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Abstract. Let iAj(1 ≤ j ≤ n) be generators of commuting bounded
strongly continuous groups, A ≡ (A1, A2, ..., An). We show that, when f has
sufficiently many polynomially bounded derivatives, then there exist k, r > 0
such that f(A) has a (1+ |A|2)−r-regularized BCk(f(Rn)) functional calcu-
lus. This immediately produces regularized semigroups and cosine functions
with an explicit representation; in particular, when f(Rn) ⊆ R, then, for
appropriate k, r, t �→ (1 − it)−ke−itf(A)(1 + |A|2)−r is a Fourier-Stieltjes
transform, and when f(Rn) ⊆ [0, ∞), then t �→ (1+t)−ke−tf(A)(1+|A|2)−r

is a Laplace-Stieltjes transform. With A ≡ i(D1, ..., Dn), f(A) is a pseudo-
differential operator on Lp(Rn)(1 ≤ p < ∞) or BUC(Rn).

0. Introduction

In finite dimensions, the Jordan canonical form for matrices guarantees
that, although a linear operator may not be diagonalizable, which is equiv-
alent to having a BC(C) functional calculus, it will be generalized scalar,
that is, have a BCk(C) functional calculus, for some k; specifically, k may
be chosen to be n− 1, where n is the order of the largest Jordan block.

In infinite dimensions, even a bounded linear operator on a Hilbert space
may fail to be generalized scalar; consider the left shift on �2.

Our favorite unbounded operators fail to be generalized scalar, on Banach
spaces that are not Hilbert spaces. The operator i d

dx , on L2(R), is self-
adjoint and thus has a BC(R) functional calculus. However, on Lp(R), p �=
2, it does not have a BCm(R) functional calculus, for any nonnegative
integer m; that is, it is not even generalized scalar (see [2, Lemma 5.3]).
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Differential operators in more than one dimension may be even more
poorly behaved. For any n > 1, there exist constant coefficient differential
operators on Lp(Rn) that are not even decomposable, for any p �= 2 ([1,
Corollary 3.5]).

In this paper, we show that constant coefficient differential operators
p(D), on Lp(Rn)(1 ≤ p < ∞) or BUC(Rn), have a (1 + �)−r-regularized
BCk(p(Rn)) functional calculus, for appropriate numbers r and k, where
� is the Laplacian, p is a polynomial. This means that, for any g ∈
BCk(p(Rn)), g(p(D))(1 + �)−r is a bounded operator. More generally,
if iA1, ..., iAn generate commuting bounded strongly continuous groups,
A ≡ (A1, ..., An) and f has sufficiently many polynomially bounded deriva-
tives, then f(A) has a (1 + |A|2)−r-regularized BCk(f(Rn)) functional cal-
culus (Theorem 2.17). See [8] for regularized BCk(R) functional calculi for
generators of polynomially bounded groups.

As an immediate corollary, when f(Rn) is contained in a left half-plane,
it follows that f(A) generates a (1+ |A|2)−r-regularized semigroup, with the
intuitively natural representation

W (t) ≡ [(z 	→ etz)(f(A))
]
(1 + |A|2)−r (t ≥ 0).

Identically, when f(Rn) is contained in a left half-line, then f(A) generates
a (1 + |A|2)−r-regularized cosine function

S(t) ≡ [(z 	→ cosh(t
√
z))(f(A))

]
(1 + |A|2)−r (t ∈ R).

The existence of these regularized semigroups and cosine functions is known
(see [10], [15], [16], [4, Chapter XIII], [3], [12], [13]); we offer our approach
as a simple, intuitive, constructive and unified corollary of our regularized
functional calculus.

For example, on Lp(Rn)(1 ≤ p < ∞), we may simultaneously deal with
the Schrödinger equation (ill-posed for p �= 2) and the wave equation (ill-
posed for p �= 2, n > 1), by constructing a regularized BCk((−∞, 0]) func-
tional calculus for the Laplacian.

In Section I we give some preliminary material relating regularized func-
tional calculi to regularized semigroups and cosine functions. Our main re-
sults are in Section II. Section III has the particular case of pseudodifferential
operators on the usual function spaces BUC(Rn) or Lp(Rn) (1 ≤ p < ∞).
See [7] for regularized functional calculi for the Schrödinger operator with
potential, on such spaces.

All operators are linear, on a Banach space, X. We will write D(B) for the
domain of the operator B, ρ(B) for its resolvent set, Im(B) for the image of
B. We will denote by B(X) the space of all bounded operators from X into
itself. Throughout this paper, C ∈ B(X) is injective, and commutes with
B; that is, CB ⊆ BC. When B generates a strongly continuous semigroup,
we will denote that semigroup by {etB}t≥0; see [9] or [14] for material on
strongly continuous semigroups and their applications.
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1. Regularized functional calculi, regularized
semigroups and regularized cosine functions

We show in this section how a regularized functional calculus produces
intuitively natural constructions of regularized semigroups and regularized
cosine functions. Growth estimates also follow automatically.

Definition 1.1. The complex number λ is in ρC(B), the C-resolvent of B,
if (λ−B) is injective and Im(C) ⊆ Im(λ−B).

Definition 1.2. Denote by BC(X) the space of all operators G such that
GC ∈ B(X), with norm

‖G‖BC(X) ≡ ‖GC‖.

Definition 1.3. Suppose F is a Banach algebra of complex-valued func-
tions, defined on a subset of the complex plane such that f0(z) ≡ 1 ∈ F .A C-
regularized F functional calculus for B is a continuous linear map f 	→ f(B),
from F into BC(X), such that

(1) f(B)g(B)C = [(fg)(B)]C, for all f, g ∈ F ;
(2) g(B)BC ⊆ Bg(B)C = (f1g)(B)C, whenever both g and f1g ∈ F ,

where f1(z) ≡ z; and
(3) f0(B)C = C.

Remark 1.4. When F contains f0 and gλ(z) ≡ (λ−z)−1, for some complex
λ, then (1), (2) and (3) of Definition 1.3 are equivalent to (1), (2′) and (3),
where (2′) is the following:

(2′) λ ∈ ρC(B) and [gλ(B)]C = (λ−B)−1C, whenever gλ ∈ F .
See [6] and [8] for some basic results on regularized functional calculi.

Note that an I-regularized F functional calculus is a F functional calculus.

Definition 1.5. A C-regularized semigroup generated by B is a strongly
continuous family {W (t)}t≥0 ⊆ B(X) such that

(1) W (0) = C;
(2) W (t)W (s) = CW (t+ s), for all s, t ≥ 0; and
(3) Bx = C−1

[
limt→0

1
t (W (t)x− Cx)

]
, with maximal domain.

See [4] and the references therein, for basic material on regularized semi-
groups and their relationship to the abstract Cauchy problem.

Definition 1.6. A C-regularized cosine function generated by B is a strongly
continuous family {S(t)}t∈R ⊆ B(X) such that

(1) S(0) = C,
(2) S(t+ s)C + S(t− s)C = 2S(t)S(s), for all s, t ∈ R; and

(3) Bx =
[
( d
dt )

2S(t)x|t=0
]
, with maximal domain.
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A regularized cosine function deals with ill-posed second-order abstract
Cauchy problems just as regularized semigroups deal with ill-posed first-
order abstract Cauchy problems.

Proposition 1.7. Suppose ω ∈ R, B has a C-regularized BCk({z |Re(z) ≤
ω}) functional calculus, and C (D(B)) is dense. Then C−1BC generates a
C-regularized semigroup {W (t)}t≥0 given by

W (t) =
[(
z 	→ etz

)
(B)

]
C (t ≥ 0).

‖W (t)‖ is O((1 + t)keωt).

Proof. Define, for t ≥ 0, j = 0, 1, 2,

Wj(t) ≡ [(z 	→ (1 + ω − z)−jetz)(B)
]
Cj+1 =

(
(1 + ω −B)−1C

)j
W0(t).

Since t 	→ (1+ω−z)−1etz is continuous, as a map from [0,∞) into BCk({z |
Re(z) ≤ ω}), and B has a C-regularized BCk({z |Re(z) ≤ ω}) functional
calculus, it follows that t 	→ W1(t) is a continuous function from [0,∞) into
B(X). Thus, for x ∈ C((D(B)), t 	→ W0(t)x = W1(t)(1 + ω − B)C−1x is
continuous from [0,∞) into X; since ‖W0(t)‖ is bounded for t in bounded
intervals, and C((D(B)) is dense, the same is true for all x ∈ X; that is,
{W0(t)}t≥0 is strongly continuous. The algebraic properties of a regularized
semigroup, for {Wj(t)}t≥0, follow from the definition of a C-regularized
functional calculus. Thus, for j = 0, 1, 2, {Wj(t)}t≥0 is a (1+ω−B)−jCj+1-
regularized semigroup.

A calculation shows that t 	→ (z 	→ (1 + ω − z)−2etz) is continuously
differentiable, as a map from [0,∞) into BCk({z |Re(z) ≤ ω}), with

d

dt
(z 	→ (1 + ω − z)−2etz) = (z 	→ z(1 + ω − z)−2etz),

thus, since B has a C-regularized BCk({z |Re(z) ≤ ω}) functional calculus,
it follows that t 	→ W2(t) is a differentiable function from [0,∞) into B(X),
with

d

dt
W2(t) = BW2(t) ∀t ≥ 0.

This implies that {W2(t)}t≥0 is generated by an extension of B; since ρC(B)
is nonempty, C−1BC is the generator ([4, Corollary 3.12]). By [4, Proposi-
tion 3.10], B is also the generator of {W0(t)}t≥0.

The growth condition on ‖W0(t)} follows from the fact that

‖z 	→ etz‖BCk({z |Re(z)≤ω}) is O((1 + t)keωt).

Replacing z 	→ etz with z 	→ cosh(t
√
z), in the proof above, gives us the

following.
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Proposition 1.8. Suppose ω ≥ 0, B has a C-regularized BCk((−∞, ω])
functional calculus and D(B) is dense. Then C−1BC generates a C-regu-
larized cosine function {S(t)}t∈R given by

S(t) =
[
(z 	→ cosh(t

√
z))(B)

]
C (t ∈ R).

‖S(t)‖ is O((1 + t2)ket
√
ω).

When the half-plane in Proposition 1.7 is replaced by the real line ([0,∞)),
we get a nice representation of the regularized semigroup, as a Fourier-
Stieltjes (Laplace-Stieltjes) transform.

Lemma 1.9. Suppose {W (t)}t≥0 is an exponentially bounded C-regularized
semigroup generated by B. Then

lim
λ→∞

λ(λ−B)−1W (t)x =W (t)x, ∀x ∈ X, t ≥ 0.

Proof. There exists a Banach space Z, continuously embedded between
Im(C) and X, such that B|Z generates a strongly continuous semigroup,
and W (t) = etB|ZC ([4, Chapter V]). This implies that, for any z ∈ Z,
λ(λ − B|Z)−1z converges to z in Z, as λ → ∞. Since the norm in Z is
stronger than the norm in X, and W (t)x ∈ Z, for all x ∈ X, t ≥ 0, the
result follows.

Proposition 1.10.
(1) If B has a C-regularized BCk(R) functional calculus, then −iC−1BC

generates a C-regularized group {W (t)}t∈R such that, for all x ∈
X,x∗ ∈ X∗, the map t 	→ (1−it)−k 〈W (t)x, x∗〉 is a Fourier-Stieltjes
transform of a complex-valued measure of bounded variation.

(2) If B has a C-regularized BCk([0,∞)) functional calculus, then
−C−1BC generates a C-regularized semigroup {W (t)}t≥0 such that,
for all x ∈ X,x∗ ∈ X∗, the map t 	→ (1 + t)−k 〈W (t)x, x∗〉 is a
Laplace-Stieltjes transform of a complex-valued measure of bounded
variation.

Proof. We will prove (1); it will be clear how the proof would be modified
for (2).

It follows from Proposition 1.7 that −iC−1BC generates a C-regularized
group {W (t)}t∈R, given by W (t) ≡ [

(z 	→ e−itz)(B)
]
C. Fix x ∈ X,x∗ ∈

X∗. Since
f 	→ 〈[

((1 +D)−kf)(B)
]
Cx, x∗〉

defines a bounded linear functional on C0(R), there exists a complex-valued
measure of bounded variation, µ, such that

〈[
((1 +D)−kf)(B)

]
Cx, x∗〉 = ∫

R
f(s) dµ(s), ∀f ∈ C0(R);
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choosing fλ(s) ≡ λ(λ − is)−1e−its gives us, by Lemma 1.9 and dominated
convergence, for any t ≥ 0,

(1 − it)−k 〈W (t)x, x∗〉 = lim
λ→∞

(1 − it)−k
〈
λ(λ− iB)−1W (t)x, x∗〉

= lim
λ→∞

(1 − it)−k 〈[fλ(B)]Cx, x∗〉

= lim
λ→∞

(1 − it)−k

∫
R
(1 +D)kfλ(s) dµ(s)

=
∫
R
e−its dµ(s).

2. Functional calculus on function
spaces with polynomial growth conditions

Throughout this section, iA1, iA2, ..., iAn are generators of commuting
bounded strongly continuous groups {eitAj }t∈R(1 ≤ j ≤ n), A ≡ (A1, A2, ...,
An).

We will use some standard terminology. We will write x = (x1, x2, ..., xn),
for a vector in Rn, α = (α1, α2, ..., αn) for a vector in (N ∪ {0})n, xα ≡
xα1

1 ..., xαn
n , |x|2 ≡ ∑n

k=1 |xk|2, |α| ≡ ∑n
k=1 αk; see, for example, [9, Chapter

2.3].
Let F be the Fourier transform, FL1 be the set of all inverse Fourier

transforms of L1 functions; that is,

(2.1) FL1 ≡ {f ∈ C0(Rn) | Ff ∈ L1(Rn)}.
Define, for f ∈ FL1, a bounded operator f(A) by:

(2.2) f(A) ≡ (2π)−
n
2

∫
Rn

ei(x·A)Ff(x)dx.

We define the operator −|A|2 as the generator of the strongly continuous
semigroup {(z 	→ e−t|z|2)(A)}t≥0.

Lemma 2.3.
(a) (fg)(A) = f(A)g(A) ∀f, g ∈ FL1.
(b) There is M < ∞ such that

‖f(A)‖ ≤ M‖f‖FL1 ∀f ∈ FL1.

(c) For all r > 0, z 	→ (1 + |z|2)−r ∈ FL1, with

(1 + |A|2)−r =
(
z 	→ (1 + |z|2)−r

)
(A).

(d) (Bernstein’s Theorem) If k >
n

2
, k ∈ N, then Hk(Rn) ↪→ FL1 and

there exists M > 0 such that

‖u‖FL1 ≤ M‖u‖1− n
2k

L2

∑
|α|=k

‖Dαu‖ n
2k

L2 ∀u ∈ Hk(Rn).
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Assertions (a) and (b) are straightforward to verify, and (d) is well-known.
For (c), we need the following.

Lemma 2.4 ([5, Lemma 2.2]). If A has a F functional calculus, and
t 	→ kt ∈ C([a, b],F), then

∫ b

a

kt(A) dt =

(
z 	→

∫ b

a

kt(z) dt

)
(A).

Proof of Lemma 2.3(c). First, note that, since

‖F (z 	→ e−t|z|2)‖L1(R) = ‖F (z 	→ e−|z|2)‖L1(R), ∀t > 0,

it follows that(
z 	→ 1

Γ(r)

∫ n

1
n

tr−1e−te−t|z|2 dt

)
→
(
z 	→ 1

Γ(r)

∫ ∞

0
tr−1e−te−t|z|2 dt

)
,

as n → ∞, in FL1.
Thus we may apply Lemma 2.4 as follows.

(1 + |A|2)−r =
1

Γ(r)

∫ ∞

0
tr−1e−te−t|A|2 dt

= lim
n→∞

1
Γ(r)

∫ n

1
n

tr−1e−t
[(
z 	→ e−t|z|2

)
(A)
]
dt

= lim
n→∞

(
z 	→ 1

Γ(r)

∫ n

1
n

tr−1e−te−t|z|2 dt

)
(A)

=
(
z 	→ 1

Γ(r)

∫ ∞

0
tr−1e−te−t|z|2 dt

)
(A)

=
(
z 	→ (1 + |z|2)−r

)
(A).

Definition 2.5. For l ≥ −1, k ∈ N
⋃{0}, define:

(2.6) B(l, k) ≡ {f ∈ Ck(Rn) |
∑

|α|≤k

‖(1 + |x|)−l|α|Dαf‖∞ < ∞}

with ‖f‖B(l,k) =
∑

|α|≤k ‖(1 + |x|)−l|α|Dαf‖∞.

It is easy to check that B(l, k) is a Banach algebra, and B(0, k) =
BCk(Rn).
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Theorem 2.7. Let k = [
n

2
] + 1. Then

(1) A has a (1+|A|2)− l+1
2 s-regularized B(l, k) functional calculus, when-

ever s >
n

2
.

(2) If f(t, ·) is a family of functions in B(l, k) with a parameter t ≥ 0
satisfying:

|Dα
xf(t, x)| ≤ M1(t)M2(t)|α| · (1 + |x|)l|α| ∀t ≥ 0, x ∈ Rn,

where M2(t) ≥ 1, then there exists a constant M so that

‖(x 	→ (1 + |x|2)− 1+l
2 sf(t, x))(A)‖ ≤ MM1(t)M2(t)

n
2 ∀t ≥ 0.

Proof. (1) According to Lemma 2.3 (b), it is sufficient to prove that x →
(1 + |x|2)− 1+l

2 sf(x) ∈ FL1 and there exists M(s) ≥ 0 such that:

‖(1 + |x|2)− l+1
2 sf(x)‖FL1 ≤ M(s)‖f‖B(l,k)

whenever s >
n

2
, for all f ∈ B(l, k).

Let f ∈ B(l, k). Then

(2.8) |Dαf(x)| ≤ ‖f‖B(l,k) · (1 + |x|)l|α|, ∀|α| ≤ k.

Denote g(x) ≡ (1 + |x|2)− l+1
2 sf(x). By Leibniz’s formula,

Dαg(x) =
∑

β+γ=α

(
α
β

)
Dβf ·Dγ [(1 + |x|2)− l+1

2 s].

So

|Dαg(x)| ≤ M‖f‖B(l,k)

∑
β+γ=α

(1 + |x|)l|β|(1 + |x|)−(l+1)s−|γ|

≤ M‖f‖B(l,k)(1 + |x|)l|α|−(l+1)s.

(2.9)

Now we are going to follow a proof similar to the proof in [13, Lemma
2.2]. By [11, Lemma 2.3], there exists a ψ ∈ C∞

c (Rn) such that suppψ ⊂
{x ∈ Rn; 2−1 < |x| < 2} and

∑∞
−∞ ψ(2−mx) = 1 ∀x ∈ Rn \ {0}. Let

φ ∈ C∞
c (Rn) be such that φ(x) = 1 when |x| ≤ 1 and φ(x) = 0 when

|x| ≥ 2. Then we have

g(x) = g(x) · φ(x) + g(x) · (1 − φ(x))
∞∑

−∞
ψ(2−mx)

= g(x) · φ(x) + g(x) · (1 − φ(x))
∞∑
0

ψ(2−mx)

= g(x) · φ(x) + g(x) · (1 − φ(x))ψ(x) + g(x) · (1 − φ(x))ψ(2−1x)

+
∞∑
2

g(x) · ψ(2−mx) = g(x) · µ(x) +
∞∑

m=2

gm(x)
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where µ(x) ∈ C∞
c (Rn), gm(x) = g(x)ψ(2−mx).

Since µ(x) ∈ C∞
c (Rn), it is easy to check that g(x) · µ(x) ∈ FL1 and

(2.10) ‖g(x)µ(x)‖FL1 ≤ M‖f‖B(l,k).

Using Leibniz’s formula, we have

Dαgm(x) =
∑

β+γ=α

(
α
β

)
2−m|γ|Dβg(x)(Dγψ)(2−mx).

So,

(2.11) |Dαgm(x)| ≤ M‖f‖B(l,k) · 2m(l|α|−(l+1)s) · 1{2m−1≤|x|≤2m+1}(x)

where 1{2m−1≤|x|≤2m+1}(x) is the characteristic function. Therefore

(2.12) ‖Dαgm(x)‖L2 ≤ M‖f‖B(l,k) · 2m(l|α|−(l+1)s+ n
2 ) ∀|α| ≤ k.

Using (2.12) when |α| = k and α = 0, it follows from Bernstein’s theorem
that gm ∈ FL1 and:

‖gm‖FL1 ≤ M‖gm‖1− n
2k

L2

∑
|α|=k

‖Dαgm‖ n
2k

L2

≤ M‖f‖B(l,k) · 2m(l+1)( n
2 −s).

Therefore, when s >
n

2
,

(2.13)
∞∑

m=2

‖gm‖FL1 ≤ M‖f‖B(l,k).

Combining (2.10) and (2.13) concludes the proof of (1).
(2) Following exactly the same proof as in (1), replacing f(x) with f(t, x)

we can show that f(t, ·) ∈ FL1 and

‖(1 + |x|2)− l+1
2 sf(t, x)‖FL1 ≤ MM1(t)M2(t)

n
2 .

Then Lemma 2.3 (b) concludes the proof.

Remark 2.14. When l = 0, Theorem 2.7 is [4, Proposition 12.3].

Definition 2.15. If there exists m so that z 	→ f(z)
(1+|z|2)m ∈ FL1, then

f(A) ≡ (1 + |A|2)m
[
(z 	→ f(z)

(1 + |z|2)m )(A)
]
.

Note that, by Theorem 2.7, Definition 2.15 applies to any f with [n2 ] + 1
polynomially bounded derivatives.
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Lemma 2.16. Suppose f is as in Definition 2.15. Then
(a) D(f(A)) is dense; and
(b) (1 + |A|2)rf(A)(1 + |A|2)−r = f(A), for all r > 0.

Proof. (a) follows from the fact that D(|A|2m) ⊆ D(f(A)).
Assertion (b) follows from the fact that (1 + |A|2)−r =(

z 	→ (1 + |z|2)−r
)
(A) commutes with g(A), for all g ∈ FL1:

(1 + |A|2)rf(A)(1 + |A|2)−r

≡ (1 + |A|2)r(1 + |A|2)m
[
(z 	→ f(z)

(1 + |z|2)m )(A)
]
(1 + |A|2)−r

= (1 + |A|2)r+m(1 + |A|2)−r

[
(z 	→ f(z)

(1 + |z|2)m )(A)
]

= (1 + |A|2)m
[
(z 	→ f(z)

(1 + |z|2)m )(A)
]

≡ f(A).

Note that, by (b) of Lemma 2.16 and Lemma 2.3(c), the definition of
f(A) is independent of m.

Theorem 2.17. Suppose that k = [
n

2
] + 1, f ∈ Ck(Rn) and, for some

µ ≥ −1, M ≥ 0,

|Dαf(x)| ≤ M(1 + |x|)µ|α|, ∀x ∈ Rn, 1 ≤ |α| ≤ k.

Then for all s >
n

2
, f(A) has a (1 + |A|2)− µ+1

2 s-regularized BCk(f(Rn))
functional calculus.

Proof. According to Theorem 2.7(1), we must first show that g ◦ f is in
B(µ, k), for all g ∈ BCk(f(Rn)) and there exists M ≥ 0 such that

(2.18) ‖g ◦ f‖B(µ,k) ≤ M‖g‖BCk(f(Rn)), ∀g ∈ BCk(f(Rn)).

By induction on |α|, for any x ∈ Rn, 1 ≤ |α| ≤ k,

Dα(g ◦ f)(x) =
∑

1≤|β|≤|α|
(Dβg)(f(x))Aβ(x),

where Aβ has the form

Aβ =
βj,α∏
j=1

Dαj,βf,
∑
j

|αj,β | = |α|.
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The growth conditions on Dαf now imply that, for any x ∈ Rn, 1 ≤ |α| ≤ k,

|Dα(g ◦ f)(x)| ≤
∑

1≤|β|≤|α|
|(Dβg)(f(x))|

βj,α∏
j=1

M(1 + |x|)µ|αj,β |

≤

 ∑

1≤|β|≤|α|
Mβj,α


 ‖g‖BCk(f(Rn))(1 + |x|)µ|α|,

so that

‖(g◦f)‖B(µ,k) ≤ ‖(g◦f)‖BC(Rn)+
∑

1≤|α|≤k


 ∑

1≤|β|≤|α|
Mβj,α


 ‖g‖BCk(f(Rn)),

as desired.
Let B ≡ f(A), C ≡ (1 + |A|2)−r, r ≡ (µ+1)s

2 . Theorem 2.7 and (2.18)
imply that

g(B) ≡ (g ◦ f)(A) ≡ (1 + |A|2)r
[
(z 	→ g(f(z))

(1 + |z|2)r )(A)
]

(see Definition 2.15) defines a continuous linear map from BCk(f(Rn)) into
BC(X).

By Lemma 2.3(a), g 	→ g(B) satisfies (1) of Definition 1.3.
Suppose now that both g and gf1 (see Definition 1.3(2)) are in

BCk(f(Rn)). Then for m sufficiently large,

g(B)BC

= (1 + |A|2)r
[
(z 	→ g(f(z))

(1 + |z|2)r )(A)
]
(1 + |A|2)m[

(z 	→ f(z)
(1 + |z|2)m )(A)

]
(1 + |A|2)−r

⊆ (1 + |A|2)r+m

[
(z 	→ g(f(z))

(1 + |z|2)r )(A)
] [

(z 	→ f(z)
(1 + |z|2)m )(A)

]
(1 + |A|2)−r

= (1 + |A|2)r+m

[
(z 	→ f(z)

(1 + |z|2)m )(A)
]
(1 + |A|2)−r

[
(z 	→ g(f(z))

(1 + |z|2)r )(A)
]

= (1 + |A|2)r+m

[
(z 	→ f(z)

(1 + |z|2)r+m
)(A)

] [
(z 	→ g(f(z))

(1 + |z|2)r )(A)
]

= Bg(B)C.

Also, from the last two lines,

Bg(B)C = (1 + |A|2)r+m

[
(z 	→ f(z)g(f(z))

(1 + |z|2)2r+m
)(A)

]

= (z 	→ (f1g)(f(z))
(1 + |z|2)r )(A)

≡ [(f1g)(B)]C.
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Thus g 	→ g(B) satisfies (2) of Definition 1.3.
Finally,

f0(B) ≡ (f0 ◦ f)(A) = f0(A) ≡ (1 + |A|2)r (z 	→ (1 + |z|2)−r
)
(A) = I,

by Lemma 2.3(c), so that g 	→ g(B) satisfies (3) of Definition 1.3. This
concludes the proof.

Corollary 2.19. Suppose p is a polynomial of degree N . Then for all s > n
2 ,

p(A) has a (1 + |A|2)− N
2 s-regularized BCk(p(Rn)) functional calculus.

Note that, if f is as in Theorem 2.17 and f(Rn) ⊆ {z | Rez ≤ ω}, then
it follows immediately from Theorem 2.17, Proposition 1.7 and Lemma 2.16
that

W (t) ≡ [(z 	→ etz)(f(A))
]
(1 + |A|2)− µ+1

2 s,

for t ≥ 0, defines a (1+|A|2)− µ+1
2 s-regularized semigroup generated by f(A),

with ‖W (t)‖ = O((1 + t)keωt).

By applying Theorem 2.7(2), we may improve the growth condition on
{W (t)}t≥0, by replacing k with n

2 .

Corollary 2.20. Suppose that µ ≥ −1, ω is a real number, f is as in
Theorem 2.17 and

Re(f(x)) ≤ ω, ∀x ∈ Rn.

Then, for all s >
n

2
, f(A) generates a norm continuous (1 + |A|2)− µ+1

2 s-

regularized semigroup {W (t)}t≥0 satisfying, for some constant M ,

‖W (t)‖ ≤ M(1 + t)
n
2 eωt ∀t ≥ 0.

Proof. By Theorem 2.17, f(A) has a C-regularized BCk({z |Re(f(z)) ≤ ω})
functional calculus, where C ≡ (1 + |A|2)− µ+1

2 s. For t ≥ 0, let

W (t) ≡ [(z 	→ etz)(f(A))
]
C =

[
(z 	→ etf(z))(A)

]
C.

By Proposition 1.7 and Lemma 2.16, {W (t)}t≥0 is a C-regularized semigroup
generated by f(A).

By induction on |α|, as in the proof of Theorem 2.17,

|Dαetf(x)| ≤ (1 + t)|α|eωt(1 + |x|)µ|α|

for 1 ≤ |α| ≤ k. Thus by Theorem 2.7(2), the growth condition on W (t)
follows.
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Remark 2.21. Corollary 2.20 generalizes [12, Theorem 4.2]; note that, as
in Corollary 2.19, if p is a polynomial of degree N , then we may choose
µ = N − 1, in Corollary 2.20. A similar result, except for a weaker growth
estimate of the regularized semigroup, is in [4, Theorem 12.11].

Remark 2.22. For f as in Corollary 2.20, we may also define a semigroup
of unbounded operators

{etf(A)}t≥0 ≡ {(z 	→ etf(z))(A)}t≥0

directly with Definition 2.15. By Theorem 2.17, for each t ≥ 0, etf(A) has a
regularized BCk({z | |z| ≤ etω}) functional calculus.
Remark 2.23. Without the condition on the range of f , in Corollary 2.20,
if f is as in Theorem 2.17, then it follows from Theorem 2.17 that there
exists an injective operator C, with dense range, such that f(A) generates
a C-regularized semigroup. Choose g(z) ≡ e−|z|2 ; then we may choose
C ≡ g(f(A))(1 + |A|2)− µ+1

2 s, for s > n
2 . The C-regularized semigroup is

constructed from the regularized functional calculus:

W (t) ≡
[
(z 	→ etze−|z|2)(f(A))

]
(1 + |A|2)− µ+1

2 s (t ≥ 0).

In fact, such a regularized semigroup can also be constructed without the
polynomial growth conditions on f , using Theorem 2.1; see [4, Definition
12.10], where f(A) is defined as the generator of the regularized semigroup
{(z 	→ etf(z)g(z))(A)}t≥0, for appropriate g.

The proof of Corollary 2.20, with z 	→ etf(z) replaced by cosh(t
√
f(z)),

gives us the following.

Corollary 2.24. Suppose f is as in Theorem 2.17, ω ≥ 0 and f(Rn) ⊆
(−∞, ω]. Then, for all s >

n

2
, f(A) generates a (1+ |A|2)− µ+1

2 s-regularized

cosine function {S(t)}t∈R satisfying, for some constant M ,

‖S(t)‖ ≤ M(1 + |t|)net
√
ω, ∀t ∈ R.

Remark 2.25. See [16] for cosine functions generated by p(A), where p is
a polynomial.

Finally, Theorem 2.17 and Proposition 1.10 immediately give us the fol-
lowing two corollaries.

Corollary 2.26. Suppose f is as in Theorem 2.17 and f(Rn) ⊆ R. Then,
for all s >

n

2
, i(f(A)) generates a norm-continuous (1 + |A|2)− µ+1

2 s-regu-

larized group {W (t)}t≥R such that, for all x ∈ X,x∗ ∈ X∗, the map

t 	→ (1 − it)−k 〈W (t)x, x∗〉
is a Fourier-Stieltjes transform of a complex-valued measure of bounded vari-
ation.
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Corollary 2.27. Suppose f is as in Theorem 2.17 and f(Rn) ⊆ [0,∞).
Then, for all s >

n

2
, −f(A) generates a norm continuous (1 + |A|2)− µ+1

2 s-

regularized semigroup {W (t)}t≥0 such that, for all x ∈ X,x∗ ∈ X∗, the
map

t 	→ (1 + t)−k 〈W (t)x, x∗〉
is a Laplace-Stieltjes transform of a complex-valued measure of bounded vari-
ation.

3. Differential operators

In this section we consider the corresponding results for differential opera-
tors on the usual function spaces Lp(Rn)(1 ≤ p < ∞), C0(Rn) orBUC(Rn).

Noting that, for each j (1 ≤ j ≤ n), iDj ≡ ∂

∂xj
is the generator of the

translation group with respect to the j-th space variable enables us to im-
mediately apply Section II to pseudo-differential operators of the form f(D),
for f as in Theorem 2.17. The results in Lp(Rn), for 1 < p < ∞, can be
improved, by applying the Riesz-Thorin convexity theorem to the proof of
Theorem 2.7, as in the proof of [13, Lemma 2.2], allowing us to replace

s >
n

2
with s > n|1

2
− 1
p
|. We will merely list these corresponding results

here.
Note that, in Theorem 3.1, if f(D) is replaced by a constant coefficient

differential operator p(D), where p is a polynomial of degree N , the (µ+1)
may be replaced by N , as in Corollary 2.19.

In the following, assume �, µ ≥ −1.

Theorem 3.1. Let X be Lp(Rn)(1 ≤ p < ∞), C0(Rn) or BUC(Rn). Let

nX = n|1
2

− 1
p
| when X = Lp(Rn)(1 < p < ∞), otherwise nX =

n

2
. Let

k = [
n

2
] + 1, iD ≡ (

∂

∂x1
...,

∂

∂xn
). Then

(1) D has a (1− �)−
+1
2 s-regularized B(�, k) functional calculus, when-

ever s > nX .
(2) Suppose that f is as in Theorem 2.17. Then f(D) has a (1 −

�)−
µ+1
2 s-regularized BCk(f(Rn)) functional calculus for all s > nX .

(3) If, in addition to the assumptions in (2), f satisfies Ref ≤ ω for
some ω ∈ R, then for all s > nX , f(D) generates a norm-continuous
(1 − �)−

µ+1
2 s-regularized semigroup {W (t)}t≥0 satisfying, for some

constant M ,

‖W (t)‖ ≤ M(1 + t)nXeωt ∀t ≥ 0.

(4) If, in addition to the assumptions in (2), f(Rn) ⊆ R, then for all s >
nX , i(f(D)) generates a norm-continuous (1− �)−

µ+1
2 s-regularized
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group {W (t)}t∈R such that, for all x ∈ X,x∗ ∈ X∗, the map

t 	→ (1 − it)−k 〈W (t)x, x∗〉
is a Fourier-Stieltjes transform of a complex-valued measure of
bounded variation.

(5) If, in addition to the assumptions in (2), f(Rn) ⊆ [0,∞), then for
all s > nX , −(f(D)) generates a norm-continuous (1 − �)−

µ+1
2 s-

regularized semigroup {W (t)}t≥0 such that, for all x ∈ X,x∗ ∈ X∗,
the map

t 	→ (1 + t)−k 〈W (t)x, x∗〉
is a Laplace-Stieltjes transform of a complex-valued measure of
bounded variation.

(6) If, in addition to the assumptions in (2), f(Rn) ⊆ (−∞, ω] (ω ≥ 0),
then, for all s > nX , f(A) generates a (1 + |A|2)− µ+1

2 s-regularized
cosine function {S(t)}t∈R satisfying, for some constant M ,

‖S(t)‖ ≤ M(1 + t2)nXet
√
ω, ∀t ∈ R.

Remark 3.2. Theorem 3.1 (3) generalizes [13, Theorem 2.3], where f is
required to be a polynomial.

Open Question 3.3. Can the smoothness (the k in BCk, of (2)–(5) of
Theorem 3.1) be interpolated, as the regularizing is, for X = Lp(Rn), 1 <
p < ∞? Since, for f as in Theorem 2.17, f(A) has a BC(f(Rn)) functional
calculus on L2(Rn), this sounds plausible.

Example 3.4. By Theorem 3.1, for s > nX , �, on X ≡ BUC(Rn) or
Lp(Rn) (1 ≤ p < ∞), has a (1−�)−s-regularized BCk((−∞, 0]) functional
calculus. This implies that � generates a (1−�)−s-regularized cosine func-
tion that is O((1+t2)nX ) and a (1−�)−s-regularized semigroup {W (t)}t≥0,
such that, for all x ∈ X,x∗ ∈ X∗, the map

t 	→ (1 + t)−k 〈W (t)x, x∗〉
is a Laplace-Stieltjes transform of a complex-valued measure of bounded
variation. Also i� generates a (1−�)−s-regularized group {S(t)}t∈R, such
that, for all x ∈ X,x∗ ∈ X∗, the map

t 	→ (1 − it)−k 〈S(t)x, x∗〉
is a Fourier-Stieltjes transform of a complex-valued measure of bounded
variation.

The regularized semigroup generated by � ( i�) provides a representa-
tion of solutions of the heat (Schrödinger) equation, in X, with initial data
in D(�s). The regularized cosine function provides solutions of the wave
equation. Note that i� fails to generate a strongly continuous semigroup
unless X = L2(Rn), and for n > 1, � fails to generate a cosine function
unless X = L2(Rn).
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