.

(25)

The last inequality follows from [19].

Lemma 7. The complexity of the homotopy decomposition
method is of order 𝑂(𝑛).

Proof. Thenumber of computations including product, addi-
tion, subtraction, and division are in Step 2

𝑈
𝑜
: is 0 because, it is obtained directly form the initial

guess 𝑇(𝑥, 𝑡) [19].

𝑈
1
: 3

...
𝑈
𝑛
: 3.

Now in Step 4, the total number of computations is equal to
∑
𝑛

𝑗=0
𝑈
𝑗
(𝑥, 𝑡) = 3𝑛 = 𝑂(𝑛).

4. Application

In learning science, examples are useful than rules (Isaac
Newton). In this section, we apply this method for solving
system of fractional differential equation. Following carefully
the steps involved in the HDM, we arrive at the following
equations:

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡)

= 𝑢 (𝑥, 0)

−
𝑝

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

(6𝑎

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
)

𝑥

−2𝑏

∞

∑

𝑛=0

𝑝
𝑛

V
𝑛
(

∞

∑

𝑛=0

𝑝
𝑛

V
𝑛
)

𝑥

)

+ (

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
)

𝑥,𝑥,𝑥

,

∞

∑

𝑛=0

𝑝
𝑛

V
𝑛
(𝑥, 𝑡)

= V (𝑥, 0)

−
𝑝

Γ (𝛽)
∫

𝑡

0

(𝑡−𝜏)
𝛽−1

((6𝑎

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
)

𝑥

+3𝑏

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(

∞

∑

𝑛=0

𝑝
𝑛

V
𝑛
)

𝑥

)

× 𝑏(

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
)

𝑥,𝑥,𝑥

) .

(26)

If we compare the terms of the same power of 𝑝 we obtain
the following integral equations. Note that when compar-
ing this approach with the methodology of the homotopy
perturbation method, one will obtain in this step a set of
ordinary differential equations something which needs to be
also solved with care, because one will need to choose an
appropriate initial guest. But with the current approach, the
initial guess is straightforwardly obtained as the Taylor series
of the exact solution of the problem under investigation;
this is one of the advantages that the approach has over
the HPM [22]. On the other hand, when comparing this
approach with the variational iteration method [23], one will
find out that we do need the Lagrange multiplier here or the
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correctional function. Also this approach provides us with a
convenient way to control the convergence of approximation
series without adapting ℎ, as in the case of [24] which is a
fundamental qualitative difference in analysis between HDM
and other methods. Therefore, comparing the terms of the
same power we obtain

𝑝
0

: 𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) , 𝑢

0
(𝑥, 0) = 𝑢 (𝑥, 0) ,

𝑝
0

: 𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) , 𝑢

0
(𝑥, 0) = 𝑢 (𝑥, 0) ,

𝑝
1

: 𝑢
1
(𝑥, 𝑡)

= −
1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

(6𝑎𝑢
0
(𝑢
0
)
𝑥
− 2𝑏V
0
(V
0
)
𝑥

+𝑎(𝑢
0
)
𝑥𝑥𝑥
) 𝑑𝜏,

𝑢
1
(𝑥, 0) = 0,

𝑝
1

: V
1
(𝑥, 𝑡)

= −
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝜏)
𝛽−1

× (3𝑏𝑢
0
(V
0
)
𝑥
+ 𝑏(𝑢
0
)
𝑥𝑥𝑥
) 𝑑𝜏,

V
1
(𝑥, 0) = 0,

...

𝑝
𝑛

: 𝑢
𝑛
(𝑥, 𝑡)

= −
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

× (6𝑎

𝑛−1

∑

𝑖=0

𝑢
𝑖
(𝑢
𝑛−𝑖−1

)
𝑥
− 2𝑏

𝑛−1

∑

𝑖=0

V
𝑖
(V
𝑛−𝑖−1

)
𝑥

+𝑎(𝑢
𝑛−1
)
𝑥𝑥𝑥
)𝑑𝜏,

𝑢
𝑛
(𝑥, 𝑡) = 0,

𝑝
𝑛

: V
𝑛
(𝑥, 𝑡)

= −
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

× (3𝑏

𝑛−1

∑

𝑖=0

𝑢
𝑖
(V
𝑛−𝑖−1

)
𝑥
+ 𝑏(V
𝑛−1
)
𝑥𝑥𝑥
)𝑑𝜏,

V
𝑛
(𝑥, 𝑡) = 0.

(27)

Integrating the above, we obtain the following series solu-
tions:

𝑢
0
(𝑥, 𝑡) =

𝜆

𝑎
(sech(1

2
√
𝜆

𝑎
𝑥))

2

,

V
0
(𝑥, 𝑡) =

𝜆

√2𝑎
(sech(1

2
√
𝜆

𝑎
𝑥))

2

.

(28)

For the sake of simplicity we put the following:

𝑑 =
𝜆

𝑎
, 𝑑

1
=

𝜆

√2𝑎
, 𝑚 =

1

2
√
𝜆

𝑎
,

𝑢
1
(𝑥, 𝑡)

=
4𝑚𝑡
𝛼

Γ (1 + 𝛼)

× (−𝑏𝑑
1

2

+ 𝑎𝑑 (3𝑑 − 5𝑚
2

) + 𝑎𝑑𝑚
2 cosh (2𝑚𝑥))

× (sech (𝑚𝑥))4 tanh (𝑚𝑥) ,

V
1
(𝑥, 𝑡) =

2𝑏𝑑
1
𝑚𝑡
𝛽

Γ (1 + 𝛽)
(3𝑑 − 10𝑚

2

+ 2𝑚
2 cosh (2𝑚𝑥))

× (sech (𝑚𝑥))4 tanh (𝑚𝑥) ,

𝑢
2
(𝑥, 𝑡)

=
1

Γ (1 + 𝛼) Γ (1 + 𝛽) Γ (0.5 + 𝛼) Γ (1 + 𝛼 + 𝛽)

× (2
1−2𝛼

𝑚
2

√𝜋𝑡
𝛼

Γ (1 + 𝛽)

× (−2𝑏
2

𝑑
2

1
𝑡
𝛽

× (−12𝑑 + 44𝑚
2

+ (9𝑑 − 38𝑚
2

)

× cosh (2𝑚𝑥) + 2𝑚2 cosh (4𝑚𝑥)

× Γ (1 + 2𝛼) + 𝑎𝑡
𝛼

× ( −8 (2𝑏𝑑
2

1
(−3𝑑 + 13𝑚

2

)

+𝑎𝑑 (18𝑑
2

− 111𝑑𝑚
2

+ 151𝑚
4

))

+ (4𝑏𝑑
2

1
(−9𝑑 + 49𝑚

2

)

+3𝑎𝑑 (36𝑑
2

− 272𝑑𝑚
2

+ 397𝑚
4

))

× cosh (2𝑚𝑥)

− 4𝑚
2

(4𝑏𝑑
2

1
− 15𝑎𝑑 (𝑑 − 2𝑚

2

))

× cosh (4𝑚𝑥) + 𝑎𝑑𝑚4 cosh (6𝑥𝑚) )

× Γ (1 + 𝛼 + 𝛽) ) (sech (𝑚𝑥))8)) ,
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V
2
(𝑥, 𝑡)

=
1

Γ (1 + 𝛼) Γ (1 + 𝛽) Γ (0.5 + 𝛼) Γ (1 + 𝛼 + 𝛽)

× (2
1−2𝛽

𝑚
2

√𝜋𝑡
𝛽

Γ (1 + 𝛼) (sech (𝑚𝑥))8

× (𝑏𝑡
𝛽

(−27𝑑
2

+ 411𝑑𝑚
2

− 1208𝑚
4

+ 3 (6𝑑
2

− 124𝑑𝑚
2

+ 397𝑚
4

)

× cosh (2𝑚𝑥) + 3𝑚2 (9𝑑 − 40𝑚2)

× cosh (4𝑚𝑥) +𝑚4 cosh (6𝑚𝑥))

× Γ (1 + 𝛼 + 𝛽)

+ 12𝑡
𝛼

(−𝑏𝑑
2

1
+ 𝑎𝑑 (3𝑑 − 5𝑚

2

)

+𝑎𝑑𝑚
2 cosh (2𝑚𝑥)) Γ (1 + 2𝛽)

× (sinh (𝑚𝑥))2)) .
(29)

And so on, using the package Mathematica, in the same
manner, one can obtain the rest of the components. But,
here, few terms were computed and the asymptotic solution
is given by the following:

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) + 𝑢

1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡) + 𝑢

3
(𝑥, 𝑡) + ⋅ ⋅ ⋅ ,

V (𝑥, 𝑡) = V
0
(𝑥, 𝑡) + V

1
(𝑥, 𝑡) + V

2
(𝑥, 𝑡) + V

3
(𝑥, 𝑡) + ⋅ ⋅ ⋅ .

(30)

4.1. Numerical Solutions. The following figures show the
graphical representation of the approximated solution of
the system of the time-fractional coupled-Korteweg-de-Vries
equations for 𝜆 = 1, 𝑎 = 𝑏 = 1.

Note that the below figure show that the coupled solution
of KDV equation is not only the function of time and
space but also an increasing function of the fractional order
derivative, which are 𝛼 and 𝛽. The approximate solution of
main problem has been depicted in Figures 1, 2, 3, and 4
which is plotted inMathematica according to different 𝛼 and
𝛽 values.

It is important to note that if 𝛼 = 𝛽, 𝑎 = 1, and 𝑏 = 3, the
exact solution of the coupled-KDV equations is given as

𝑢 (𝑥, 0) =
𝜆

𝑎
(sech(1

2
√
𝜆

𝑎
𝑥 − 𝜆𝑡))

2

,

V (𝑥, 0) =
𝜆

√2𝑎
(sech(1

2
√
𝜆

𝑎
𝑥 − 𝜆𝑡))

2

.

(31)

Thus, to test the accuracy of the relatively new analytical
technique, we represent in Table 1 the numerical values of the
approximate and the exact solutions and the results obtained
in [20].
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Figure 1: Approximate solution for 𝛼 = 0.75 and 𝛽 = 0.45.
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Figure 2: Approximate solution for 𝛼 = 0.75 and 𝛽 = 0.45.
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Figure 3: Approximate solution for 𝛼 = 1 and 𝛽 = 0.9.
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Table 1: Numerical values of the approximate, exact solutions and the results obtained in [20, 21].

𝑥 𝑡 𝑢(𝑥, 𝑡) exact 𝑢(𝑥, 𝑡) approximate [20] Error for [20] Error approx

−10 0.1 0.000164305 0.000164334 0.000164384 2.99039 × 10
−8

2.95039 × 10
−8

0.2 0.00014867 0.000148901 0.000148991 2.33335 × 10
−7

2.30335 × 10
−7

−5 0.1 0.0240923 0.0240963 0.02409673 3.96592 × 10
−6

3.93592 × 10
−6

0.2 0.0218248 0.0218556 0.02185586 0.0000338049 0.0000308049

5 0.1 0.0240923 0.0240963 0.02409653 3.97592 × 10
−6

3.93592 × 10
−6

0.2 0.0218248 0.0218556 0.02185576 0.0000378049 0.0000308049

10 0.1 0.000164305 0.000164334 0.000164344 2.96039 × 10
−8

2.95039 × 10
−8

0.2 0.00014867 0.000148901 0.000148931 2.37335 × 10 2.30335 × 10
−7

𝑥 𝑡 V(𝑥, 𝑡) exact V(𝑥, 𝑡) approximate [20] Error for [20] Error

−10 0.1 0.000116181 0.000116202 0.000116232 2.18624 × 10
−8

2.08624 × 10
−8

0.2 0.000105126 0.000105289 0.000105259 1.64872 × 10
−7

1.62872 × 10
−7

−5 0.1 0.170358 0.0170386 0.0170387 2.88312 × 10
−6

2.78312 × 10
−6

0.2 0.0154325 0.0154542 0.0154552 0.0000287824 0.0000217824

5 0.1 0.170358 0.0170386 0.0170389 2.98312 × 10
−6

2.78312 × 10
−6

0.2 0.0154325 0.0154542 0.0154562 0.0000247824 0.0000217824

10 0.1 0.000116181 0.000116202 0.000116252 2.09624 × 10
−8

2.08624 × 10
−8

0.2 0.000105126 0.000105289 0.000105299 1.72872 × 10
−7

1.62872 × 10
−7
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Figure 4: Approximate solution for 𝛼 = 1 and 𝛽 = 1.

Table 1 comparison shows that the solutions obtained in
this paper are more accurate than those obtained in [20].

5. Conclusions

We derived approximated solutions of nonlinear fractional-
coupled KDV equations using the relatively new analytical
technique, the HDM. We presented the brief history and
some properties of fractional derivative concept. It is demon-
strated thatHDM is a powerful and efficient tool of FPDEs. In
addition, the calculations involved in HDM are very simple
and straightforward. Comparing the methodology HDM to
HPM, ADM [25], VIM, and HAM have the advantages.
Disparate the ADM, the HDM is free from the need to use
theAdomianpolynomials. In thismethod,we donot need the

Lagrange multiplier, correction functional, stationary condi-
tions, or calculating heavy integrals, as the solutions obtained
are noise free [26], which eliminate the complications that
exist in the VIM. In contrast to the HAM, this method is not
required to solve the functional equations in iteration since
the efficiency of HAM is very much dependant on choosing
auxiliary parameter. In contract to HPM, we do not need to
continuously deform a difficult problem to another that is
easier to solve. We can easily conclude that the homotopy
decompositionmethod is a well-organized analytical method
for solving exact and approximate solutions of nonlinear
fractional partial differential equations.
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