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By means of novel analytical techniques, we have established several new oscillation criteria for the generalized Emden-Fowler
dynamic equation on a time scale T, that is, rOIZ2O1 221" + f(t,x(8(t))) = 0, with respect to the case J:jo r Y% (s)As = 0o

and the case _[too r Y%(s)As < 0o, where Z(t) = x(t) + p()x(t(t)), v is a constant, | f(t,u)| > q(t)|u‘6|, B is a constant satisfying
0

a > 3> 0,andr, p, and q are real valued right-dense continuous nonnegative functions defined on T. Noting the parameter value

« probably unequal to f3, our equation factually includes the existing models as special cases; our results are more general and have

wider adaptive range than others’ work in the literature.

1. Introduction

In the past two decades, the theory of time scales proposed by
Hilger [1] in 1990 has received extensive attention because of
its advantage to unify continuous model and discrete model
into one case under the scholars’ investigation. Numerous
authors have considered many aspects of this new theory.
Many of those results focus on oscillation and nonoscillation
of some equations on time scales. Reader can refer to articles
[2-25] and there references cited therein.

In this paper, we consider the oscillatory behavior of
the solutions of second-order generalized Emden-Fowler
dynamic equation of the form

(r(t) |22 0| 2 (t))A+f (Lx (@) =0, teT,t>t,,
6))

with Z(t) = x(t) + p(t)x(z(t)), parameter constant «, and
conditions (H;)-(Hy):

(H;) T is a time scale which is unbounded above.
[ty,00)y := [ty,00) N T, where t, € T witht, > 0,
C.4(T,S) denotes the collection of all functions f :
T — S which are right-dense continuous on T;

(Hy) r(t) € Cy(T, (0,00)), R(t) := [} 7 (9)Ass

(H3) P(t) € Crd(—[l—7 [0) 1]))

(Hy) 7(t) € Cq(T,T), 7(t) < t,fort € T, lim, , ,7(t) =
00,8(t) € Cy(T, T),8(t) <t fort € T,lim,_, ,0(t) =
003

(Hs) 8%t > 0 is right-dense continuous on T, and
8(o(t)) = o(8(t)) for all t € T, where o(t) is the
forward jump operator on T;

(He) f(t,u) € C(T x R,R) is a continuous function such
that uf(t,u) > 0, for all u#0 and there exists a
positive right-dense continuous function g(t) defined
on T such that | f(t,u)| > g(t)|uP| for all t € T and for
all u € R, where f3 is a constant satisfying o > 3 > 0.

As a solution of (1), we mean a function x(t) such
that x(¢) + p(t)x(z(t)) € Crld(tx,oo)T and r(t)|[x(t) +
POXEENI [ [x(t) + pOXEEN]® € Clylty 00)r £ >ty
and satisfying (1) for all t > ¢, where Crld(tx,oo)Tr denotes
the set of right-dense continuously A-differentiable functions
on (t,,00)y. In the sequel, we restrict our attention to those
solutions of (1) which exist on the half-line [t,,00); and
satisty sup{|x(¢)| : t > T} > 0 for anyT > t,. We say that



a nontrivial solution of (1) is oscillatory if it has arbitrary large
zeros, otherwise we say that it is nonoscillatory. We say that
(1) is oscillatory if all its solutions are oscillatory.

Among researchers in the oscillation of functional equa-
tions with time scales, Agarwal et al. [2] studied a special case
of (1), which is

(ro(yo+p®y-u))) o
+f(ty(t—98,))=0, teT, t>tg,
where
|f w]=q@) ul,
3)

(oe]
J 7 (s) As = o0,
t()

7, and §,, are positive constants and y > 0 is a quotient of odd
positive integers. They got some oscillation criteria of (2) for
the case when y > 0 under the condition 2(t) = 0, and the
case when y > 1 under the condition u(t) > 0. Subsequently,
for the case when y > 1 is an odd positive integer, Saker
[7] did not require the conditions 2(t) = 0 and u) > 0
and obtained some new oscillation results for (2) under the
conditions (3).

Very Recently, in [10-13], Saker et al. have considered the
oscillation of several equations with time scales. For example
in paper [13], the author is concerned with the quasilinear
equation of the form:

(pO (I ®+r@ye@)) +FErEm) =0,
@)

where | f(t,u)| > q(t)luﬁl, y > 0,and 8 > 0 are ratios of odd
positive integers.

However the value range of the equation parameters in
our work is wider than those in [2, 7, 10-13] and the equation
itself is also different from those in [2, 7, 10-13]. In fact, our
approach in constructing the criteria is different from those
of Saker and his coauthors’ work.

For (2) with y > 1 being a quotient of odd positive
integers and without the restrictive conditions r2(t) = 0 and
without u(t) > 0, Wu et al. [21] obtained several oscillation
criteria for the equation:

OO+ pOya®)) + £ ErEm) =0,

teT, t=t,
)

under the conditions (3).
Chen [25] investigated the following second-order
Emden-Fowler neutral delay dynamic equation

(r ]« @< (t))A Hfyem)=o

teT, t=t,
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with x(¢) = y(t) + p(t) y(z(t)), under the conditions (3). He
obtained some oscillation criteria when y > 0 is a constant
and without assuming the conditions r2(t) = 0 and u(t) > 0.

All the above results cannot apply to our model (1) since
our model (1) is more general than (2), (6) and those in
[10-13], and the function f(¢,u) in (1) satisfies (Hg) which
makes our model (1) distinguished from all the existing cases.
To the best of our knowledge, nothing is known regarding
the necessary and sufficient conditions for the qualitative
behavior of (1) with & # 5 in (H) on time scales.

In this paper, even if a# 8 in (H¢) and there is no
assumptions 2(t) > 0 and u(t) > 0, we have established
several new oscillation criteria of (1) for the both cases

t
tlim J r Y% (s) As = oo, (7)
—00 Jg

t
tlim J % (s) As < 0. (8)
=0 Jy,

Factually, we have employed new analytical techniques to
present and construct our criteria in Section 3 after reciting
two useful lemmas in Section 2. Our results have extended
and unified a number of other existing results and handled
the cases which are not covered by current criteria. Finally,
in Section 4 two examples are demonstrated to illustrate the
efficiency of our work with relevant remark.

2. Some Lemmas

Lemmal (see [25]). Suppose that (Hs) holds. Let x : T — R.
Ifo exists for all sufficiently large t € T, then (x(B@))* =
x™(8(£))8%(t) for all sufficiently larget € T.

Lemma 2 (Bohner and Peterson [26, Theorem 1.90]). Assume
that x(t) is A-differentiable and eventually positive or eventu-
ally negative, then

(x* )" = « “1 [(1-h)x(t) + hx (o (t))]“_ldh} ().
0
9)

Lemma 3 (see [27]). Let ¥(u) = au — bu™VA where a, b, A
are constants,a = 0, b > 0, A > 0, and u € [0,00). Then ¥(u)
attains its maximum value on [0,00) atu = u* := (aAl/b(A +
1))A, and

/XA a/\+l

Yuw=Yu")= ———. 10
nax W () =¥ () T (10)
3. Main Results
The case
t
tlim J % (s) As = 0. 1)
-0 Jy



Abstract and Applied Analysis

Theorem 4. Assume that (H,)-(Hg) and (7) hold. If there
exists a function &(t) € Crld('l]', (0, 00)) such that for any positive
number M,

- t
fim [ E©PO-Q@)as=co, @
where

P =q)[1-p@G e

“M(R By (5 s ot
0" ( (G(S)L)H r( (s))(££ (Z))*) w
(a+1)* BRE (s) (8% (5))

(£ 9), = max[£ 5),0},

then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x(t),
then there exists T, > t, such that x(t)#0 for all t > T.
Without loss of generality, we assume that x(t) > 0, x(z(t)) >
0 and x(6(t)) > 0 for t > T, because a similar analysis holds
for x(t) < 0, x(7(t)) < 0 and x(6(¢)) < 0. Then the following
are deduced from (1), (H;), and (Hy):

Z{t)zx({t)>0 fort=T,

(14)
(r |z 0| 2 (t))A <0, t>T,

Therefore r(t)|Z%()* ' Z2(¢) is a nonincreasing function
and Z2(t) is eventually of one sign.
We claim that
Z5t) >0 or ZM(t)=0, t>T,. (15)

Otherwise, if there exists a t, > T, such that Z%(t) < 0 for
t > t,, then from (14), for some positive constant K, we have

) (-2* )" <-K, t>1, (16)

that is,

1/«
—ZA(t)z(m> , t=tg, 17)

integrating the above inequality from ¢, to ¢, we have
Z®<Z ()~ K" (R -R(1)). (18)

Lettingt — o0, from (7), we get lim, _, . Z(t) = —00, which
contradicts (14). Thus, we have proved (15).

We choose some T} > T, such that §(t) > T, for t > Tj.
Therefore from (14), (15), and the fact §(t) < o(t), we have
that

ro@) (28 (0@)) <r@em (28 ©w))’, t=1,
(19)

which follows that

A A r(o )\
ZA61)> 2 ("“”(m) CtsT. (20)

On the other hand, from (1), (Hy), and (15), we have

(r)(2°©)")" +q@® (ZGE®) - pG ) x (xS )

<0, t=T,.
(21

Noticing (15) and the fact Z(t) > x(t), we get
(ro(2°®)) +pwZF @) <0, t>1, @2

where p(t) = g(t)[1 - p(8(£))]".
Define

rv(z* )"

23
Z500) fort > T). (23)

w(t) = &(1)

Obviously, w(t) > 0. By (22), (23) and the product rule and
the quotient rule, we obtain

_ &
ZF (6 1))

w (1) (re)(2° ©)")" +r @ ®) (2" e ®)"

) 2P @) -E® (2P G @)
ZF (8(1)) ZF (8 (o (1))

5 (1) y
E(o (1)

ro®) (2 @) E0 (£ 6 ®))"
ZF (5(1)) ZF (8 (o (1)) '

< -8@p)+ (0 (1))

(24)

Now we consider the following two cases.

Case 1. Let 3 > 1. By (15), Lemmas 1 and 2, we have

(ZF 1))

=P “01 [(A-h)Z (5 (1) +hZ(S(o (t)))]ﬁfldh} 2)

X (Z (8 )™
>BZEWNFZM )8 ().



From (H;), (20), (23)-(25), and the fact that Z(¢) is nonde-

creasing, we obtain

w® (t)
< £0F0+ 2D wo )
E(o(b)
r@)(2* ) E ) Bz G )28 6(1)8" (1)
ZP (3 (1) ZF (8 (0 (1))
=l B
SLOPO+ Fo R E®)
r@) (20 w) 0 Bzt (6 1)8* 1)
ZP1 (8 (0 (1))
A
<EOF0 + o )

B @) (2 e w) T8 @
7P (5 (0 (1))

r(o (1))
8 < 0) >
I0)
E(o (1))

_ BE ()8 (1)
E @ N2 B (@ ))) P 6 )™

x w(tx+1)/oc (O' (t))
0
E(o ()

~ BE (1) 6° ()
E 0Nz @ )P 6 ()™

x WV (g ().

=-E()pt)+

w (0 (1))

=-EMp®)+ w (0 (1))

(26)

Case 2. Let 0 < 8 < 1. By (15), Lemmas 1 and 2, we get

(ZF )"

=B {j [(1-h)Z (8 (1)) + hZ (8 (o (t)))]’“dh}
0 (27)

X (Z (8 ®))*
> BZ (S (o) 286 1t) 6" (t).
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From (H,), (Hs), (20), (23)-(25), and the fact that Z(t) is
nondecreasing, we have

w® ()
I0)
E(o (1))

r(e)(2* @) (1) Bzt 2" (68" (1)
ZF (8(1)) ZF (3 (o (1))

0]
E(o (1)
r (o () (2" (0 ) € BZ* (8 (1) 8* (1)

ZF1 (8 (a (1))

& (t)
(o (1)

<=EW)pt)+

w (0 (1))

=S p®+

w (o (1))

<=E®Op@®)+ w (0 (1))

B (2 em) e (re® )““
ZPL(8 (0 (1)) r (8 (1)
PN 1)
=EOPO+ 5o (t))w( a(t)
BE (1) 8 (¢)

CE@ )26 (0 ) P (6 (1))

x WV (g (1))

o @
=EOPO+ 5w @)
BE ()8 (1)

T E@ONTZ (0 ) P (6 ()

x WV (g ().
(28)

Therefore, for § > 0, from (26) and (28), we get
0)
E(o ()

BE (1) 8™ (1)
CE@O)THZ (@ 0) P (8 (1)

x WV (g (1))

wh ()< —EM D)+ w (o (1)

(29)
From (14) and (15), there exists a constant M; > 0 such that
r(Z°0) <M, t>T,, (30)

that is

1/«
V4 (t)<<]\?t)> , t=T,, (31)
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integrating the above inequality from T; to t, we have
Z(t) < Z(Ty) + M}'* (R(t) - R(T})). (32)
Thus, there exist a constant M, > 0, and T, > T; such that
Z(t) S MyR(t), t=T,, (33)

so we have

2P (o (1) < My PR (o (1) P

(34)
= My(R(o (1) P, t>T,
where M; = ng—ﬁ)/oc'
From (29) and (34), we obtain
W< -EOF0 + 2D wio®)
h E(o (1)
BE () 8% ()

T E@ON MR (0 ()P (8 (1))

xwV (o (1), t>T,.
(35)
Let
o) = pE (1) 8% (1) ,
& (0 (0" My (R (0 (1))@ P/(r (8 (1))*
(36)
then W(¢) > 0. So from (35) and (36) we get
A
W< ~EOF0 5w )
~¥ (w0 (1)
X (37)
<-EWp@)+ (¢ (t))+ (o (1))
N w\o
L ANIPI0)

~¥ (O @ 1),

where (£4(t)), = max{£*(¢),0}.

5

Taking a = (EA(t))+/E(0(t)), b = ¥(t), by Lemma 3 and
(37), we obtain

_ a® €M), )Ml
f(t) p (t) + ((X + 1)0c+1\I/oc (f) ( E (0 (f))

wh (1) <

= EMp(t)

o ((EA(tm )"‘“
(o + D* e )\ & (o (1))

= - &®Pp®)

a+l

a“ M5 (R (o () Fr@ @) ((8* ®),)
(a+1)*! B (1) (82 (1))

=-|1E@Op®

S MREO) FrEm) (o))"
(o + 1)1 B (1) (62 (1))"

>

(38)

where M, = M3.
Integrating the above inequality (38) from T, to ¢, we have

w(t) <w(T,)
- L <£ PO - (MR @) Fr (G ()

< ((89),)")
x (o ™1 (5) (0 9)") ) As

T2
<w(Ty) + j E(5)P(s)As

0



- j (E ()P (s) - («x“M4<R (@ () Pr©6(s)
% ((EA (S))+)oc+1>

x((oc + 1) BEY (s) (6A (s))m)_1 > As.

(39)

Since w(t) > 0 for t > T, we have

j <£ )

_“aM4(R (o (5)))“_ﬁr (6(s)) ((EA (S))Jr)(ﬁl A
(o + 1)**1 Bage (5) (85 (5))"

T,
<w(T,) + J; EG)Pp(s)As—w (1)

T,
<w(T,) + J; Es)P(s)As,

(40)

which contradicts (12). This completes the proof of Theo-
rem 4. O

Next, we use the general weighted functions from the
class f which will be extensively used in the sequel.

Letting D = {(t,s) € Tx T : t > s > t,}, we say that a
continuous function H(t,s) € C,4(D, R) belongs to the class
Fif

(i) H(t,t) =0 fort > tyand H(t,s) > 0 fort > s > t,,

(ii) H(t,s) has a nonpositive right-dense continuous A-

partial derivative H*:(t, s) with respect to the second
variable.

Theorem 5. Assume that (H,)-(Hg) and (7) hold. If there exist
a function H(t,s) € f and a function &(t) € Cid('l]', (0,0))
such that for any positive number M,

e L [H (698 P() U t9)]As = oo,
(41)
where
&) =q©[1-p@E )], (42)
U(ts)

_ (g, (6:9) E @O MR (@ () Fr3(s)
(o + )™ BH(H (£,5))"8 (5) (8% ()"

(43)
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- { s HE)(E), }
¢, (t,s)=max {H = (t,s) + —————=,0¢, (44)

(o (s)
(&% (), = max{&* (s),0}, (45)

then (1) is oscillatory.

Proof. We proceed as in the proof of Theorem 4 to have (37).
From (37) we obtain

("), (o (1)
Ee@) (46)

¥ ()W (0 (1)),

ENpt) < —wh(t)+

t>T,.

Multiplying (46) (with t replaced by s) by H(t, 5), integrating
it with respect to s from T, to t for t > T, using integration
by parts and (i)-(ii), we get

t
| HE9E@ P s

t
< —J H(l‘,s)wA (s) As
T,

£ H(t9) (8% (),
J ——————w(o(s))As

T Ewew)

t
- J H(t,s) ¥ (s) w* ™V (5 (s)) As
T,

=H(t,T,)w(T,) + Li H" (t,5)w (0 (s)) As

2

+Jt H(t,s) (fA (s))+ G )A
L &) O

- Jt H (t,s) ¥ (s) w ™% (6 (s)) As

T,
=H(t,T,)w(T,)
t H (¢, A
+ JTZ <HA5 (t,s) + %)ww (s)) As

- Jt H (t,s) ¥ (s) w ™% (6 (s)) As
T,

=H(t,T,)w(T,)

+ JT: !(HA‘ (t,s) +

Ht,s) (&4 (9), o)
—_— o
Eoy )Y
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—H (t,5) ¥ (s) ™% (¢ () ] As

<H(tT,)w(T)

t
+ j 6, (69w (o (5)
T,

—H (t,5) ¥ (s) w0 (0 () ] As,

(47)

where ¢_ (¢, s) is defined as in (44).
Taking a = ¢, (t,5), b = H(t,s)¥(s), by Lemma 3 and
(47), we obtain

L H(ts)E(s) P (s) As
<H(LT) w(T,)
* L [(““(% ()" E (0 ()™
x M5 (R (o )N Pr©6(s) )
x <(¢x + 1) BY(H (8, 5))*
A e
< (0°0)") |as
<H(:T)w(T,)
i J [(vc“(sm ()" € (@ ()™
x M,(R (0 ())* Pr (8 (s)) )
X ((oc + 1) BX(H (t,5))"
« -1
< (0°©)") |as

t
<H(tty)w(T,) + J U (t,s) As,
T,
(48)
where M, = M3,

U(t,s)

_ 0 (g, (6:9) E @ @) MR (@ () Fr (8(5)

(a+ D)™ BH(H (2,5))"8% (s) (8° ()"
(49)

7
Then it follows that
1 t _
m JTZ [H (t, S) 5 (S) P (S) -U (t) 5)] As <w (Tz) .
(50)
Thus we get
1

H(tt,) L [H(t,s)E(s)p(s) - U (t,5)] As

_ m (LT + J;) [H(t,s)E()P(s) U (t,5)] As

1 2 _
<w(T,)+ m L} [H(t,s)E(s)p(s)—U(t,s)] As

TZ
<w(n)+ | [ OO e
T,
<w(Ty) + j E(5)P(s) As.
° (51)
Then

— 1 ! _
tlgrolom L [H (t,)&(s) P (s) —U (t,5)] As < o0,
(52)

which contradicts (41). This completes the proof of Theo-
rem 5. O

Theorem 6. Assume that (H,)-(Hg) and (7) hold and 3 > 1.
Furthermore, assume that r*(t) > 0. If there exists a function
&(t) € Cl4(T, (0,00)) such that for any positive number M,

Y
Jim L (EE) P () - Q(s) As = 00, (53)
where
) =q©)[1-p@©)),
(8 ) (r (@ (NP F= G
Q(s) =

4BE(5) (8 (s) /210 () MoF
then (1) is oscillatory.

Proof. We proceed as in the proof of Theorem 4 to have (24).
On the other hand, from (22) and (H;), we deduce

(ro)(z°®)) <o, t>T, (55)

and from r*(t) > 0 for t > ty» we can get ZA@) is

nonincreasing. Hence, we have

20-2(1)= [ 2©as>(-1)2 0. 6o

1



which implies
Z@) > ng ), fort>T,> 2T, (57)

Choosing T; = T, such that §(¢) > T, for t > T, we get

5(t)

Z@ @)= TZA (1),

for t > Tj. (58)

From (Hg), (15), (20), (24), (25), (58), and as Z“(t) is
nonincreasing, we obtain

5 (t)
E(a(t)

wh ()< —EM D)+ w (o (1)

- (r (o) (2" (1) E® BZ 6 1)

x 7% (8() 8° (¢) ) (2 G ®))

- 4 (1)
-&Mp@)+ mw((f (t)

N

- (r (0 @) (2" @ @) Ew

x B6®) /22> E )2 6.1 8 () )

< (Z# @@ ®))

5 (1)
E(a(t)

- (ﬁf O r @2 (@) S @ 26 (t))

VA

—E@p@®)+

w (o ()

r (o () )’3/“

x (72 (6 (0 (t))))_1< TG O)

5 (1)
E(a(t)

- (BE ) 3 (1) /276" 1)

-§@p@)+

w (o ()

x <£2 (0 (&) (r (0 )P (o (1))

-1

x (r (8 (t)))‘”"‘) w? (o (t)

Abstract and Applied Analysis

5 (1)
E(o @)

- (BE® @ 1) /278" 1)

< -&@pH)+ w (o (1))

x <£2 (0 () ( (@ (O) P (22 (1)

-1

x (r (8 (t)))‘”“) w? (0 (t)).

(59)

Now, from the fact that Z2(¢) is nonnegative and nonincreas-
ing, there exists a T, > T; sufficiently large such that
1
ZA8) < —, t=T, 60
(t) M 4 (60)

holds for some positive constant M and therefore
a—pB 1\* P
VAIG) IS (ﬁ) , t=T,. (61)

Combining (59) and (61), we obtain that

(1)
E(o(t))

L EGE® /R @M P (62)
E (0 (1)) (r (o (1)) P (8 (1))P*

x w’ (o (1)),

W) < —EQ DB+ w (o (t)

t>T,.
Letting
BE(£) (B () /2)P 6% (t) M*F

T 20®) (r (e )P0 (1)
then ®(¢) > 0. So

(63)

0]
E@ ()
L (B w)
49 (1) & (0 (1)

- [Vcb o) - —_ &£ 0
2/0 () (o (1))

1 (o)
+ —_—
40 (1) & (0 (1))

w(o (1) - @) w (o))

wh ()< —ER D)+

-&Wp)+

N

-&®)p®)

- [E(t)f(t)

(O e Pee )"
4BE(H) S (1) [2)F '8y MaP |

(64)
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Integrating the above inequality from T, to ¢, we have

w(t) <w(T,)
- J <§ ()P ()
T,
~(( ©) @ P 0 (5))'%)

x(4BE (5) (3 () 2)F18% (5) Mo F) ! ) As

T,
<w(Ty)+ L E()P(s)As

- L <€(s)§(s)

~((8 ©) @ P 6 )")

oo
(65)

Since w(t) > 0 for t > T,, we have

o (B E) @R G )
J E (S) p (S) - — As
fo 4BE () (8 (s) /2)P 182 (s) Mo

T, B
<w(T,) + L EG)P(s)As—w(t)

T,

<w(Ty) + J E(s) P (s) As.

ty

(66)

which contradicts (53). This completes the proof of Theo-
rem 6. u

Theorem 7. Assume that (H,)-(Hg) and (7) hold and f3 > 1.
Furthermore, assume that r*(t) > 0. If there exist a function
H(t,s) € f and a function &(t) € Crld(T, (0, 00)) such that

A
H (t,5) + %é))(s) <0, fortzs=t, (67)
T e j H(ts)E(s)P(s)As =00,  (68)
where
e =q)[1-p@ ), (69)

then (1) is oscillatory.

Proof. We proceed as in the proof of Theorem 6 to have (64).
From (64) we obtain

0)
Eo )" (o) (70)

D ()W (o),

EMPWB) < —wh () +

t>T,.

Multiplying (70) (with ¢ replaced by s) by H(t, s), integrating
it with respect to s from T, to t for t > T,, using integration
by parts and (i)-(ii), we get

t
jT H (t,5)E(9) P (s) As

¢ A
J Ht5)E () &) w (o (s)) As

! A
<—J H(t,s)w" (s) As + r E()

T,

_ Jt H (t,s) D (s) w” (0 (s)) As
T,

=H(tT,)w(T,) + Li H™ (t,5)w (0 (s)) As

A
+Jt HE986) ) (o) s

T, §(o(s)
_ Jt H (t,5) © (s) w” (0 (s)) As
T,

=H(t,T,)w(T,)

t
+<[
T,

4

H(t,s)&" (s)

AS
(H A TPTE))

)w (o (s)) As

- Jt H(t,s) @ (s)w” (o (s)) As.

(71)

Using (67) in the above inequality (71), we get

J-T H(t,5)&(s)p(s)As < H (t,ty) w(Ty). (72)

Then it follows that

1 f _
o) Jn H(t,s)&(s)p(s)As <w(Ty). (73)
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Thus we get

1

t
m L) H(t,s)E(s) p(s)As

_ 1 ) <j:+j;4)H(t,s)E(s)§(s)As

1
<‘LU(T4)+W
)

T, H ,
<w(T,) + L 7, ((tt fi)))

T,
L H(ts)E()P()As  (74)

§(s)p(s)As

T,
<w(Ty) + Jt E(s)p(s)As.

Then

. 1 t _
tlgréom LO H (t,s)E(s) p(s) As < oo, (75)

which contradicts (68). This completes the proof of Theo-
rem 7. O

Theorem 8. Assume that (H,)-(Hg) and (7) hold and 3 > 1.
Furthermore, assume that r*(t) > 0. If there exist a function
H(t,s) € f and a function &(t) € cﬁd(wr, (0, 00)) such that for
any positive number M,

— 1
lim ————
t=coH (t,1,)

xj [H(t,sms)ﬁ(s)
to

(H™ (1, 9)+H (t,9) 8 (5) [E (0 (5))) ]
- As=o00,
4H (t,s) D (s)

(76)

where

P =g [1-p@E )]

BE(s) (8 (s) /2)P7 8" (s) M*F
5= a—f3)/a Jo’
E(0(s) (r (0 () P/*(r (8 (s))°

(77)

then (1) is oscillatory.

Abstract and Applied Analysis

Proof. We proceed as those in the proof of Theorem 7 to have
(71), that is,

t
L H (t,5)E(s) P (5) As

<H(t,Ty)w(Ty)

P A, H(t,5) & (s)
+jT4 (H (4.9 + =g >w(a(s>>As

_ Jt H (t,s) @ (s)w’ (0 (s)) As
T,

=H (t’ T4) w (T4)

Jt (H™ () + H(t,9) E () [E(0 ()’
+ As

T, 4H (t,s) D (s)
_ J t [HAS (t,5) + H (5,98 (5) § (0 (s)
T, 2+/H (t,5) D (s)

2

—\VH (t,s) © (s)w (o (s)) | As

<H(t,Ty)w(Ty)

Jt (HY 49+ HE9E O £ 0 (0)
- H (6,5) ® (s) )

<H (1)) w(Ty)

C(HS (49) + H(L9)E () [E@ () .
* L, 4H (6,5 D (5) ;
(78)
Then it follows that
1
H(t,t,)

H (t,5)&(s) p(s)

t
XJ
T,

(H™ (t,9) + H(t,9) E () [E(@ ()’

4H (t,s) O (s)
<w(Ty).
(79)
Thus we get
1 ¢ _
Ty L H(t,5)E(s) P (s)
A n, H(t,s) € (s) )2
<H A TTE)
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x (4H (t,s) ® (s))_ll As

B 1
© H(t,t,)
T,
x {j +jT} lH(t,sms)f(s)
A, H(t,s) & (s)
- (H R TATE)
x (4H (t,5) D (s))" ] As
1
sw (T4) + m

T4
X J
tO

H (t,5)&(s) p(s)

H (t,5) & (s) )2

A
_(H &) o)

x (4H (t,5) @ (s))‘1] As

<w(T,)
Tl H(,s) _
+th Ty 9P
N H(t,s)& (s) )’
‘(H G o) )

x (4H (t,s) H (¢, to)d)(s))_l] As

T4
<w(T,) + L E(s)P(s)As.

Then
— 1
lim ——
t=coH (t,1,)

t
XJ
to

H (t,5)&(s) p(s)

(H™ (t,5) + H (£,5) £ (5) [E (0 (5)))

)2

4H (t,s) D (s)

< 00,

which contradicts (76). This completes the proof of Theo-

rem 8.

The case

t — 0o

t
lim J r Y% (s) As < 0.
to

Theorem 9. Assume that (H,)-(Hg) and (8) hold and there
exists a T, € [ty,00)y such that pA(t) >0 7%0) = 0
fort = T,, and suppose that there exists a function &(t) €
Crld('l]', (0, 00)) such that (12) holds for any positive number M,
and there exists a function y(t) € Crld(TT, (0, 00)) satisfying
w(t) = t, yi(t) > 0,8(t) < t(y(t) fort > T, such that

for any positive number M and for every T, € [T, 00)y

lim Jt [P (5) V¥ (0 (s)) - G (s)] As = oo,

t— 00 T,

where

B
— 1
p(s)_q(s)(up(w(s))) ’

V(s) = JOO Y 4) At

y(s)
G(s)
a2y (5)) yA (s) if 0<ac<1
(06+ l)oc+1ﬁo¢M0¢—ﬁV (O' (S)) ’ ’
‘xzzx+1r—1/“ (v/ (5)) V(xz_1 (s) V/A (s) 1f(x 21,

(a+ 1)*' BEM*BVE (g (s))

then (1) is oscillatory.

Proof. Suppose to the contrary that x(t) is an eventually
positive solution of (1), then there existsa T, > T, > t, such
that x(t) > 0, x(8(t)) > 0, x(a(t)) > 0 forall t > T, (the
case of x(t) is negative and can be considered by the same
method). It follows form (H;) that Z(t) > x(¢t) > Ofort > T}.
From (14) it is easy to conclude that there exist two possible

cases of the sign of ZA@).
(80)

Case 1. Suppose Z(t) = 0 for sufficiently large , then we are
back to the case of Theorem 4. Thus the proof of Theorem 4

goes through, and we may get contradiction by (12).

Case 2. Suppose Z*(t) < 0 for t > T,. Define

re)(-z2 ) 2 )
w(t) = , t>T,.

ZF (y (1))

As Then w(t) < 0 for t > T,. From the fact that Z(¢) is positive

and nonincreasing, we get that

1

(81)
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holds for some positive constant M,,.
Noting that (r(O=Z2E))* 1 Z2@1)2 <o, y(t) > t, sowe
have

1/«
A < r(t) > 780, (87)
(v (@) < (r W ©) (t)
% (1)
Z%(s) < T ) Z85@), s>t (88)

Integrating the above inequality (88) with respect to s from
y(t) to v, we have

v

Z(v)<Z(w(t))+r1/“(t)ZA(t)J A% () A, (89)

y(t)

Letting v — 00 in the above inequality, we obtain
0<Z(y®)+r "z V(). (90)

From (86) and (90), we have

t>T. (91)

a-p =

1
——— <w@® V(@) <0,
MO

If0 < B < 1. From ZA(t) < 0, Lemmas 1 and 2, we have

(2 (y )"
=p “01 [(1=h) Z (y (&) + hZ (y (0 1)) ’1dh}
x(Z (y ®))" (92)
<p Hol 2P (y ) dh] Z% (y () v (1)

=BZF (y ) 2" (y ) v* (1)

From (1), (Hy), (85), and (92), we get

w® ()

1
- ZP(y ()

~(re@ (-2 @) 20 w) (2 v 1))

(ro (-2 )2 0)

Abstract and Applied Analysis

< (28 (v ) 28 (w o 1))

PACIO))
ZF (y (1))

<—q(t)
- (r (0 ®)(=2% (@ 1) 2 (o (¢)) B2F!

x (v (1)) 2" (w () v* (£) )

< (2 @) 2 (v o @)

«F (&)
=710 25y )

- (r (0 1) (-2 (0 1)) 2 (0 (1))

-1

x BZ5 (y () y* () ) (Z(w @) ZF (v (0 1))

*F (&)
ZF (y (1))

<—q(t)
- (r (@) (-2 (0 )" 2 (o (1))

x B2 (y )y 0 ) (27 (v )
(93)

If 5> 1. From Z2(t) < 0, Lemmas 1 and 2, we have

(2 (y )"
=s{[ 10-m 2z o)+ hzy e o)) an}
<(Z(y®))"
<B HO 7P (y (0 (1)) dh | Z% (v (1) v (1)

= BZF (w0 1)) Z* (y (1) v* ().
(94)

From (1), (Hg), (85) and (94), we get

w0 (ro (-2 )2 0)

1
CZE(y ()

- (r (@) (-2* @ @))”

x 2% 0 (1) (Z* (v <t>))A)
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x (28 (y ) ZF (y (0 1))

xF (3 (1)
ZF (y (1))

< -q()
- (r (0®) (=2 (@ )" 2% (o ()

x BZ" (y (1) y* (t) )

(2 v ) 2w 1)

xF (8(1)
ZF (y (1))

< —q()

- (r (0 ®) (-2 (@ t))" 2% (o (1))

-1

x BZ" (w (1) v (1) ) (Z**' (v 1))

(95)
Therefore, for 8 > 0, from (93) and (95), we get
w® (t)
xF (8 (1)
NEZICT0)
@) (-2 @) 2 @ 0) B2 (y ) y* )
ZF (y (1)) '
(96)

Noticing that p®(t) > 0 and 7%(t) > 0, from Z*(t) = x*(¢) +
P (B)x(z(t)) + p(a()x®(z())T"(t), we see that x*(t) < 0 for
t > T}, and from 8(t) < 7(y(t)) < w(t) we can get

LN B
PO (x(w(t)) x(r(w(t)))) )
7o)\ zem YO 5w

(reray)

97)
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Thus from (86), (87), (96), (97) and the fact that
(r(t)(=Z2(1)* ' Z2())* < 0, we have

wh ()< - p(b)

e ®)(-2" )" 2" @ B2 O "
ZF (y (1)

re) \'°
- (r(w(t)))

(=22 ®)" 2 0Bz Oy o)
ZF (y (1)

-p(®

, (t) 1/«
* (r (v (t)))

o2 )" 2% (1) Bz (1) v* (1)
©- ZF (y (1))

re) \'°
- (r(w(t)))

B
Py ©)

-p@) - (—w (£)) >,

IN

(98)

where B(t) = q(t)(1/(1 + p(y ().
That is

M(()‘X_ﬁ)/aII/A (t) (a+1)/a
——(~w(t <0,
re (y (1) — s (99)

t>T,.

w® (t) + p(t) +

Multiplying (99) (with ¢ replaced by s) by V*(o(s)), integrat-
ing it with respect to s from T to t, we have

t
VE@O w ) - V(T w(T,) - JT (V* () w (s) As

[ BV @ as
T

N I My PV (0 (9) ¥ ()

_ (a+1)/ax
. Ty (9)) (—w(s)) As < 0.

(100)



14

Next, we consider the following two cases.

Case (i) (let 0 < a < 1). From Lemma 2 and V2(t) =
—r Yy (t))y? () < 0, we have

V*@®)" = a “1 [(1-Rh)V () +hV (o (t))]“’ldh} VA ()
0

>a “01 Vel (o (1) dh] VA (@)

=aV* (e () V(D).
(101)

From (100) and (101), we get
Vi w () - V(T w(T))

- Jt aV¥ (o (s) V2 (s) w (s) As
Ty

[ POV
Ty

(~w (s)“ VA < 0.

N r BM PV (0 () v ()

T, e (y (s))
(102)

That is
Vit w(t) + JT P(s) V(o (s) As

t
,[T1

aV¥ (0 () (V2 (9)) (~w (s)) As

My (0 () y (s)
e (y (s))

<VH(T) w(Ty).

(_w (S))(rx+1)/a :| As

(103)

Taking a = aV* " (a(s))(~V2(s)),b = BM PV (a(s)y (s)/
rl/“(l//(s)), by Lemma 3 and (103), we obtain

VE@Ow ) + L B5(5)V® (0 (5)) As

) Jt a®r (y () (aV* (0 () (-V2 ()" N
T (a+ D)™ (BMEPIVE (0 () y2 ()

<V (T,) w(T,). o
104

Abstract and Applied Analysis

That is
Vit w ) < V(T w(T,)

t
J-T1

P(s)V (0 (s))

(XZ(X+1r—1/0c (1// (S)) wA (S) ]
- As

(@ + 1)** 1 BeMIFV (0 (s))
(105)

By (83), we get a contradiction with (91).

Case (ii) (let « > 1). From Lemma 2 and V2(¢) < 0, we get

v* (t))A = 1 [(1-h)V () +hV (o (t)]* "dh}t VA (1)
( 0

1
>« “ vel(h) dh] VA@) =aV () VA ().
0
(106)
From (100) and (106), we obtain

VEw () - V(T w(T,) - j; aVel () VA (s) w(s) As

+ J P(s) V(0o (s) As
Tl
t ﬁM(()lX*ﬁ)/OCV{x (O_ (S)) II/A (S) /e
' JTI i (y (s)) (-w(s)) As < 0.
(107)
That is

Vi w(t) + JT D(s)V* (0 (s)) As

t
JTI

aVeh () (V2 (9)) (~w (s)) As

BME P VE @ DY) e
B o) (—w(s)) As

<V (Ty) w(T,).

(108)

Taking a = aV* ' (s)(-V2(s), b = BMP/*V*(a(s)yP(s)/
rl/“(q/(s)), by Lemma 3 and (108), we obtain
t
VEOw [ FOVe©)bs

) Jt a“r (v (s)) (ocV"‘_1 (s) (—VA (s)))(erl
T (o + ¥ (BME PV (0 () y2 ()

N

<V (Ty) w(T,). -
109
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That is
VEB w(t)
< V(T w(T)

t
jTl

PV (o)

_“2¢x+1r—1/rx (W (s)) Va2—1 (s) WA (s) N
(a+ 1) MV (g (s)) '

(110)

By (83), we get a contradiction with (91). This completes the
proof of Theorem 9. O

4. Examples

Example 10. Consider the following dynamic equation:

|

a—1 A

! <x ) +

1+¢2

1
1+¢#2

(6 <t)>)A x( (t)))A

<x ) +

+ l(l + L)ﬁx(& E)F'x @) =0, teT
12 8% (1) ’ ’
(111)
where « > f§ > 1 are constants. In (111), (t) = 1, p(t) =
1/(1+t%), q(t) = 1/ + 1/82(1))P.

IfT = % = {qy : n € Z} U {0}, and 8(¢) = t/q,, where
g, > 1and g, € R, then 8*(t) = 1/q,. It is easy to get that
pt) =q®)[1 —1)(8(t))]’3 =1/t Choosing &(¢) = t, therefore,

t— 00

Tim j E(5) ()

@ e e

4BE () (8 (s) /2)F 182 (s) M P
— (1 2g
=£%L<;-M—Jm>ﬁs=m

Hence, by Theorem 6, (111) is oscillatory.

(112)

Example 11. Consider the following dynamic equation:

[t“ (s0+(1- ) xe0)

x (x(t)+<1— 1+1t2>x(5(t)))A]

+ l<1 + !
t 8% (t)

a-1

A

B
) Ix@EO)IF'x@ @) =0, teT,
(113)
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where a > 8 > 1.In (113), r(t) = t* p(t) = 1 - 1/(1 + ),
q(t) = (/1)1 + &)

IfT = g7 ={q; : n € Z} u{0}, and &(t) = t/qy, where
g, > 1and g, € R, then 8%(t) = 1/q,. It is easy to get that
(1) = qt)[1 - p(8(1))]P = 1/t. Choosing &(t) = 1, H(t,s) =

t — s, therefore, (t — s)As = -1,

— 1 ! .
T ey | HG9E @@

= lim
t—ocot —t

! 1
J (t—s)—As
0 Jio S

— 1 (ft-s
= lim -—J ——As
tooot—t, t )y s

(114)

0
= 00.

Hence, by Theorem 7, (111) is oscillatory.
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