
A NEW SPECTRAL THEORY FOR NONLINEAR

OPERATORS AND ITS APPLICATIONS

W. FENG

Abstract. In this paper, by applying (p, k)-epi mapping theory, we intro-
duce a new definition of spectrum for nonlinear operators which contains
all eigenvalues, as in the linear case. Properties of this spectrum are given
and comparison is made with the other definitions of spectra. We also give
applications of the new theory.

1. Introduction

Spectral theories for nonlinear operators have been extensively studied,
for example, see [1], [5]-[7] and [9]. Different attempts have been made
to define the spectrum for nonlinear operators. Clearly, a good definition
should preserve as many properties of the spectrum for classical bounded
linear operators as possible and reduce to the familiar spectrum in the case
of linear operators. In [15], a spectrum for Lipschitz continuous operators
was studied (we denote it by σlip(f)), which is compact but may be empty
(see the example in Section 5). The spectrum introduced by Furi, Martelli
and Vignoli (denoted σfmv(f)) has found many interesting applications (see
[9]). However, it was indicated in [6] that this spectrum may be disjoint
from the eigenvalues, which is an important part of the spectrum in the
linear case. This paper is mainly based on the study of [9] and the main
aim is to introduce a new spectrum for nonlinear operators by applying the
(p, k)-epi mapping theory of [10], [14], [17]. This new version of the spectrum
is closed and contains all the eigenvalues as in the case of linear operators.
This paper is organized as follows. In Section 3, the definition of the new

spectrum will be given and some of its special properties will be proved.
For example, we will show that this spectrum is closed, bounded, upper
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semicontinuous and contains all the eigenvalues. In Section 4, we investigate
positively homogeneous operators where more precise results are possible.
Some of the results are direct generalizations of the spectral theory for linear
operators. The results in this section will be used in Section 6 to generalize
some existence theorems. In Section 5, we will compare our spectrum σ(f)
with the two spectra mentioned before (σfmv(f) and σlip(f)). We will prove
that, in general,

σlip(f) � σ(f) � σfmv(f).

Moreover, in this section, nonemptiness of spectra is discussed. A counterex-
ample shows that all these spectra may be empty, which answers one of the
open questions in [15].
In the last section, some applications of the new theory are obtained.

This theory enables us to generalize the Birkoff-Kellogg theorem and the
Hopf theorem on spheres, which were also consequences of the theory in
[9]. A non-trivial existence result for a global Cauchy problem, which was
studied in [14], is obtained by applying the new theory.
It would be interesting to see extensions of the present theory to the

cases considered by Ding and Kartsatos in [4], where the concept of a (p, 0)-
epi mapping of [10] has been extended to cover perturbations of (possibly)
densely defined operators.
In Section 2, we give some notations and definitions which will be used in

the sequel.

2. Preliminaries

Let E and F be complex Banach spaces and Ω be an open bounded subset
of E. We suppose that f : E → E is continuous and α(A) denotes the
measure of noncompactness of a bounded set A [3]. The following notations
will be used in the sequel.

α(f) = inf{k ≥ 0 : α(f(A)) ≤ kα(A) for every bounded A ⊂ E},
ω(f) = sup{k ≥ 0 : α(f(A)) ≥ kα(A) for every bounded A ⊂ E},
m(f) = sup{k ≥ 0 : ‖f(x)‖ ≥ k‖x‖ for all x ∈ E},
d(f) = lim inf

‖x‖→∞
‖f(x)‖

‖x‖ , |f | = lim sup
‖x‖→∞

‖f(x)‖
‖x‖ .

Here |f | is called the quasinorm of f and f is said to be quasibounded if
|f | < ∞. Maps with α(f) < 1 are k-set contractive (also condensing) with
k = α(f). Note that a map f satisfies α(f) = 0 if and only if f is compact,
that is f(A) is compact for every bounded set A. For the properties of
α(f), ω(f) and d(f) we refer to [9].
A map f : E → F is said to be stably-solvable if given any compact map

h : E → F with zero quasinorm, there is at least one element x of E such
that f(x) = h(x). Spectra σfmv(f) and σlip(f) are defined as follows.
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Definition 2.1. (see [9]) f is said to be fmv-regular if it is stably-solvable
and d(f) and ω(f) are both positive. Let

ρfmv(f) = {λ ∈ C : λI − f is fmv − regular},
then σfmv(f) = C \ ρfmv(f).

Definition 2.2. (see [15]) Let Lip(E) be the space of all Lipschitz map-
pings. For A ∈ Lip(E), the Lip-spectrum is defined by

σlip(A) = {λ : (λI −A)−1 does not exists or (λI −A)−1 /∈ Lip(E)}.
The p-epi mappings were introduced by Furi, Martelli and Vignoli [10]

and then were studied and applied in [12], [14], [17]. In [17], the notion was
generalized to the following (p, k)-epi mappings.

Definition 2.3. A continuous mapping f : Ω → F is said to be p-admissible
(p ∈ F ) if f(x) = p for x ∈ ∂Ω.
A 0-admissible mapping f : Ω → F is said to be (0, k)-epi if for each k-set

contraction h : Ω → F with h(x) ≡ 0 on ∂Ω the equation f(x) = h(x) has
a solution in Ω. Similarly, a p-admissible mapping f : Ω → F is said to be
(p,k)-epi if the mapping f − p defined by (f − p)(x) = f(x) − p, x ∈ Ω, is
(0, k)-epi.

It was shown in [17] that the (p, k)-epi mappings have similar properties
with properties usually obtained via the topological degree, for example, the
homotopy property and boundary dependence property.
In the following, let Br = {x : x ∈ E, ‖x‖ ≤ r} and ∂Br denote the

boundary of Br. If for every x = 0, f(x) = 0, let

νr(f, 0) = inf{k ≥ 0, there exists g : Br → E, with α(g) ≤ k,

g ≡ 0 on ∂Br s.t. f(x) = g(x) has no solutions in Br},
and ν(f) = inf{νr(f, 0), r > 0}. We will call ν(f) the measure of solvability
of f at 0. (This concept is related to the measure of unsolvability of f at
p, which was introduced in [17]). Notice that, ν(f) > 0 if and only if there
exists ε > 0, such that f(x) is (0, ε)-epi on every Br with r > 0.

3. A new definition of the spectrum for continuous operators

We begin with the following definition.

Definition 3.1. Suppose that f : E → E is continuous, then f is said to
be regular if

ω(f) > 0, m(f) > 0, and ν(f) > 0.

For λ ∈ C, if λI − f is regular, λ is said to be in the resolvent set of f .
Let ρ(f) denote the resolvent set of f , then the spectrum of f is defined as
follows:

σ(f) = {λ ∈ C : λI − f is not regular } = C\ρ(f).
Proposition 3.2. If f is a regular map, then f is surjective.
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Proof. Since f is regular, m(f) > 0. Thus for x ∈ E, ‖f(x)‖ → ∞ as
‖x‖ → ∞. Also we have ν(f) > 0, so there exists ε > 0 such that f is
(0, ε)-epi on every Br with r > 0. By Corollary 3.2 of [17], f is surjective.

The following theorem characterizes the regular maps among continuous
linear operators.

Theorem 3.3. Suppose that E is a normed linear space, f : E → E is a
continuous linear operator. Then f is regular if and only if f is a linear
homeomorphism.

Proof. Assume that f is regular. By Proposition 3.2, f is surjective. Also,
m(f) > 0 implies that f is one to one and ‖f−1(x)‖ ≤ (1/m(f))‖x‖. Thus
f−1 is continuous, so f is a linear homeomorphism.
Conversely, suppose that f is a linear homeomorphism. Then f−1 is a

bounded linear operator and for all x ∈ E, ‖f(x)‖ ≥ (1/‖f−1‖)‖x‖. This
ensures that

m(f) ≥ 1/‖f−1‖, ω(f) ≥ 1/‖f−1‖.
So for 0 < ε < 1/‖f−1‖, f is (0, ε)-epi on every Br with r > 0 [17]. Thus
ν(f) > ε > 0, and f is regular.

Remark 3.4. By Theorem 3.3, for a bounded linear operator f , the spec-
trum of f in Definition 3.1 is the same as the usual one.

It is well known in linear spectral theory that σ(f) is closed and ρ(f) is open.
The following theorem shows that this property holds true for the spectrum
of nonlinear maps given by Definition 3.1.

Theorem 3.5. For a continuous map f , ρ(f) is an open set and σ(f) is
closed.

Proof. Suppose that λ ∈ ρ(f), then

ω(λI − f) > 0, m(λI − f) > 0,

and λI − f is (0, ε)-epi on every Br with r > 0 for some ε > 0. Now let

δ1 = ω(λI − f)/2, δ2 = m(λI − f)/2, δ3 = ε/2,

and δ = min{δ1, δ2, δ3}. Assume that µ ∈ C, |µ − λ| < δ. We shall prove
that µ ∈ ρ(f). Since

|ω(µI − f)− ω(λI − f)| ≤ α(µI − λI) = |µ− λ| < ω(λI − f)/2,

we have
ω(µI − f) > ω(λI − f)/2 > 0.

For every x ∈ E,

‖µx− f(x)‖ ≥ ‖λx− f(x)‖ − |µ− λ|‖x‖ ≥ (m(λI − f)/2)‖x‖,
so

m(µI − f) ≥ m(λI − f)/2.
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Furthermore, let h : [0, 1]× E → E be defined by h(t, x) = t(µ− λ)I. Then
h is a (µ− λ)-set contraction. Let

S = {x ∈ E : λx− f(x) + t(µ− λ)x = 0 for some t ∈ (0, 1]}.
Then for every x ∈ S,

‖λx− f(x)‖ = ‖t(µ− λ)x‖ ≥ m(λI − f)‖x‖.
Hence

|µ− λ|‖x‖ ≥ m(λI − f)‖x‖.
Thus x = 0 and S = {0}. By the (0, k)-epi Homotopy-property (see [17]),
µI − f is (0, ε− |µ− λ|)-epi on every Br with r > 0. So

ν(µI − f) > ε− |µ− λ| > ε/2 > 0.

Therefore, µ ∈ ρ(f).

We recall that for a bounded linear operator, its spectrum is always
bounded. The following theorem generalizes this result to the nonlinear
case.

Theorem 3.6. Let E be a Banach space and f : E → E be a continuous
map. Assume that α(f) < ∞ and there exists a constant M > 0 such that
‖f(x)‖ ≤ M‖x‖ for all x ∈ E. Then σ(f) is bounded.

Proof. Let λ ∈ C with |λ| > max{M,α(f)}, we shall prove that λ ∈ ρ(f).
Firstly, by Proposition 3.1.3 of [9] we have

ω(λI − f) ≥ |λ| − α(f) > 0.

Also, for every x ∈ E, the inequality

‖(λI − f)(x)‖ ≥ (|λ| −M)‖x‖
implies that m(λI − f) > 0. Now let ε > 0 be such that α(f) + ε < |λ|, we
shall show that λI − f is (0, ε)-epi on every Br with r > 0.
Suppose h is a α-lipschitz map with constant ε, and h(x) = 0 for x ∈ ∂Br.

Let

h1(x) =
{
h(x) for ‖x‖ ≤ r,
0 for ‖x‖ > r.

h1 is continuous on E. For every bounded subset A ⊂ E,

α(h1(A)) = α(h1(A ∩Br))
= α(h(A ∩Br))
≤ εα(A ∩Br) ≤ εα(A).

Hence h1 is also an α-Lipschitz map with constant ε. Let

S = {x : x− tf(x)/λ = h1(x)/λ, for some t ∈ [0, 1]}.
For all x with ‖x‖ ≥ r we have h1(x) = 0 and

‖λ(x− tf(x)/λ)‖ ≥ |λ|‖x‖ − ‖f(x)‖ ≥ (|λ| −M)‖x‖ > 0.

This implies that S ⊂ Br. Since h1/λ is a ε/|λ|-set contraction, ε/|λ| < 1,
and h1(x)/λ ≡ 0 on ∂Br, the fact that I is (0, ε)-epi for all ε < 1 implies that
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the equation x = h1(x)/λ has a solution in Br. Thus S = ∅ and S∩∂Br = ∅.
Next we have

S ⊂ [0, 1]f(S)/λ+ h1(S)/λ.
Therefore,

α(S) ≤ ((α(f) + ε)/|λ|)α(S).
Hence S is compact because α(f) + ε < |λ| and S is closed. Let φ be a
continuous function such that 0 ≤ φ ≤ 1 and

φ(x) =
{
1 for x ∈ S,
0 for ‖x‖ ≥ r,

and let
g(x) = φ(x)f(x)/λ+ h1(x)/λ.

Then g is an (α(f) + ε)/|λ|-set contraction, g(x) ≡ 0 on the boundary of
Br. Hence x = g(x) has a solution x0 ∈ Br. Then x0 ∈ S so φ(x0) = 1 and
h1(x0) = h(x0). Thus x0 is a solution of the equation

x− f(x)/λ = h(x)/λ.

This ensures that λI − f is (0, ε)-epi on Br, so we have ν(f) ≥ ε > 0, λI − f
is regular, and λ is in the resolvent set of f .

Remark 3.7. For nonlinear map f with f(0) = 0, we define the norm of f
by

‖f‖ = inf{k > 0 : ‖f(x)‖ ≤ k‖x‖}.
Defining the radius of the spectrum of f by rσ(f) = sup{|λ| : λ ∈ σ(f)}, it
follows that

rσ(f) ≤ max{α(f), ‖f‖}.
If f(0) = 0, for each λ ∈ C, either λI − f is not surjective, or there exists
x ∈ E, x = 0, such that λx− f(x) = 0, and then λ is a eigenvalue of f . By
the following theorem, in both these cases, λ ∈ σ(f). Thus σ(f) = C. Hence
in what follows, unless otherwise stated, we shall assume that f(0) = 0.

Theorem 3.8. All the eigenvalues of f are in the spectrum of f .

Proof. If f(x) = λx with x = 0, then m(λI − f) = 0, so λ ∈ σ(f).

As mentioned in Section 1, the above simple theorem represents the big
difference between σfmv(f) and Definition 3.1. According to their definition,
the spectrum may be disjoint with its eigenvalues [6], but it is well known
that for a linear operator, one of the important parts of its spectrum is the
point spectrum, the eigenvalues.
The following lemma enables us to prove the upper semicontinuity of the

spectrum.

Lemma 3.9. Let A ⊂ K (K = C or R) be compact with A∩σ(f) = ∅. Then
there exists ε > 0 such that for µ ∈ A and g : E → E, a continuous map
with ‖f − g‖ < ε, α(f − g) < ε, it follows that µ /∈ σ(g), where

‖f − g‖ = inf{k ≥ 0 : ‖f(x)− g(x)‖ ≤ k‖x‖, x ∈ E}.
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Proof. For λ ∈ A, we have

ω(λI − f) > 0, m(λI − f) > 0, and ν(λI − f) > 0.

Thus λI − f is (0, ε0)-epi for some ε0 > 0 on every Br. By the proof of
Theorem 3.5, there exists δλ > 0 such that for every λ′ with |λ′ − λ| < δλ,

ω(λ′I − f) > ω(λI − f)/2, m(λ′I − f) > m(λI − f)/2,

and λ′I − f is (0, ε0/2)-epi on Br. Let

0 < ελ < min {ω(λI − f)/2, m(λI − f)/2, ε0/2} ,
and assume that ‖g − f‖ < ελ, α(g − f) < ελ. Then by Proposition 3.1.3 of
[9],

ω(λ′I − g) ≥ ω(λ′I − f)− α(f − g) > 0,
and

‖(λ′I − g)(x)‖ ≥ ‖λ′x− f(x)‖ − ‖f(x)− g(x)‖ > (m(λI − f)/2− ελ)‖x‖.
Hence m(λ′I − g) > 0. Furthermore, for every t ∈ (0, 1], and x = 0,

‖λ′x− f(x) + t(f(x)− g(x))‖ > 0.

By the Continuation Principle for (0, k)-epi mappings [14], λ′I − g is (0, r0)-
epi for each r0 > 0 with

r0 < min{(ω(λI − f)/2)− α(f − g), (ε0/2)− α(f − g)}.
This implies that ν(λ′I − g) > 0, so λ′ ∈ ρ(g). Let

O(λ, δλ) = {λ′ ∈ K : |λ′ − λ| < δλ},
the above discussion implies that

⋃
λ∈AO(λ, δλ) ⊃ A. Since A is com-

pact, there exist a finite collection such that
⋃n

i=1O(λi, δλi
) ⊃ A. Let

ε = min{ελ1 , ελ2 , · · ·, ελn}, and suppose that ‖g− f‖ < ε, α(g− f) < ε. For
µ ∈ A, if µ ∈ O(λi, δλi

), i ∈ {1, · · ·, n}, then
‖g − f‖ < ελi

, α(g − f) < ελi

imply that µ /∈ σ(g).

The following theorem whose proof follows that of Theorem 8.3.2 [9] con-
cerns the upper semicontinuity of the spectrum. We omit its proof here.

Theorem 3.10. Let
p(E) = {f : α(f) < +∞, there existsM > 0 such that ‖f(x)‖ ≤ M‖x‖ for

x ∈ E}.
The multivalued map σ : p(E) → K which assigns to each f its spectrum
σ(f), is upper semicontinuous (with compact values).

Suppose that f(0) = 0, we recall that a point λ is called a bifurcation
point of f if there are sequences λn ∈ K and xn ∈ E such that xn =
0, f(xn) = λnxn, λn → λ, xn → 0 as n → ∞. λ is called an asymptotic
bifurcation point of f if there are sequences λn ∈ K and xn ∈ E such that
xn = 0, f(xn) = λnxn, λn → λ, ‖xn‖ → ∞ as n → ∞. The following
proposition gives the relation between the spectrum and bifurcation points.
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Proposition 3.11. Bifurcation points and asymptotic bifurcation points of
f are in the spectrum of f .

Proof. Suppose that λn ∈ K and xn ∈ E are such that λn → λ, xn =
0, ‖xn‖ → 0 and f(xn) = λnxn. Then m(λI − f) = 0. Otherwise the
inequality ‖λxn − f(xn)‖ ≥ m(λI − f)‖xn‖ would implies that |λ − λn| ≥
m(λI − f) > 0, a contradiction. Hence λ ∈ σ(f).
Similarly, if λ is an asymptotic bifurcation point of f , we obtain λ ∈

σ(f).

The following properties of the spectrum are easily checked.

Proposition 3.12. Let E be a normed space and f : E → E be a continuous
operator. Then for every λ ∈ K,
(1) σ(λf) ≡ λσ(f), σ(0) = 0, σ(I) = 1, σ(λI) = λ.
(2) σ(λI + f) ≡ λ+ σ(f).

We close this section with the following proposition devoted to the the
study of the nonlinear resolvent.

Proposition 3.13. Assume that A : E → E is continuous and λ, µ ∈ ρ(A).
Let

RA(λ) = (A− λI)−1, RA(µ) = (A− µI)−1

be the multivalued maps. Then

RA(λ)x ⊂ RA(µ)(I + (λ− µ)RA(λ))x, x ∈ E.

If µI −A is injective, then

RA(λ)x = RA(µ)(I + (λ− µ)RA(λ))x, x ∈ E.

Proof. Let y ∈ RA(λ)x, so that (A−λI)y = x. Then we can write Ay−µy =
x+ (λ− µ)y, so that

y ∈ (A− µI)−1(x+ (λ− µ)y) ⊂ (A− µI)−1(x+ (λ− µ)RA(λ)x).

This implies that

RA(λ)x ⊂ RA(µ)(I + (λ− µ)RA(λ))x.

When µI −A is injective, it is easy to show that equality holds.

4. Positively homogeneous operators

According to our new definition, some special properties of eigenvalues in
the spectrum of a positively homogeneous operator can be obtained, which
will be useful in Section 6. Firstly, we shall prove the following lemmas on
the positively homogeneous (0, k)-epi mappings from Banach space E to F ,
which will be used later.

Lemma 4.1. Suppose that f : E → F is a positively homogeneous mapping
and f is (0, ε)-epi on some Br for some ε > 0. Then f is (0, ε)-epi on every
BR with R > 0.
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Proof. f is (0, ε)-epi on Br and f is positively homogeneous ensure that
f(x) = 0 for all x = 0. Thus f is 0-admissible on BR. Assume that h : E →
F is an ε-set contraction with h(x) = 0 for x ∈ ∂BR. Let

h1(x) =
r

R
h

(
R

r
x

)
.

Then for every bounded set A ⊂ E ,

α(h1(A)) =
r

R
α

(
h

(
R

r
A

))

≤ r

R
εα

(
R

r
A

)
= εα(A).

So h1 is an ε-set contraction too. Furthermore, h1(x) = 0 for x ∈ ∂Br. Thus
the equation

f(x) =
r

R
h

(
R

r
x

)
has at least one solution x0 ∈ E and ‖x0‖ < r. Then (R/r)x0 ∈ BR is a
solution of the equation f(x) = h(x).

Remark 4.2. Lemma 4.1 and the Localization property of (0, k)-epi maps
[17] show that a positively homogeneous mapping f is (0, ε)-epi on Ω1 ,
where Ω1 ⊃ f−1(0) and Ω1 is an open bounded set of E, if and only if f is
(0, ε)-epi on the closure of all the bounded open sets Ω ⊃ f−1(0). This is not
true if f is not positively homogeneous as the following example shows. Let
f : R → R be the function f(x) = x2 −1, and let Ω1 = (−2,−1/2)∪ (1/2, 2).
Then f is (0, k)-epi for every k ≥ 0 on Ω1, but f is not 0-epi on (−n, n) for
n > 2.

Lemma 4.3. Suppose f : E → F is positively homogeneous , ω(f) > 0 and
f is (0, ε)-epi on Br with r > 0. Then for each p ∈ F , there exists R > 0
such that f is (p, ε1)-epi on BR for some ε1 > 0.

Proof. Let p ∈ F and g(x) = f(x)− p, then α(g − f) = 0. Let

S = {x : f(x) + t(g(x)− f(x)) = f(x)− tp = 0 for some t ∈ (0, 1]}.
We shall show that S is bounded. Otherwise, there would exist a sequence
{xn}∞

n=1 ⊂ S with ‖xn‖ → ∞ as n → ∞. Let tn ∈ (0, 1] be such that
f(tn) = tnp. Then

f(rxn/‖xn‖) = rtnp/‖xn‖ → 0 as n → ∞.

Letting un = xn/‖xn‖, we would have

ω(f)α(∪∞
n=1run) ≤ α(∪∞

n=1f(run)) = 0.

Since ω(f) > 0, we have α(∪∞
n=1run) = 0. This implies that there exists a

subsequence runk
→ u0 and ‖u0‖ = r. Thus

lim
k→∞

f(runk
) = f(u0) = 0.

This contradicts the fact that f is 0-admissible on Br.
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Now, let R > 0 be such that S ⊂ BR. Then ∂BR ∩ S = ∅. By Lemma
4.1, f is (0, ε)-epi on BR. So, the Continuation principle of (0, k)-epi maps
[14] ensures that g is at least (0, ε1)-epi for 0 < ε1 < ω(f) and ε1 ≤ ε. Thus
f is (p, ε1)-epi on BR.

Our next theorem characterizes regular maps among positively homoge-
neous maps.

Theorem 4.4. Let f be positively homogeneous. Then f is regular if and
only if
1. ω(f) > 0;
2. There exists ε > 0 such that f is (0, ε)-epi on B1.

Proof. Clearly, we only need to prove that if f satisfies 1 and 2, then f is
regular.
Suppose that f satisfies 1 and 2, then by Lemma 4.1, f is (0, ε)-epi on

every Br with r > 0. So ν(f) > 0. Assume thatm(f) = 0. Then there would
exist a sequence {xn}∞

n=1 ∈ E, xn = 0 such that ‖f(xn)‖ < (1/n)‖xn‖. Let
un = xn/‖xn‖, then f(un) → 0 as n → ∞. Moreover,

ω(f)α(∪∞
n=1un) ≤ α(∪∞

n=1f(un)).

Hence α(∪∞
n=1un) = 0. This implies that {un}∞

n=1 has a convergent subse-
quence unk

→ u0, ‖u0‖ = 1, and f(u0) = 0. This contradicts f is (0, ε)-epi
on B1. So m(f) > 0 and f is regular.

It is known that for a linear operator f , if λ ∈ σ(f) and |λ| > α(f),
then λ is an eigenvalue of f [15]. We shall give an example later to show
that for nonlinear operators, this property is not true. But if f is positively
homogeneous, we have the following result on eigenvalues in the spectrum.
This theorem can be used to obtain existence results for some nonlinear
operator equations as in the example which will be given later.

Theorem 4.5. Let f : E → E be a positively homogeneous operator and
λ ∈ σ(f) with |λ| > α(f). Then there exists t0 ∈ (0, 1] such that λ/t0 is an
eigenvalue of f .

Proof. |λ| > α(f) ensures that ω(λI − f) ≥ |λ| − α(f) > 0 (see [9]). Let

S = {x ∈ E : ‖x‖ = 1, λx− tf(x) = 0 for some t ∈ (0, 1]}.
If S = ∅, then by the Homotopy property [17], I−f/λ is (0, r−α(f)/|λ|)-epi
on B1 for each 1 > r > α/|λ|, since f/λ is a α(f)/|λ|-set contraction. It
follows that λI − f is (0, r|λ| − α(f))-epi on B1. By Theorem 4.4, we know
that λI − f is regular, so λ ∈ ρ(f). This contradiction ensures that S = ∅.
Thus there exists t0 ∈ (0, 1] and x0 ∈ E with ‖x0‖ = 1, such that

λx0 − t0f(x0) = 0,

so λ/t0 is an eigenvalue of f .

The following result, which generalizes a result of [15] (p. 85), shows that
for odd and positively homogeneous mappings, the result on eigenvalues of
linear operators remains valid.
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Theorem 4.6. Suppose f : E → E is odd and positively homogeneous,
λ ∈ σ(f) with |λ| > α(f). Then λ is an eigenvalue of f .

Proof. Assume that m(λI − f) > 0. Then there exists m > 0 such that

‖(λI − f)x‖ ≥ m‖x‖ for all x ∈ E.

Let O1 = {x : ‖x‖ < 1}, since f is odd, deg(I − f/λ, O1, 0) = 0, [3]. So for
k1 satisfying 0 ≤ α(f)/|λ| < k1 < 1, I − f/λ is (0, k1 − α(f)/|λ|)-epi ([17]
Theorem 2.8). Hence, λI − f is (0, |λ|k1 − α(f))-epi on B1. Also we know
that ω(λI − f) ≥ |λ| − α(f) > 0. Thus, λ ∈ ρ(f). This contradiction shows
that m(λI − f) = 0. Therefore there exists a sequence {xn}∞

n=1 ∈ E such
that

‖λxn − f(xn)‖ < (1/n)‖xn‖.
Letting un = xn/‖xn‖, we have

‖λun − f(un)‖ < 1/n → 0, as n → ∞.

Moreover, we have

ω(λI − f)α(∪∞
n=1un) ≤ α(∪∞

n=1(λI − f)un) = 0.

This implies α(∪∞
n=1un) = 0. So {un} has a convergent subsequence. Sup-

pose that unk
→ u0. Then f(u0) = λu0 and ‖u0‖ = 1, so λ is an eigenvalue

of f .

The following result follows directly from Theorem 4.6, which generalizes
the result in the spectral theory for linear compact operators.

Corollary 4.7. Suppose that f is a compact, odd and homogeneous opera-
tor. Then for λ ∈ σ(f), if λ = 0, λ is an eigenvalue of f .

It is known that for a continuous linear operator f , the radius of the
spectrum rσ(f) = limn→∞ ‖fn‖ 1

n . The following theorem gives an estimate
for the radius of the spectrum of positively homogeneous maps.

Theorem 4.8. Let E be a Banach space over R and f : E → E be a
positively homogeneous operator with α(f) < ∞, lim infn→∞ ‖fn‖ 1

n < ∞. If

λ > max
{
α(f), lim inf

n→∞ ‖fn‖ 1
n

}
,

then λ ∈ ρ(f). If also ‖x1‖ = ‖x2‖ implies ‖f(x1)‖ = ‖f(x2)‖, then
rσ(f) ≤ max

{
α(f), lim inf

n→∞ ‖fn‖ 1
n

}
.(4.1)

Proof. Suppose that λ > max
{
α(f), lim infn→∞ ‖fn‖ 1

n

}
. Let

V = {x : λx− tf(x) = 0 for some t ∈ (0, 1]}.
We claim that V = {0}. Indeed, otherwise assume x0 ∈ V and x0 = 0. Let
t0 ∈ (0, 1] be such that λx0 − t0f(x0) = 0. Then

‖f‖ = sup
‖x‖=1

‖f(x)‖ ≥ ‖f(x0/‖x0‖)‖ ≥ λ.
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Also

‖f2(x0/‖x0‖)‖ = ‖f((λx0)/(t0‖x0‖))‖ ≥ λ2/t0
2.(4.2)

So we have ‖f2‖ ≥ λ2. By induction, we obtain that ‖fn‖ 1
n ≥ λ. This

contradicts λ > lim infn→∞ ‖fn‖ 1
n . Now, λI − f = λ(I − f/λ) and f/λ is

an α(f)/|λ|-set contraction. So, by the homotopy property [17], I − f/λ is
(0, r − α(f)/|λ|)-epi on B1 for every r satisfying α(f)/|λ| < r < 1. Thus
λI − f is (0, r|λ| − α(f))-epi on B1. Furthermore, ω(λI − f) > 0. Theorem
4.4 implies that λ ∈ ρ(f).
In the case that ‖x1‖ = ‖x2‖ implies ‖f(x1)‖ = ‖f(x2)‖, (4.2) is also true

for λ < 0. So by the same proof as above, we obtain that if

|λ| > max
{
α(f), lim inf

n→∞ ‖fn‖ 1
n

}
,

then λ ∈ ρ(f). Therefore we have (4.1).

The following example shows that the estimate in Theorem 4.8 is best
possible.

Example 4.9. Let f(x) = a‖x‖e, then f is positively homogeneous and
even. a is an eigenvalue of f and ‖fn‖ = an. Hence lim inf ‖fn‖ 1

n = a and
rσ(f) = a.

5. Comparison and nonemptiness of spectra

We begin this section with an example concerning eigenvalues and the
spectrum σfmv(f).

Example 5.1. Let f : R → R be the function f(x) = x3. Then σfmv(f) = ∅
(see [9]). We will show that σ(f) = {0} ∪ {eigenvalues of f}. In fact,
for every λ ∈ (0,∞), we have f(λ

1
2 ) = λλ

1
2 . Thus λ is an eigenvalue of

f , so (0,∞) ⊂ σ(f). Next, 0 ∈ σ(f) since m(f) = 0. Furthermore, let
λ ∈ (−∞, 0) , then |λx − f(x)| = |λx − x3| ≥ −λ|x| for x ∈ R. Hence
m(λI − f) ≥ −λ > 0. Also, ω(λI − f) > 0 and (λI − f)x = λx − x3

is (0, ε)-epi for all ε > 0. This implies that ν(λI − f) > 0. Therefore,
(−∞, 0) = ρ(f), [0,∞) = σ(f) and σ(f) = {0} ∪ {eigenvalues of f}.
The following is an interesting result of the theory.

Theorem 5.2. Suppose f : E → E is continuous and f(0) = 0. Then we
have

σlip(f) ⊇ σ(f) ⊇ σfmv(f).

Proof. We will prove that ρlip(f) ⊆ ρ(f) ⊆ ρfmv(f).
(a) Assume that λ ∈ ρ(f). Then ω(λI−f) > 0 and m(λI−f) > 0. Hence

there exists m > 0 such that

‖(λI − f)(x)‖ ≥ m‖x‖ for all x ∈ E.

This ensures that

d(λI − f) = lim inf
‖x‖→∞

‖(λI − f)(x)‖
‖x‖ ≥ m > 0.
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Moreover, ν(λI − f) > 0 implies that there exists ε > 0 such that λI − f is
(0, ε)-epi on Br with r > 0. So λI−f is stably-solvable [9]. Thus λ ∈ ρfmv(f)
and therefore ρ(f) ⊆ ρfmv(f).
(b) Suppose that λ ∈ ρlip(f), then λI−f is one to one, onto, and (λI−f)−1

is a Lipschitz map [15]. Let L > 0 be the Lipschitz constant. Then

(5.1) ‖(λI − f)x1 − (λI − f)x2‖ ≥ (1/L)‖x1 − x2‖ for all x1, x2 ∈ E.

Letting x2 = 0, we have ‖(λI − f)x1‖ ≥ (1/L)‖x1‖ for all x1 ∈ E. Hence
m(λI − f) > 0. Also, by (5.1), ω(λI − f) ≥ 1/L > 0.
Let r > 0 and Or = {x : ‖x‖ < r}. λI − f : Or → E is continuous,

injective and (1/L)-proper [17]. Furthermore (λI − f)Or is open because
(λI − f)−1 is continuous. By our assumption (λI − f)(0) = 0. By Theorem
2.3 of [17], λI − f is (0, k)-epi on Br for each nonnegative k satisfying the
condition k < L. Hence ν(λI − f) > 0, λ ∈ ρ(f) and ρlip(f) ⊆ ρ(f).

The following example shows that σlip(f) � σ(f).

Example 5.3. Let ψ : R → R be defined by

ψ(x) =




x for x ≤ 1,
1 for 1 < x < 2,
x− 1 for x ≥ 2.

Let f = I − ψ. Then for x ∈ R we have (1/2)‖x‖ ≤ ‖ψ(x)‖ ≤ 2‖x‖ and so
‖f(x)‖ ≤ 3‖x‖. Also, ω(I−f) > 0 for f is a compact map. I−f is (0, ε)-epi
for all ε > 0 on every [−n, n]. Hence λ = 1 ∈ ρ(f).
Obviously, λI − f = ψ is not one to one, so 1 ∈ σlip(f). Thus σ(f) �

σlip(f).
Example 5.1 shows that σ(f) � σfmv(f).

The following two results discuss the spectrum for positively homogeneous
maps and maps that are derivable at 0 respectively.

Theorem 5.4. Suppose f is a positively homogeneous map and λ ∈ σ(f) \
σfmv(f). Then one of the following cases occur:
1. λI − f is not injective ;
2. (λI − f)−1 is not continuous.

Proof. Suppose that λ ∈ σ(f) \ σfmv(f) and λI − f is injective. We shall
show that (λI − f)−1 is not continuous. Firstly λ /∈ σfmv(f) ensures that
ω(λI − f) > 0 and λI − f is surjective. Also λI − f is injective implies
that λx− f(x) = 0 for each x = 0 . Hence λI − f is ω(λI − f)-proper [17].
Assume (λI−f)−1 is continuous, then λI−f maps every open ball Or to an
open set. It follows that λI−f is (0, k)-epi for each nonnegative k satisfying
k < 1/ω(λI − f). By Theorem 4.4, we have λ ∈ σ(f). This contradiction
shows that (λI − f)−1 is not continuous.

Theorem 5.5. Let f : E → E be derivable at 0 with derivative T and
λ ∈ σ(f) \ σfmv(f). Then one of the following cases occur:
1. λ is an eigenvalue of f ;
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2. λI − f is not injective;
3. (λI − f)−1 is not continuous;
4. λ ∈ σ(T ).

Proof. Let λ ∈ σ(f) \σfmv(f) , then λI− f is onto and ω(λI− f) > 0. Now
suppose that m(λI − f) = 0. It follows that for each n ∈ N, there exists
xn ∈ E satisfying

‖λxn − f(xn)‖ < (1/n)‖xn‖.
Assume there exists a subsequence {xnk

}∞
k=1 of {xn}∞

n=1 with ‖xnk
‖ → ∞

as k → ∞. Then

d(λI − f) = lim inf
‖x‖→∞

‖λx− f(x)‖
‖x‖ = 0.

This contradicts λ ∈ ρ(f). So, {‖xn‖}∞
n=1 is bounded and

ω(λI − f)α(∪∞
n=1xn) ≤ α (∪∞

n=1(λI − f)xn) = 0.

This implies {xn}∞
n=1 has a convergent subsequence. Suppose xn → x0 as

n → ∞. If x0 = 0 , λ is an eigenvalue of f . In the case x0 = 0, we have

‖λxn − Txn −Rxn‖/‖xn‖ < 1/n → 0.

Thus λ ∈ σ(T ) since ‖Rxn‖/‖xn‖ → 0.
In the case m(λI − f) > 0, assume that λI − f is injective, by the same

argument as that in the proof of Theorem 5.4, (λI−f)−1 is not continuous.

A well known result in the spectral theory for linear operators is that
the spectrum of a continuous linear operator, which is defined on a complex
Banach space, is not empty. In the nonlinear case, for the spectrum σfmv(f),
this property does not hold (see the counterexample in [9]). An open question
in [15] is the following:

Question 5.1. Suppose that E is a Banach space over the complex field C
and that A ∈ Lip(E). Is the spectrum of A, σlip(f), nonempty?

In the following, an operator f is given which satisfies σ(f) = σlip(f) =
σfmv(f) = ∅.
Example 5.6. Let f : C2 → C2 be defined by

f(x, y) = (y, ix), (x, y) ∈ C2.

Then f is a continuous map and f ∈ Lip(C2). For λ ∈ C and λ = 0 , we will
show that λI − f : C2 → C2 is one to one, onto and (λI − f)−1 ∈ Lip(C2).
Firstly, suppose that (λI − f)(x1, y1) = (λI − f)(x2, y2), then

|λ|2(x1 − x2) = λ(y1 − y2) and i(x2 − x1) = λ(y1 − y2).(5.2)

Hence x1 = x2, y1 = y2. Secondly, for (x, y) ∈ C2, let

u =
λx+ y

|λ|2 + i
, v =

iλy − x

|λ|2i+ 1
.
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Then (λI−f)(u, v) = (x, y). Hence λI−f is onto. Next, let g = (λI−f)−1,
and for (x1, y1), (x2, y2) ∈ C2, let x = x1 − x2, y = y1 − y2. Then

|g(x1, y1)− g(x2, y2)|2 = | 1
|λ|2 + i

|2|λx+ y|2 + | 1
i− |λ|2 |2|ix+ λy|2.

Letting r = | 1
|λ|2+i

| > 0, we have

|g(x1, y1)− g(x2, y2)|2 ≤ r2(|λ|+ 1)2(|x|2 + |y|2).
So, g is a Lipschitz map with constant r(|λ|+ 1).
In the case λ = 0, |f(x)| = |x|. Also, f is one to one, onto with |f−1(x)| =

|x|. Hence, ρlip(f) = C and σlip(f) = ∅. By Theorem 5.2, σ(f) = σlip(f) =
σfmv(f) = ∅.
Remark 5.7. In [16], the authors showed that σlip(f) is always nonempty
in the one-dimensional case and asked whether this is also true in higher
dimensions. In [1] (which was seen after this part of the work had been
completed), the authors gave a negative answer to this question by using
Example 5.6. We found Example 5.6 in [13] where it was used to show
another fact.

We close this section with the following result regarding operators which
are asymptotically linear or derivable at 0.

Proposition 5.8. Let f : E → E be continuous and f = T +R, where T is
a linear operator and R satisfies one of the following conditions:

1. ‖R(x)‖
‖x‖ → 0 as ‖x‖ → 0.

2. ‖R(x)‖
‖x‖ → 0 as ‖x‖ → ∞.

Then λ ∈ σ(f) provided λ is an eigenvalue of T .

Proof. Let x0 ∈ E and x0 = 0 be such that T (x0) = λx0. For r ∈ R with
r ≥ 0 we have

‖λrx0 − f(rx0)‖ = ‖R(rx0)‖.
So, in case (1), letting r → 0 and in case (2) letting r → ∞, we have

‖λrx0 − f(rx0)‖
r‖x0‖ → 0.

This implies that m(λI − f) = 0. Hence λ ∈ σ(f).

6. Applications

In this section, firstly by applying the theory, we shall study the solvability
of a global Cauchy problem following the work of [14], we shall obtain the
existence result by different method. Then two well known theorems will be
generalized by using the theory.
We shall use the classical space C[0, 1] with the norm

‖x‖ = max
t∈[0,1]

|x(t)|.
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We recall that a cone K in a Banach space E is a closed subset of E such
that
(1) x, y ∈ K, a, b ≥ 0 imply ax+ by ∈ K;
(2) x ∈ K and −x ∈ K imply x = 0.
A cone K is said to be normal if there exists a constant γ > 0 such that

‖x+ y‖ ≥ γ‖x‖
for every x, y ∈ K.

Example 6.1. We look for a non-trivial solution of the following global
Cauchy problem depending on a parameter

x′(t) = λ
√
x2(t) + x2(1− t), x(0) = 0, t ∈ [0, 1].(6.1)

Changing the problem into an integral equation we study the existence of
an eigenvalue and eigenvector of the operator

Fx(t) =
∫ t

0

√
x2(s) + x2(1− s) ds.(6.2)

It is easily verified that F : C[0, 1] → C[0, 1] is positively homogeneous,
order preserving, and ‖Fx‖ ≤ √

2‖x‖.
Now we shall prove that µI − F is not surjective for every 0 < µ < 1/

√
2

and so [0, 1/
√
2] ⊂ σ(T ). Assume it is surjective, then there exists x0 ∈

C[0, 1] such that µx0 − Tx0 = µ. For every t ∈ [0, 1],

µ(x0(t)− 1) = Fx0(t) ≥ 0 =⇒ x0(t) ≥ 1.

So for each natural number n, Fnx0 ≥ Fn1. On the other hand,

Fx0 ≤ µx0, so Fnx0 ≤ µnx0.

Hence
µnx0 ≥ Fnx0 ≥ Fn(1).

This implies that
(
√
2)nµnx0 ≥ (

√
2)nFn(1) ≥ 0.

Also we know that K = {x(t) ∈ C[0, 1] : x(t) ≥ 0} is a normal cone in
C[0, 1] and (

√
2)nµn → 0 as n → ∞. Thus we obtain that (

√
2)nFn(1) →

0 (n → ∞). This contradicts Fn(1) ≥ (1/
√
2)nt. So, µI − F is not onto.

Assume that for some −1/√2 < µ < 0, µI −F is onto. Then for each y ∈
C[0, 1], there exists x ∈ C[0, 1], such that µx− Fx = y. Hence (−µ)(−x) −
F (−x) = y. So, −µ−F is onto. This is a contradiction since 1/

√
2 > −µ > 0.

By the above argument, [−1/√2, 1/
√
2] ⊂ σ(F ) since the spectrum of

F is closed. Also, we know that F is a compact map [14], so α(F ) = 0.
By Theorem 4.5, there exist µ1 ≥ 1/

√
2 and µ2 ≤ −1/√2 such that µ1

and µ2 are eigenvalues of F . Moreover, by Theorem 4.8, we obtain that
1/

√
2 ≤ |µi| ≤ lim infn→∞ ‖Fn‖1/n. Therefore, problem (6.1) has at least

two non-trivial solutions.
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Remark 6.2. It was known that for the above operator F , (1/
√
2) ln(1 +√

2) is the only positive eigenvalue of F (see [14]). So, for each λ ∈ [−1/√2,
1/

√
2], λ is not an eigenvalue of F . This shows that Theorem 4.6 is not true

for positively homogeneous maps. It is well known that it is true for linear
operators.

The following theorem is a generalization of the well known Birkoff-Kellogg
theorem.

Theorem 6.3. Let E be an infinite dimensional Banach space and S be the
unit sphere of E. Let f : S → E be continuous and bounded. Assume that
infx∈S ‖f(x)‖ > α(f). Then for every complex number λ with λ = 0 there
exists r > 0 such that rλ is an eigenvalue of f . In particular, f has a positive
and a negative eigenvalue.

Proof. Let f̃ : E → E be the positively homogeneous operator which is
defined as follows:

f̃(x) =

{
‖x‖f(x/‖x‖) if x = 0,
0 if x = 0.

Then we have

d(f̃) = lim inf
‖x‖→∞

‖f̃(x)‖
‖x‖ = inf

x∈S
‖f(x)‖, |f̃ | = lim sup

‖x‖→∞
‖f̃(x)‖

‖x‖ = sup
x∈S

‖f(x)‖,

and α(f̃) = α(f) (see [14]). Let B(f̃) be the set of all asymptotic bifurcation
points of f̃ . By Theorem 11.1.1 of [9], there exists µ > 0 such that µ ∈ B(f̃).
Let {µn}∞

n=1 and {xn}∞
n=1 ∈ E be sequences such that µn → µ, ‖xn‖ → ∞

as n → ∞ and f̃(xn) = µnxn. Then we obtain

‖(µI − f̃)xn‖
‖xn‖ → 0, as n → ∞.

This implies that d(µI − f) = 0. So, by Theorem 5.2, µ ∈ σfmv(f̃) ⊂ σ(f̃).
Assume that µ ≤ α(f̃), by our assumption α(f̃) = α(f) < d(f̃), so µ < d(f̃).
Hence

d(µI − f̃) ≥ d(f̃)− µ > 0, (see [9]).

This contradicts d(µI − f̃) = 0. Thus we have µ > α(f̃). By Theorem 4.5,
there exists t0 ∈ (0, 1] such that µ/t0 is an eigenvalue of f̃ . Let x0 ∈ E with
‖x0‖ = 1 be such that f̃(x0) = (µ/t0)x0. Then f(x0) = rx0, where r = µ/t0.
For every complex number λ with |λ| = 1, writing λ = eiθ, we have

inf
x∈S

‖λf(x)‖ = inf
x∈S

‖f(x)‖ > α(f) = α(λf).

By the above argument, there exists r > α(f) and x0 ∈ E with x0 = 0 such
that λf(x0) = rx0. Thus f(x0) = (rλ)x0. In the case |λ| = 1, let λ1 = λ/|λ|.
By the same argument, there exists r > 0 such that rλ is an eigenvalue of
f .



180 W. FENG

Remark 6.4. The Birkoff-Kellogg theorem which was proved in [9] (Theo-
rem 10.1.5) is the special case of Theorem 6.3 when f is compact, and they
showed only that f has a positive eigenvalue.

The following example shows that there exists a map f to which Theorem
10.1.5 of [9] does not apply but Theorem 6.3 can be used.

Example 6.5. Let B1 = {x ∈ E : ‖x‖ ≤ 1} and g : E → B1 be the radial
retraction of E onto the unit ball, that is

g(x) =

{
x/‖x‖ if ‖x‖ > 1,
x if 0 ≤ ‖x‖ ≤ 1.

Since g(A) ⊂ co(A ∪ 0), g is a 1-set contraction [3]. Let y ∈ E with ‖y‖ > 2
and f : S → E be defined by

f(x) = y + g(x), x ∈ E.

Then,

inf
x∈S

‖f(x)‖ = inf
x∈S

‖y + g(x)‖ ≥ ‖y‖ − sup
x∈S

‖g(x)‖ = ‖y‖ − 1 > 1.

Next,
α(f) = α(y + g) = α(g) = 1.

So, infx∈S ‖f(x)‖ > α(f). Furthermore, we have

sup
‖x‖=1

‖f(x)‖ = sup
‖x‖=1

‖y + g(x)‖ ≤ ‖y‖+ 1.

Hence, f satisfies the conditions of Theorem 6.3. So, for every z ∈ C , there
exists λ > 1 such that λz is an eigenvalue of f .

Theorem 6.3 enables us to give the following generalization of Theorem
10.1.2 of [9], who considered compact maps.

Theorem 6.6. Let S be the unit sphere in an infinite dimensional Banach
space E and let f : S → S be a continuous strict set contraction. Then every
λ ∈ K, |λ| = 1, is an eigenvalue of f . In particular, f has a fixed point and
an antipodal point.

Proof. Since α(f) < 1, we have

inf
x∈S

‖f(x)‖ = 1 > α(f), sup
x∈S

‖f(S)‖ < +∞.

By Theorem 6.3, for every complex number |λ| = 1, there exists α > 0,
such that αλ is an eigenvalue of f . Thus there exists xλ ∈ S such that
f(xλ) = αλxλ. Since ‖f(xλ)‖ = 1, |αλ| = α = 1, so λ is an eigenvalue of f .
In particular, for λ = 1, there exists x ∈ S, such that f(x) = x. For

λ = −1, there exists x ∈ S, such that f(x) = −x.
Our theory also enables us to give a generalization of the Hopf theorem

on spheres, Theorem 10.1.6 of [9]. Firstly, we need the following lemma. We
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shall let E∗ denote the dual space of E and J : E → E∗ the duality mapping,
that is, for x ∈ E,

J(x) = {x∗ ∈ E∗ : x∗(x) = ‖x‖2 = ‖x∗‖2}.
We recall that for a linear operator A in a Hilbert space E, the numerical
range of A is the set of values of (Ax, x) for all x with ‖x‖ = 1. It is known
that the numerical range of A is a convex set. Let V (A) be the numerical
range of A, then σ(A) ⊂ V (A).
For a nonlinear operator f , we have the following.

Lemma 6.7. Suppose f : E → E is a continuous operator. Let

V (f) =
{
(f(x), x∗)

‖x‖2

}
∪ {0}, x ∈ E, x∗ ∈ J(x).

Then λ ∈ coV (f) provided that λ ∈ σ(f) and |λ| > α(f), where co denotes
the closed convex hull.

Proof. We shall prove that |λ| > α(f) and dist(λ, coV (f)) > 0 implies that
λ ∈ ρ(f).
If |λ| > α(f) and dist(λ, coV (f)) > 0, then

0 < d = dist(λ, conv V (f))

≤ |λ− (f(x), x∗)
‖x‖2 |

= |λ(x, x
∗)− (f(x), x∗)

‖x‖2 |

=
|(λx− f(x), x∗)|

‖x‖2

≤ ‖λx− f(x)‖
‖x‖ .

So, ‖λx − f(x)‖ ≥ d‖x‖. This implies that m(λI − f) > 0. Also, ω(λI −
f(x)) > 0 since |λ| > α(f). Let

M = {x ∈ E : λx− tf(x) = 0, t ∈ [0, 1]}.
For x ∈ M , suppose λx = tf(x) with t = 0. Then

(f(x), x∗)/‖x‖2 = ((λ/t)x, x∗)/‖x‖2 = λ/t.

Hence,
λ = t(f(x), x∗)/‖x‖2 ∈ coV (f).

This contradicts our assumption d = dist(λ, coV (f)) > 0. Thus, M = {0}.
By the homotopy property [17], λI − f is (0, ε)-epi for some ε > 0, thus
ν(λI − f) > 0, and so λI − f is regular. This shows that

{λ : |λ| > α(f)} ∩ σ(f) ⊂ coV (f).

Let Sn = {x ∈ Rn+1 : ‖x‖ = 1}. The following theorem is a generalization
of Theorem 10.1.6 of [9].
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Theorem 6.8. 1. Let f : Sn → Rn+1 be continuous. Assume 〈f(x), x〉 =
0 for all x ∈ Sn, where 〈·, ·〉 is the Euclidean inner product on Rn+1.
Then, f vanishes at some point x ∈ Sn provided either n is an even
number or f(Sn) is contained in a proper subspace of Rn+1.

2. Let E be an infinite dimensional Banach space and f : S → E be
a continuous compact mapping. Assume that (f(x), x∗) = 0 for all
x∗ ∈ J(x), x ∈ S. Then infx∈S ‖f(x)‖ = 0.

Proof. (1) Let

f̃(x) =

{
‖x‖f(x/‖x‖) if x = 0,
0 if x = 0.

Then for every x ∈ Rn+1 with x = 0,

〈f̃(x), x〉 = ‖x‖〈f(x/‖x‖), x/‖x‖〉 = 0.

So, V (f̃) = {0}. Also, α(f̃) = 0 since Rn+1 is finite dimensional. By Lemma
6.7, we have σ(f̃) ⊂ {0}.
(a) Assume that n is even. Let B(f̃) denote the set of all asymptotic

bifurcation points of f̃ , then by Theorem 11.1.3 of [9], B(f̃) = ∅. By Propo-
sition 3.11, B(f̃) ⊂ σ(f̃). Hence, 0 ∈ B(f̃). Suppose that {xn}∞

n=1 ∈ Rn+1

and λn ∈ K satisfy ‖xn‖ → ∞ , λn → 0 as n → ∞ and λnxn = f̃(xn). Then

f̃(xn/‖xn‖) = λnxn/‖xn‖ → 0.

Moreover, {xn/‖xn‖}∞
n=1 has a convergent subsequence xnk

/‖xnk
‖ → x0 (k →

∞). Thus ‖x0‖ = 1 and f̃(x0) = f(x0) = 0.
(b) In the case that f(Sn) is contained in a proper subspace of Rn+1,

f̃ : Rn+1 → Rn+1 can not be surjective. So 0 ∈ σ(f̃). Also, we know that
ω(f̃) = ∞ since Rn+1 is finite dimensional. Firstly, if d(f̃) = 0, it follows
that there exists {xn}∞

n=1 ∈ Rn+1 with ‖xn‖ = 1 such that

f̃(xn) = f(xn) → 0 (n → ∞).

So, f(x0) = 0 for some x0 ∈ Rn+1 and ‖x0‖ = 1. Secondly, if d(f̃) > 0, then
0 ∈ K\σπ(f̃) and 1 /∈ σ(f̃). By Theorem 11.1.2 of [9], we have B(f̃)

⋃
σω(f̃)

separates 1 from 0. So, B(f̃)
⋃
σω(f̃) = ∅. This implies that B(f̃) = ∅ since

σω(f̃) = ∅. By the same argument with that in (a), there exists x0 ∈ Sn

such that f(x0) = 0.
(2) Suppose E is an infinite Banach space. Let f̃ be as in (1), then

V (f̃) = {0}. By Theorem 8.2.1 of [9], Σ(f̃) = ∅ (according to [9], Σ(f̃) =
{λ ∈ K : d(λI − f̃) = 0}). Again applying Lemma 6.7, we have

Σ(f̃) ⊂ σ(f̃) ⊂ V (f̃).

So, 0 ∈ Σ(f̃). Thus there exist xn ∈ E with ‖xn‖ = 1 such that f̃(xn) =
f(xn) → 0. Hence infx∈S ‖f(x)‖ = 0.

Remark 6.9. Theorem 10.1.6 of [9] only proved the case 1 of Theorem 6.8
and n is even.
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