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Abstract. We shall investigate a size structured population dynamics
with aging and birth functions having general forms. The growth rate we
deal with depends not only on the size but also on time. We show the ex-
istence of a local solution and continuous dependence on the initial data,
which shows the uniqueness of the solution as well.

1. Introduction

We are interested in a size structured population model with the growth
rate depending on the individual’s size and time. There has been many
investigations where the growth rate depends on the size. See, for example,
[2; Chap. 10], [3] and the references therein. Recently, A. Calsina and J.
Saldaña [1] have studied the case where the growth rate depends on the size
as well as the total population at each time. They have the model of plants
in forests or plantations in their mind.

We are also motivated by the population model of the forest growth etc.
In this case, the growth rate may be influenced by the environment such as
light, temperature, and nutrients. These may change with time. It is also
reasonable to think that the growth rate varies with the individual’s size of
plants because the amount of light they capture may depend on it. From
these points of view, it is natural to consider the growth rate depending on
the size and time.
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In this paper we study the following initial boundary value problem with
nonlocal boundary condition:

(SDP)




ut + (V (x, t)u)x = G(u(·, t))(x), x ∈ [0, l), a ≤ t ≤ T,

V (0, t)u(0, t) = C(t) + F (u(·, t)), a ≤ t ≤ T,

u(x, a) = ua(x), x ∈ [0, l).

Here a ≥ 0, l ∈ (0,∞] is the maximum size, F and G are given mappings
corresponding to birth and aging functions respectively. The function V
is the growth rate function depending on the size x and time t and the
function C represents the inflow of zero-size individuals from an external
source such as seeds carried by the wind or placed in a plantation. The
unknown function u(x, t) stands for the density with respect to size x of a
population at time t. So the integral

∫ x2

x1
u(x, t)dx represents the number of

individuals with size between x1 and x2 at time t. The equation (SDP) is
closely related to the age-dependent population dynamics developed by G.
Webb [4]. Indeed, from the mathematical point of view, the particular case
V (x, t) ≡ 1 is nothing but the age-dependent case.

Our objective is to show the existence of a unique local solution and
continuous dependence of the solution on the initial data. The results extend
[4, Propositions 2.2 and 2.3] and partially [1, Theorems 1 and 2]. The birth
and aging functions treated in [1] are of Gurtin-MacCamy type, i.e.,

F (u(·, t)) =
∫ l

0
β(x, P (t))u(x, t)dx, G(u(·, t))(x) = −m(x, P (t))u(x, t)

where P (t) =
∫ l

0 u(x, t)dx is the total population at time t, and this is essen-
tial for their arguments. We handle more general birth and aging functions
which are the same as in [4]. In [1], the growth rate function V depends on
the size and the total population P (t), while we deal with V depending on
the size and time.

The paper is organized as follows. In Section 2 we state our assumptions
and main results (Theorems 2.1 and 2.2). We prepare some lemmas in
Section 3 and the proofs of the theorems are established in Sections 4 and
5.

2. Local existence and uniqueness

In this section we state our main theorems concerning the existence of a
unique local solution to (SDP) and the continuous dependence on the initial
data. At first, we introduce some notations.

Let L1 := L1(0, l; Rn) be the Banach space of Lebesgue integrable func-
tions from [0, l) to R

n with norm ‖f‖L1 :=
∫ l

0 |f(x)|dx for f ∈ L1, where | · |
denotes the norm of R

n. For T > a we set La,T := C([a, T ];L1), the Ba-
nach space of L1-valued continuous functions on [a, T ] with the supremum
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norm ‖u‖La,T
:= supa≤t≤T ‖u(t)‖L1 for u ∈ La,T . Note that each element

of La,T is identified with an element of L1((0, l)× (a, T ); Rn) by the relation
[u(t)](x) = u(x, t) for a ≤ t ≤ T , a.e. 0 < x < l. See [4, Lemma 2.1].

We assume the following hypotheses.

(F) F : L1 → R
n is locally Lipschitz in the sense that there is an in-

creasing function c1 : [0,∞) → [0,∞) such that |F (φ1) − F (φ2)| ≤
c1(r)‖φ1 − φ2‖L1 for all φ1, φ2 ∈ L1 with ‖φ1‖L1 , ‖φ2‖L1 ≤ r.

(G) G : L1 → L1 is locally Lipschitz, i.e., there is an increasing function
c2 : [0,∞) → [0,∞) such that ‖G(φ1)−G(φ2)‖L1 ≤ c2(r)‖φ1−φ2‖L1

for all φ1, φ2 ∈ L1 with ‖φ1‖L1 , ‖φ2‖L1 ≤ r.
(V) V : [0, l) × [0, T ] → (0,∞) is a bounded function with upper bound

V0 > 0, V (x, t) is Lipschitz continuous with respect to x uniformly
for t, i.e., there is a constant LV > 0 such that

|V (x1, t) − V (x2, t)| ≤ LV |x1 − x2|, ∀x1, x2 ∈ [0, l), t ∈ [0, T ],

and the mapping t → V (x, t) is continuous for each x ∈ [0, l). Fur-
ther, if l < ∞, then V (l, ·) = 0.

(C) C : [0, T ] → R
n is a continuous function.

We define the characteristic curve ϕ(t; t0, x0) through (x0, t0) ∈ [0, l) ×
[0, T ] by the solution of the differential equation

(2.1)

{
x′(t) = V (x(t), t), t ∈ [t0, T ]

x(t0) = x0 ∈ [0, l).

Since the function V is Lipschitz continuous as assumed in (V), it is well
known that there exists a unique solution x(t) = ϕ(t; t0, x0) of (2.1) on
[t0, T ].

Let za(t) := ϕ(t; a, 0) denote the characteristic through (0, a) in the (x, t)-
plane. In particular, the curve z0(t) is the trajectory in the (x, t)-plane of
the newborn individuals at t = 0 and it separates the trajectories of the
individuals that were present at the initial time t = 0 from the trajectories
of those individuals born after the initial time.

For (x, t) ∈ [0, l)× [0, T ] such that x < z0(t), define τ := τ(t, x) implicitly
by the relation

(2.2) ϕ(t; τ, 0) = x, or equivalently, ϕ(τ ; t, x) = 0

i.e. τ is the initial time of the characteristic through (x, t). And then define
τ∗
a by

(2.3) τ∗
a (t0, x0) =

{
τ(t0, x0) for x0 < za(t0),
a for x0 ≥ za(t0).
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It is obvious that the solution x(t) = ϕ(t; t0, x0) of (2.1) can be extended on
[τ∗

a (t0, x0), T ] and ϕ(t; t0, x0) satisfies the integral equation

(2.4) ϕ(t; t0, x0) = x0 +
∫ t

t0

V (ϕ(σ; t0, x0), σ)dσ for t ∈ [τ∗
a (t0, x0), T ].

Note also that x(t) = ϕ(t; t0, x0) satisfies 0 ≤ x(t) < l for every t ∈
[τ∗

a (t0, x0), T ] provided x0 ∈ [0, l), and if l < ∞ and x0 = l, then x(t) ≡ l.
With the characteristics ϕ we define a solution of (SDP) as follows.

Definition 2.1. A function u ∈ La,T is called a solution of (SDP) if u
satisfies

(2.5)

u(x, t) ={
F̃ (τ,u(·,τ))

V (0,τ) +
∫ t

τ
G̃(s, u(·, s))(ϕ(s; τ, 0))ds a.e. x ∈ (0, za(t)),

ua(ϕ(a; t, x)) +
∫ t

a
G̃(s, u(·, s))(ϕ(s; t, x))ds a.e. x ∈ (za(t), l),

where τ := τ(t, x) is given by (2.2), F̃ (t, u(·, t)) and G̃(t, u(·, t))(x) are given
by

(2.6) F̃ (t, u(·, t)) := C(t) + F (u(·, t)), ∀t ∈ [a, T ],

(2.7)
G̃(t, u(·, t))(x) :=

G(u(·, t))(x) − Vx(x, t)u(x, t), ∀t ∈ [a, T ], a.e. x ∈ (0, l).

Remark 2.1. The above definition is the analogue of the age-dependent
case [4, (1.49)]. Note that if u(x, t) satisfies (SDP) in a strong sense, then
it is easily seen that u satisfies (2.5).

Our main results are the following two theorems.

Theorem 2.1. Let (F), (G), (V), and (C) hold and let r > 0. Then there
exists a δ > 0 such that for ua ∈ L1 satisfying ‖ua‖L1 ≤ r, there exists the
unique solution u ∈ La,T of (SDP) on [a, T ] with T = a + δ (in the sense of
Definition 2.1).

Theorem 2.2. Suppose (F), (G), (V), and (C) hold and let T > a and
r > 0. Let u, û ∈ La,T be the solutions of (SDP) with initial values ua,
ûa ∈ L1 respectively satisfying ‖u‖La,T

, ‖û‖La,T
≤ r. Then we have the

following estimate:

‖u(·, t)−û(·, t)‖L1 ≤ exp[(c1(r)+c2(r)+2LV )(t−a)]‖ua−ûa‖L1 , a ≤ t ≤ T.

Remark 2.2. Theorem 2.2 shows the continuous dependence of the solution
on the initial data as well as the uniqueness of the solution for the unitial
data as long as the solution exists.
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3. Properties of characteristic curves

In this section we collect some properties of the characteristic curves
defined by (2.1) (or (2.4)) in the previous section. Before that, let us begin
with the well-known lemma.

Lemma 3.1. (Gronwall’s lemma) Let f , a, and g be nonnegative continuous
functions.
(i) If f(t) ≤ a(t) +

∫ t

s
g(σ)f(σ)dσ for t ≥ s, then

f(t) ≤ a(t) +
∫ t

s

g(σ)a(σ) exp
(∫ t

σ

g(ξ)dξ
)
dσ for t ≥ s.

(ii) If f(t) ≤ a(t) +
∫ s

t
g(σ)f(σ)dσ for t ≤ s, then

f(t) ≤ a(t) +
∫ s

t

g(σ)a(σ) exp
(∫ σ

t

g(ξ)dξ
)
dσ for t ≤ s.

The case (i) is the standard one. The case (ii) is less familiar but we omit
the proof since it is quite similar.

Some properties of the characteristic curves ϕ are given as

Lemma 3.2. Let ϕ be the characteristic curves defined by the solution of
(2.1).

(i) For any t0 ∈ [0, T ], x0 ∈ [0, l), the mapping t → ϕ(t; t0, x0) is in-
creasing and Lipschitz continuous on [τ∗

0 (t0, x0), T ] where τ∗
0 (t0, x0)

is defined by (2.3).
(ii) For any t1 ∈ [0, T ], x1 ∈ [0, l), the mapping s → ϕ(t1; s, x1) is

decreasing and Lipschitz continuous on [0, σ1] where σ1 := σ(t1, x1)
is defined implicitly by ϕ(σ1; t1, 0) = x1 if t1 < τ(T, x1) and σ1 = T
if t1 ≥ τ(T, x1).

(iii) For any t, t0 ∈ [0, T ], the mapping x → ϕ(t; t0, x) is increasing and
Lipschitz continuous on [χ(t, t0), l) where

χ(t, t0) =
{

0 if t ≥ t0,
ϕ(t0; t, 0) if t < t0.

Proof. (i) Since V is positive, it is easily seen from (2.4) that the mapping
t → ϕ(t; t0, x0) is increasing. For t, t̂ ∈ [τ∗

0 (t0, x0), T ], by (2.4) and (V), we
obtain

|ϕ(t; t0, x0) − ϕ(t̂; t0, x0)| =
∣∣∣∫ t

t̂

V (ϕ(σ; t0, x0), σ)dσ
∣∣∣ ≤ V0|t − t̂|.
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(ii) It is obvious that the mapping s → ϕ(t1; s, x1) is decrasing. For s,
ŝ ∈ [0, σ1], by (2.4) and (V), we get

|ϕ(t1; s, x1) − ϕ(t1; ŝ, x1)|

=
∣∣∣∫ t1

s

V (ϕ(ξ; s, x1), ξ)dξ −
∫ t1

ŝ

V (ϕ(ξ; ŝ, x1), ξ)dξ
∣∣∣

≤
∣∣∣∫ t1

s

|V (ϕ(ξ; s, x1), ξ) − V (ϕ(ξ; ŝ, x1), ξ)|dξ
∣∣∣ +

∣∣∣∫ s

ŝ

V (ϕ(ξ; ŝ, x1), ξ)dξ
∣∣∣

≤ LV

∣∣∣∫ t1

s

|ϕ(ξ; s, x1) − ϕ(ξ; ŝ, x1)|dξ
∣∣∣ + V0|s − ŝ|

=

{
LV

∫ t1
s

|ϕ(ξ; s, x1) − ϕ(ξ; ŝ, x1)|dξ + V0|s − ŝ| if t1 ≥ s,
LV

∫ s

t1
|ϕ(ξ; s, x1) − ϕ(ξ; ŝ, x1)|dξ + V0|s − ŝ| if t1 < s.

By Gronwall’s lemma (Lemma 3.1), we have

(3.1) |ϕ(t1; s, x1) − ϕ(t1; ŝ, x1)| ≤ V0|s − ŝ|eLV T .

(iii) It is easily verified that the mapping x → ϕ(t; t0, x) is increasing. If
x, x̂ ∈ [χ(t, t0), l), then we have

|ϕ(t; t0, x) − ϕ(t; t0, x̂)|

≤ |x − x̂| +
∣∣∣∫ t

t0

|V (ϕ(σ; t0, x), σ) − V (ϕ(σ; t0, x̂), σ)|dσ
∣∣∣

≤ |x − x̂| + LV

∣∣∣∫ t

t0

|ϕ(σ; t0, x) − ϕ(σ; t0, x̂)|dσ
∣∣∣

=

{
|x − x̂| + LV

∫ t

t0
|ϕ(σ; t0, x) − ϕ(σ; t0, x̂)|dσ if t ≥ t0,

|x − x̂| + LV

∫ t0
t

|ϕ(σ; t0, x) − ϕ(σ; t0, x̂)|dσ if t < t0.

By Gronwall’s lemma (Lemma 3.1), we obtain

|ϕ(t; t0, x) − ϕ(t; t0, x̂)| ≤ |x − x̂|eLV T .

This completes the proof.

The function τ defined by (2.2) has the following properties.

Lemma 3.3. (i) For any t ∈ [0, T ], put τt(x) := τ(t, x). Then τt : [0, z0(t)]
→ [0, t] is continuous, decreasing and onto, and hence invertible. The in-
verse function τt

−1(·) is continuous from [0, t] onto [0, z0(t)]. Furthermore,

(3.2) τ−1
t̂

(s) → τt
−1(s) as t̂ → t for each s ∈ [0, t].
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(ii) For each x ∈ [0, l), the mapping t → τ(t, x) is increasing, and the
mapping (t, x) → τ(t, x) is continuous on the region U := {(t, x) ∈ [0, T ] ×
[0, l) | x < z0(t)}.
Proof. (i) (Decreasing) For xi ∈ [0, z0(t)], put τi := τ(t, xi) (i = 1, 2). We
will show that τ1 < τ2 implies x1 > x2. Suppose for contradiction that
x1 ≤ x2. Since x1 = ϕ(t; τ1, 0) = ϕ(t; τ2, ϕ(τ2; τ1, 0)) ≤ x2 = ϕ(t; τ2, 0),
there exists t∗ ∈ [τ2, t] such that

ϕ(t∗; τ2, ϕ(τ2; τ1, 0)) = ϕ(t∗; τ2, 0)(=: x0).

This contradicts the fact that the initial value problem

x′(s) = V (x(s), s), τ2 < s < t∗, x(t∗) = x0

has a unique solution. Hence x1 ≥ x2, and so τt(·) is shown to be decreasing.
(Onto) For any s ∈ [0, t], putting x := ϕ(t; s, 0), it is clear that τt(x) = s.

This shows that τt is onto.
(Continuity) For x0 ∈ [0, z0(t)], we put τ0 := τt(x0). If x0 ∈ (0, z0(t)),

then 0 < τ0 < t. For any ε > 0 such that 0 < τ0 − ε < τ0 < τ0 + ε < t, we
have

ϕ(t; τ0 − ε, 0) > ϕ(t; τ0, 0) = x0 > ϕ(t; τ0 + ε, 0).

Taking δ > 0 as δ := min{ϕ(t; τ0−ε, 0)−ϕ(t; τ0, 0), ϕ(t; τ0, 0)−ϕ(t; τ0+ε, 0)},
it turns out that |x − x0| < δ implies |τt(x) − τ0| < ε. When x0 = z0(t) or
x0 = 0, one can observe that τt(·) is right or left continuous, respectively,
by the same fashion.

(Continuity of τt
−1) For any s0 ∈ [0, t], we put x0 := τt

−1(s0) = ϕ(t; s0, 0).
If s0 ∈ (0, t), then 0 < x0 < z0(t). Given ε > 0 such that 0 < x0 − ε < x0 <
x0 + ε < z0(t), since τt is decreasing,

τt(x0 + ε) < τt(x0) = s0 < τt(x0 − ε).

Taking δ > 0 as δ := min{τt(x0 −ε)−τt(x0), τt(x0)−τt(x0 +ε)}, it is shown
that |s − s0| < δ implies |τt

−1(s) − τt
−1(s0)| = |ϕ(t; s, 0) − ϕ(t; s0, 0)| < ε.

When s0 = 0 or s0 = t, it is shown that τ−1(·) is right or left continuous
respectively by the same way.

(Proof of (3.2)) We put x := τt
−1(s). If s ∈ (0, t), then ϕ∗(t, T, x) < x <

z0(t) where

ϕ∗(t, T, x) =
{

ϕ(t;T, x) if t > τ(T, x),
0 if t ≤ τ(T, x).

For any ε > 0 such that ϕ∗(t, T, x) < x − ε < x < x + ε < z0(t), there
exist t1, t2 ∈ (s, T ) such that x = ϕ(t1; t, x + ε) = ϕ(t2; t, x − ε). Taking
δ > 0 as δ := min{t − t1, t2 − t}, it turns out that |t̂ − t| < δ implies
|τ−1

t̂
(s) − τt

−1(s)| < ε. When s = 0 or s = t, the right or left continuity is
verified respectively by the same way.
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(ii) It is easily seen that t → τ(t, x) is increasing. To prove the continuity
of τ(t, x), first we observe that for any t ∈ [0, T ] and x ∈ [0, z0(t)), τ(t̂, x) →
τ(t, x) as t̂ → t.

If x ∈ (0, z0(t)), then 0 < τ(t, x) < τ∗(t, T, x) where

τ∗(t, T, x) =
{

τ(T, x) if t > τ(T, x),
0 if t ≤ τ(T, x).

Given ε > 0 such that 0 < τ(t, x) − ε < τ(t, x) < τ(t, x) + ε < τ∗(t, T, x),
there exist t1, t2 ∈ (0, T ) such that x = ϕ(t1; τ(t, x) − ε, 0) = ϕ(t2; τ(t, x) +
ε, 0). Taking δ > 0 such that δ := min{t − t1, t2 − t}, it is shown that
|t− t̂| < δ implies |τ(t, x)−τ(t̂, x)| < ε. When x = z0(t) or x = 0, it is easily
checked that τ(·, x) is right or left continuous respectively by the same way.

Next, we show that τ is continuous on U . Let (t, x) ∈ U and let tn → t
and xn → x. We may assume that tn �= t. Then there is a subsequence tnk

such that tnk
↑ t or tnk

↓ t. We consider the former case. For the latter
case, the same fact holds. Take b > 0 such as 0 ≤ x < b < z0(t). Then for
each y ∈ [0, b], k → τ(tnk

, y) is increasing and limk→∞ τ(tnk
, y) = τ(t, y) as

shown above. Further, y → τ(tnk
, y) (for each sufficiently large k) and

y → τ(t, y) are continuous by (i). Hence by Dini’s theorem, we have
limk→∞ τ(tnk

, y) = τ(t, y) uniformly for y ∈ [0, b]. Therefore, we conclude
that limk→∞ τ(tnk

, xnk
) = τ(t, x). Since the limit is common for the subse-

quences, we establish the continuity of (t, x) → τ(t, x).

The next lemma shows some differentiability properties of the character-
istics with respect to the second and third arguments, and they are needed
for changes of variables we will use often later.

Lemma 3.4. Let x = ϕ(t; τ, η).
(i) x is differentiable with respect to τ and

dx

dτ
= −V (η, τ) exp

(∫ t

τ

Vx(ϕ(σ; τ, η), σ)dσ
)
.

(ii) x is differentiable with respect to η and

dx

dη
= exp

(∫ t

τ

Vx(ϕ(σ; τ, η), σ)dσ
)
.

Proof. (i) By Lemma 3.2 (ii), the function τ → ϕ(t; τ, η) is differentiable
almost everywhere. On the other hand, invoking (3.1) and the Lebesgue
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bounded convergence theorem, we find that

1
h

[ϕ(t; τ + h, η) − ϕ(t; τ, η)]

=
1
h

[∫ t

τ+h

V (ϕ(σ; τ + h, η), σ)dσ −
∫ t

τ

V (ϕ(σ; τ, η), σ)dσ
]

= − 1
h

∫ τ+h

τ

V (ϕ(σ; τ + h, η), σ)dσ

+
∫ t

τ

1
h

[V (ϕ(σ; τ + h, η), σ) − V (ϕ(σ; τ, η), σ)] dσ

→ −V (ϕ(τ ; τ, η), τ) +
∫ t

τ

Vx(ϕ(σ; τ, η), σ)
∂

∂τ
ϕ(σ; τ, η)dσ as h → 0.

Therefore

dx

dτ
=

∂

∂τ
ϕ(t; τ, η) = −V (η, τ) exp

(∫ t

τ

Vx(ϕ(σ; τ, η), σ)dσ
)
.

(ii) Similarly to (i), one can show that (ii) holds.

Now we give some continuity properties of L1-functions along the char-
acteristics with respect to the L1-norm.

Lemma 3.5. Let f ∈ L1 := L1(0, l) and 0 ≤ s < t. Then we have∫ l

0
|f(η) − f(ϕ(s; t, ϕ(t̂; s, η)))|dη → 0 as t̂ ↓ t,(3.3)

∫ l

0
|f(η) − f(ϕ(s; t̂, ϕ(t; s, η)))|dη → 0 as t̂ ↑ t.(3.4)

Proof. We will show only (3.3) because (3.4) is similar. For any ε > 0, there
exists an f̂ ∈ C0(0, l) such that ‖f − f̂‖L1 < ε. Here C0(0, l) is the space of
continuous functions having compact support in (0, l). Then, we have∫ l

0
|f(η) − f(ϕ(s; t, ϕ(t̂; s, η)))|dη

≤
∫ l

0
|f(η) − f̂(η)|dη +

∫ l

0
|f̂(η) − f̂(ϕ(s; t, ϕ(t̂; s, η)))|dη

+
∫ l

0
|f̂(ϕ(s; t, ϕ(t̂; s, η))) − f(ϕ(s; t, ϕ(t̂; s, η)))|dη.

By Lemma 3.2 (ii), for each η and s, |η − ϕ(s; t̂, ϕ(t; ŝ, η))| → 0 as t̂ ↓ t.
Therefore, by the Lebesgue bounded convergence theorem, we have∫ l

0
|f̂(η) − f̂(ϕ(s; t̂, ϕ(t; s, η)))|dη → 0 as t̂ ↓ t.
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In order to estimate the third term, put λ := ϕ(s; t, ϕ(t̂; s, η)). Then by
(2.4)

η = ϕ(s; t̂, ϕ(t; s, λ)) = ϕ(t; s, λ) +
∫ s

t̂

V (ϕ(σ; t̂, ϕ(t; s, λ), σ)dσ.

Hence
dη

dλ
=

∂

∂λ
ϕ(s; t̂, ϕ(t; s, λ))

=
∂

∂λ
ϕ(t̂; s, λ) +

∫ s

t̂

Vx(ϕ(σ; t̂, ϕ(t; s, λ), σ)
∂

∂λ
ϕ(σ; t̂, ϕ(t; s, λ))dσ,

from which we obtain
dη

dλ
=

∂

∂λ
ϕ(t; s, λ) exp

(∫ s

t̂

Vx(ϕ(σ; t̂, ϕ(t; s, λ)), σ)dσ
)
.

On the other hand, since ϕ(t; s, λ) = λ +
∫ t

s
V (ϕ(σ; s, λ), σ)dσ, we have

∂

∂λ
ϕ(t̂; s, λ) = 1 +

∫ t̂

s

Vx(ϕ(σ; s, λ), σ)
∂

∂λ
ϕ(σ; s, λ)dσ

which yields

∂

∂λ
ϕ(t; s, λ) = exp

(∫ t

s

Vx(ϕ(σ; s, λ), σ)dσ
)
.

Thus, we have

dη

dλ
= exp

(∫ t

s

Vx(ϕ(σ; s, λ), σ)dσ
)

exp
(∫ s

t̂

Vx(ϕ(σ; s, ϕ(t; s, λ)), σ)dσ
)
.

Accordingly, we get the following estimate.∫ l

0
|f(η) − f(ϕ(s; t, ϕ(t̂; s, η)))|dη

≤ ‖f − f̂‖L1 +
∫ l

0
|f̂(η) − f̂(ϕ(s; t, ϕ(t̂; s, η)))|dη

+ e2LV T

∫ l

ϕ(s;t,ϕ(t̂;s,0))
|f̂(λ) − f(λ)|dλ

≤ (1 + e2LV T )‖f − f̂‖L1 +
∫ l

0
|f̂(η) − f̂(ϕ(s; t, ϕ(t̂; s, η)))|dη.

Taking the limit superior on both sides yields

lim sup
t̂↓t

∫ l

0
|f(η) − f(ϕ(s; t, ϕ(t̂; s, η)))|dη ≤ (1 + e2LV T )‖f − f̂‖L1

≤ (1 + e2LV T )ε.

This completes the proof.
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4. Proof of Theorem 2.1

Given r > 0, take ua ∈ L1 such that ‖ua‖L1 ≤ r. Define

MT := {u ∈ La,T | u(·, a) = ua(·) and ‖u‖La,T
≤ 2r}.

Obviously, MT is a closed subset of La,T and so a complete metric space.
Define a mapping K on MT as follows: For u ∈ MT , t ∈ [a, T ],

(4.1)

Ku(x, t) :={
F̃ (τ,u(·,τ))

V (0,τ) +
∫ t

τ
G̃(s, u(·, s))(ϕ(s; τ, 0))ds a.e. x ∈ (0, za(t)),

ua(ϕ(a; t, x)) +
∫ t

a
G̃(s, u(·, s))(ϕ(s; t, x))ds a.e. x ∈ (za(t), l),

where τ := τ(t, x) is the one defined by (2.2), F̃ and G̃ are defined by (2.6)
and (2.7) respectively in Section 2.

We will seek the fixed point of the mapping K. For that purpose, we will
show that K maps MT into itself and that K is contractive for some T > a.

Step 1: First, we show that K : MT → MT for T = a + δ with small
δ > 0.

(i) For u ∈ MT , t ∈ [a, T ],

(4.2)

∫ l

0
|Ku(x, t)|dx ≤

∫ za(t)

0

∣∣∣ F̃ (τ, u(·, τ))
V (0, τ)

∣∣∣dx
+

∫ za(t)

0

∫ t

τ

|G̃(s, u(·, s))(ϕ(s; τ, 0))|dsdx

+
∫ l

za(t)
|ua(ϕ(a; t, x))|dx +

∫ l

za(t)

∫ t

a

|G̃(s, u(·, s))(ϕ(s; t, x))|dsdx

=: I1 + I2 + I3 + I4.

By Lemma 3.4 (i) and (F), we have

I1 =
∫ t

a

∣∣∣ F̃ (τ, u(·, τ))
V (0, τ)

∣∣∣V (0, τ) exp
(∫ t

τ

Vx(ϕ(s; τ, 0), s)ds
)
dτ

≤ eLV (T−a)
{∫ t

a

|C(τ)|dτ +
∫ t

a

|F (u(·, τ))|dτ
}

≤ eLV (T−a)
{
C0(t − a) +

∫ t

a

|F (u(·, τ)) − F (0)|dτ +
∫ t

a

|F (0)|dτ
}

≤ eLV (T−a)
{
C0(t − a) + c1(2r)

∫ t

a

‖u(·, τ)‖L1dτ + (t − a)|F (0)|
}

≤ eLV (T−a)[C0 + 2r · c1(2r) + |F (0)|](T − a),

where C0 := supt∈[0,T ] C(t).
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For I2 and I4, use the change of variable η = ϕ(s; τ, 0) = ϕ(s; t, x). By
Lemma 3.4 (ii), we obtain

I2 + I4 ≤ eLV (T−a)
{∫ t

a

∫ za(s)

0
|G̃(s, u(·, s))(η)|dηds

+
∫ t

a

∫ l

za(s)
|G̃(s, u(·, s))(η)|dηds

}

≤ eLV (T−a)
{∫ t

a

∫ l

0
|G(u(·, s))(η)|dηds

+
∫ t

a

∫ l

0
|Vx(η, s)u(η, s)|dxds

}
.

By (G) and (V), we have

(4.3)

∫ l

0
|G(u(·, s))(η)|dη ≤ ‖G(u(·, s)) − G(0)‖L1 + ‖G(0)‖L1

≤ c2(2r)‖u(·, s)‖L1 + ‖G(0)‖L1 ≤ c2(2r) · 2r + ‖G(0)‖L1 ,

(4.4)
∫ l

0
|Vx(η, s)u(η, s)|dη ≤ LV ‖u(·, s)‖L1 ≤ LV · 2r.

Therefore, we get the following inequality

I2 + I4 ≤ eLV (T−a) [(c2(2r) + LV ) · 2r + ‖G(0)‖L1 ] (T − a).

For I3, the change of variable ξ = ϕ(a; t, x) leads to

I3 ≤ eLV (T−a)
∫ l

a

|ua(ξ)|dξ ≤ reLV (T−a).

Consequently,

I1 + I2 + I3 + I4

≤ eLV (T−a)[C0 + (c1(2r) + c2(2r) + LV ) · 2r

+ |F (0)| + ‖G(0)‖L1 ](T − a) + reLV (T−a).

Choose δ > 0 so small that

(4.5)
eLV δ[C0 + (c1(2r) + c2(2r) + LV ) · 2r

+ |F (0)| + ‖G(0)‖L1 ]δ + reLV δ ≤ 2r.

Then combining (4.2) with (4.5), we have supa≤t≤T ‖Ku(·, t)‖L1 ≤ 2r for
T = a + δ.
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(ii) (Continuity of t → Ku(·, t)) Let u ∈ MT and t ∈ [a, T ]. We will show
only the right-continuity. The left-continuity is proved by exchanging t and
t̂. We will just give some remarks on proving it below.

Let a ≤ t < t̂ ≤ T . From (4.1) we have∫ l

0
|Ku(x, t) − Ku(x, t̂)|dx

≤
∫ za(t)

0

∣∣∣ F̃ (τ, u(·, τ))
V (0, τ)

− F̃ (τ̂ , u(·, τ̂))
V (0, τ̂)

∣∣∣dx
+

∫ za(t)

0

∣∣∣∫ t

τ

G̃(s, u(·, s))(ϕ(s; τ, 0))ds −
∫ t̂

τ̂

G̃(s, u(·, s))(ϕ(s; τ̂ , 0))ds
∣∣∣dx

+
∫ za(t̂)

za(t)

∣∣∣ua(ϕ(a; t, x)) +
∫ t

a

G̃(s, u(·, s))(ϕ(s; t, x))ds

− F̃ (τ̂ , u(·, τ̂))
V (0, τ̂)

−
∫ t̂

τ̂

G̃(s, u(·, s))(ϕ(s; τ̂ , 0))ds
∣∣∣dx

+
∫ l

za(t̂)
|ua(ϕ(a; t, x)) − ua(ϕ(a; t̂, x))|dx

+
∫ l

za(t̂)

∣∣∣∫ t

a

G̃(s, u(·, s))(ϕ(s; t, x))ds −
∫ t̂

a

G̃(s, u(·, s))(ϕ(s; t̂, x))ds
∣∣∣dx

=: J1 + J2 + J3 + J4 + J5,

where τ := τ(t, x) and τ̂ := τ(t̂, x).
First, consider J1. For simplicity of notation, we put B(t) := F̃ (t, u(·, t)).

Then

J1 ≤
∫ za(t)

0

1
V (0, τ)

|B(τ) − B(τ̂)|dx +
∫ za(t)

0

∣∣∣ 1
V (0, τ)

− 1
V (0, τ̂)

∣∣∣|B(τ̂)|dx.

Using the change of variable ξ = τ = τ(t, x), we obtain

J1 ≤ eLV T

∫ t

a

|B(ξ) − B(τ(t̂, ϕ(t; ξ, 0)))|dξ

+ eLV T

∫ t

a

∣∣∣1 − V (0, ξ)
V (0, τ(t̂, ϕ(t; ξ, 0)))

∣∣∣|B(τ(t̂, ϕ(t; ξ, 0)))|dξ

≤ eLV T

∫ t

a

|B(ξ) − B(τ(t̂, ϕ(t; ξ, 0)))|dξ

+ eLV T sup
a≤t≤T

|B(t)| 1
V1

∫ t

a

|V (0, τ(t̂, ϕ(t; ξ, 0))) − V (0, ξ)|dξ,

where V1 := mina≤t≤T V (0, t) > 0. By virtue of Lemma 3.3 (ii), for each
ξ ∈ [a, t]

|ξ − τ(t̂, ϕ(t; ξ, 0))| = |τ(t, ϕ(t; ξ, 0)) − τ(t̂, ϕ(t; ξ, 0))| → 0 as t̂ ↓ t.
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Noting that B(t) and V (0, t) are continuous in t and bounded on [a, T ], we
have J1 → 0 as t̂ ↓ t by the Lebesgue bounded convergence theorem.

Next, we shall estimate J2: We may assume ϕ(t̂, t, 0) < za(t) since t̂ is
colse enough to t. For simplicity, we put Gs(x) := G̃(s, u(·, s))(x). Then

J2 ≤
∫ ϕ(t̂;t,0)

0

∫ t

τ

|Gs(ϕ(s; τ, 0))|dsdx +
∫ ϕ(t̂;t,0)

0

∫ t̂

τ̂

|Gs(ϕ(s; t̂, 0))|dsdx

+
∫ za(t)

ϕ(t̂;t,0)

∫ τ̂

τ

|Gs(ϕ(s; τ, 0))|dsdx +
∫ za(t)

ϕ(t̂;t,0)

∫ t̂

t

|Gs(ϕ(s; τ̂ , 0))|dsdx

+
∫ za(t)

ϕ(t̂;t,0)

∣∣∣∫ t

τ̂

|Gs(ϕ(s; τ, 0)) − Gs(ϕ(s; τ̂ , 0))|ds
∣∣∣dx

=: J21 + J22 + J23 + J24 + J25.

For simplicity of notation, we put τ(x) = τ(t, x) and τ̂(x) = τ(t̂, x). Us-
ing Fubini’s theorem and the change of variable η = ϕ(s; τ, 0) = ϕ(s; t, x)
together with Lemma 3.4, we have

J21 =
∫ t

τ(ϕ(t̂;t,0))

∫ ϕ(t̂;t,0)

τ−1(s)
|Gs(ϕ(s; τ, 0))|dxds

=
∫ t

τ(ϕ(t̂;t,0))

∫ ϕ(s;t,ϕ(t̂;t,0))

0
|Gs(η)| exp

(∫ t

s

Vx(ϕ(σ; s, η), σ)dσ
)
dηds

≤ eLV T sup
a≤s≤T

‖Gs‖L1 [t − τ(ϕ(t̂; t, 0))].

Since τ(t, ϕ(t̂; t, 0)) → t as t̂ ↓ t, we obtain J21 → 0.

Similarly, we have

J22 =
∫ t̂

t

∫ ϕ(s;t,0)

0
|Gs(η)| exp

(∫ t̂

s

Vx(ϕ(σ; s, η), σ)dσ
)
dηds

≤ eLV T sup
a≤s≤T

‖Gs‖L1(t̂ − t).

Thus J22 → 0 as t̂ ↓ t.

Consider J23. We may assume τ̂(za(t)) < τ(ϕ(t̂; t, 0)). Since we have
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t = τ̂(ϕ(t̂; t, 0)) > τ(ϕ(t̂; t, 0)), we obtain

J23 =
∫ t

τ(ϕ(t̂;t,0))

∫ τ̂−1(s)

ϕ(t̂;t,0)
|Gs(ϕ(s; τ, 0))|dxds

+
∫ τ(ϕ(t̂;t,0))

τ̂(za(t))

∫ τ̂−1(s)

τ−1(s)
|Gs(ϕ(s; τ, 0))|dxds

+
∫ τ̂(za(t))

a

∫ za(t)

τ−1(s)
|Gs(ϕ(s; τ, 0))|dxds

≤ eLV T

∫ t

τ(ϕ(t̂;t,0))

∫ ϕ(s;t,ϕ(t̂;s,0))

ϕ(s;t,ϕ(t̂;t,0))
|Gs(η)|dηds

+ eLV T

∫ τ(ϕ(t̂;t,0))

τ̂(za(t))

∫ ϕ(s;t,ϕ(t̂;s,0))

0
|Gs(η)|dηds

+ eLV T

∫ τ̂(za(t))

a

∫ za(s)

0
|Gs(η)|dηds

≤ eLV T sup
a≤s≤T

‖Gs‖L1 [t − τ(ϕ(t̂; t, 0)) + τ̂(za(t)) − a]

+ eLV T

∫ τ(ϕ(t̂;t,0))

τ̂(za(t))

∫ ϕ(s;t,ϕ(t̂,s,0))

0
|Gs(η)|dηds.

The first term tends to 0 since τ(ϕ(t̂; t, 0)) → τ(ϕ(t; t, 0)) = τ(0) = t and
τ̂(za(t)) → τ(za(t)) = a. From the fact that

∫ ϕ(s;t,ϕ(t̂;s,0))
0 |Gs(η)|dη con-

verges to 0 as t̂ ↓ t and bounded by supa≤s≤T ‖Gs‖L1 , we find that the
second term converges to 0 by the Lebesgue bounded convergence theorem.
Hence J23 → 0.

For J24, we proceed very similarly to the case J22 and obtain

J24 ≤ eLV T

∫ t̂

t

∫ ϕ(s,t̂,za(t))

ϕ(s;t,0)
|Gs(η)|dηds ≤ eLV T sup

a≤s≤T
‖Gs‖L1(t̂ − t).

Thus J24 → 0.
Next we estimate J25. As before, using Fubini’s theorem and then by

changing varuable η = ϕ(s; τ, 0) = ϕ(s; t̂, x), we have

J25 ≤ eLV T

∫ t

τ̂(za(t))

∫ ϕ(s;t̂,za(t))

0
|Gs(ϕ(s; t, ϕ(t̂; s, η))) − Gs(η)|dηds

≤ eLV T

∫ t

a

∫ l

0
|Gs(ϕ(s; t, ϕ(t̂; s, η))) − Gs(η)|dηds.

By Lemma 3.5, we have

lim
t̂↓t

∫ l

0
|Gs(ϕ(s; t, ϕ(t̂; s, η))) − Gs(η)|dη = 0.
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Also we find from Lemma 3.4 (see the proof of Lemma 3.5) that

∫ l

0
|Gs(ϕ(s; t, ϕ(t̂; s, η))) − Gs(η)|dη ≤ (e2LV T + 1) sup

a≤s≤T
‖Gs‖L1 .

Thus the Lebesgue bounded convergence theorem yields J25 → 0.
Next consider J3.

J3 ≤
∫ za(t̂)

za(t)
|ua(ϕ(a; t, x))|dx +

∫ za(t̂)

za(t)

∣∣∣ B(τ̂)
V (0, τ̂)

∣∣∣dx
+

∫ za(t̂)

za(t)

∫ t

a

|Gs(ϕ(s; t, x))|dsdx +
∫ za(t̂)

za(t)

∫ t̂

τ̂

|Gs(ϕ(s; τ̂ , 0))|dsdx

=: J31 + J32 + J33 + J34.

It is easily seen that

J31 ≤ eLV T

∫ ϕ(a;t,z(t̂))

a

|ua(η)|dη,

J32 ≤ eLV T

∫ τ(t̂,za(t))

a

|B(ξ)|dξ,

J33 ≤ eLV T

∫ t

a

∫ ϕ(s;t,za(t̂))

za(s)
|Gs(η)|dηds.

Thus we find that J31 + J32 + J33 → 0.
To estimate J34 we may assume that τ̂(za(t)) < t. Then

J34 ≤ eLV T

∫ t̂

τ̂(za(t))

∫ za(s)

ϕ(s;t̂,za(t))
|Gs(η)|dηds

+ eLV T

∫ τ̂(za(t))

a

∫ za(s)

0
|Gs(η)|dηds

≤ eLV T

∫ t̂

τ̂(za(t))

∫ za(s)

ϕ(s;t̂,za(t))
|Gs(η)|dηds

+ eLV T sup
a≤s≤T

‖Gs‖L1 [τ̂(z(t)) − a].

By the Lebesgue bounded theorem, the first term tends to 0 as t̂ ↓ t. The
second term goes to 0 since τ̂(za(t)) → τ(za(t)) = a. Therefore J34 → 0.

For J4, one easily sees that

J4 ≤ eLV T

∫ l

0
|ua(ϕ(a; t, ϕ(t̂; a, η))) − ua(η)|dη.
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Thus by Lemma 3.5, we get J4 → 0 as t̂ ↓ t.
Finally J5 is estimated as follows.

J5 ≤
∫ t

a

∫ l

za(t̂)
|Gs(ϕ(s; t, x)) − Gs(ϕ(s, t̂, x))|dxds

+
∫ t̂

t

∫ l

za(t̂)
|Gs(ϕ(s; t̂, x)|dxds

≤ eLV T

∫ t

a

∫ l

za(s)
|Gs(ϕ(s; t, ϕ(t̂, s, η))) − Gs(η)|dηds

+ eLV T

∫ t̂

t

∫ l

za(s)
|Gs(η)|dηds

≤ eLV T

∫ t

a

∫ l

0
|Gs(ϕ(s; t, ϕ(t̂, s, η))) − Gs(η)|dηds

+ eLV T sup
a≤s≤T

‖Gs‖L1(t̂ − t).

By Lemma 3.5, we find that J5 → 0 as t̂ ↓ t.
Consequently, the right-continuity has been shown. To prove the left-

continuity, let t̂ < t. Then by exchanging t and t̂, we obtain all the estimates
above with t and t̂ exchanged. By the continuity of τ obtained in Lemma
3.3 (ii), we find that all the terms tends to 0 as t̂ ↑ t. Hence the continuity
is proved.

Step 2: We show that K is a contraction mapping for T = a + δ with
small δ > 0. For ui ∈ MT (i = 1, 2), it follows from (4.1) that∫ l

0
|Ku1(x, t) − Ku2(x, t)|dx

≤
∫ za(t)

0

∣∣∣F (u1(·, τ)) − F (u2(·, τ))
V (0, τ)

∣∣∣dx
+

∫ za(t)

0

∫ t

τ

|G̃(s, u1(·, s))(ϕ(s; τ, 0)) − G̃(s, u2(·, s))(ϕ(s; τ, 0))|dsdx

+
∫ l

za(t)

∫ t

a

|G̃(s, u1(·, s))(ϕ(s; t, x)) − G̃(s, u2(·, s))(ϕ(s; t, x))|dsdx

=: P1 + P2 + P3.

By Lemma 3.4 (i) and (F),

P1 ≤ eLV (T−a)
∫ t

a

|F (u1(·, τ)) − F (u2(·, τ))|dτ

≤ eLV (T−a)c1(2r)
∫ t

a

‖u1(·, τ) − u2(·, τ)‖L1dτ

≤ eLV (T−a)c1(2r)(T − a)‖u1 − u2‖La,T
.
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By using the change of variable η = ϕ(s; t, x) = ϕ(s; τ, 0), and by (G), the
following estimate for P2 + P3 holds:

P2 + P3 =∫ t

a

∫ za(t)

τt
−1(s)

|G̃(s, u1(·, s))(ϕ(s; τ, 0)) − G̃(s, u2(·, s))(ϕ(s; τ, 0))|dxds

+
∫ l

za(t)

∫ t

a

|G̃(s, u1(·, s))(ϕ(s; t, x)) − G̃(s, u2(·, s))(ϕ(s; t, x))|dxds

≤ eLV (T−a)
∫ t

a

∫ za(s)

0
|G̃(s, u1(·, s))(η) − G̃(s, u2(·, s))(η)|dηds

+ eLV (T−a)
∫ t

a

∫ l

za(s)
|G̃(s, u1(·, s))(η) − G̃(s, u2(·, s))(η)|dηds

= eLV (T−a)
∫ t

a

∫ l

0
|G̃(s, u1(·, s))(η) − G̃(s, u2(·, s))(η)|dηds

≤ eLV (T−a)
∫ t

a

[‖G(u1(·, s)) − G(u2(·, s))‖L1 + LV ‖u1(·, s) − u2(·, s)‖L1 ]ds

≤ eLV (T−a)
∫ t

a

[(c2(2r) + LV )‖u1(·, s) − u2(·, s)‖L1 ] ds

≤ eLV (T−a)(c2(2r) + LV )(T − a)‖u1 − u2‖La,T
.

Accordingly,

‖Ku1 − Ku2‖La,T
≤ eLV (T−a)[c1(2r) + c2(2r) + LV ](T − a)‖u1 − u2‖La,T

.

Therefore if we choose δ > 0 so small that

eLV δ[c1(2r) + c2(2r) + LV ]δ < 1,

then K becomes a contraction on MT with T = a + δ.
Consequently, by the contraction mapping theorem, there is a unique

fixed point u ∈ MT such that Ku = u. This completes the proof.

5. Proof of Theorem 2.2

The proof is similar to the proof of the mapping K to be contractive as
done in the previous section. We need a little more careful estimation.

For the solutions u, û ∈ La,T of (SDP) with initial data ua, ûa respec-
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tively, it follows from (2.5) that

‖u(·, t) − û(·, t)‖L1 ≤
∫ za(t)

0

∣∣∣F (u(·, τ)) − F (û(·, τ))
V (0, τ)

∣∣∣dx
+

∫ za(t)

0

∫ t

τ

|G̃(s, u(·, s))(ϕ(s; τ, 0)) − G̃(s, û(·, s))(ϕ(s; τ, 0))|dsdx

+
∫ l

za(t)

∫ t

a

|ua(ϕ(a; t, x)) − ûa(ϕ(a; t, x))|dx

+
∫ l

za(t)

∫ t

a

|G̃(s, u(·, s))(ϕ(s; t, x)) − G̃(s, û(·, s))(ϕ(s; t, x))|dsdx

=: R1 + R2 + R3 + R4.

By changing variable τ := τ(t, x) it follows from Lemma 3.4 (i) and (F) that

R1 ≤
∫ t

a

eLV (t−τ)|F (u(·, τ)) − F (û(·, τ))|dτ

≤ c1(r)
∫ t

a

eLV (t−τ)‖u(·, τ) − û(·, τ)‖L1dτ.

As the estimation of I3 in the previous section,

R3 ≤ eLV (t−a)
∫ l

0
|ua(ξ) − ûa(ξ)|dξ.

Similarly to the estimate of P2 + P3, by using the change of variable η =
ϕ(s; t, x) = ϕ(s; τ, 0), and by (G), we have

R2 + R4

≤
∫ t

a

∫ za(s)

0
eLV (t−s)|G̃(s, u(·, s))(η) − G̃(s, û(·, s))(η)|dηds

+
∫ t

a

∫ l

za(s)
eLV (t−s)|G̃(s, u(·, s))(η) − G̃(s, û(·, s))(η)|dηds

≤
∫ t

a

eLV (t−s)[‖G(u(·, s)) − G(û(·, s))‖L1 + LV ‖u(·, s) − û(·, s)‖L1 ]ds

≤ (c2(r) + LV )
∫ t

a

eLV (t−s) [‖u(·, s) − û(·, s)‖L1 ] ds.

Therefore we obtain

e−LV (t−a)‖u(·, t) − û(·, t)‖L1

≤ ‖ua − ûa‖L1 + [c1(r) + c2(r) + LV ]
∫ t

a

e−LV (s−a)‖u(·, s) − û(·, s)‖L1ds.

By Gronwall’s lemma,

e−LV (t−a)‖u(·, t) − û(·, t)‖L1 ≤ exp[(c1(r) + c2(r) + LV )(t − a)]‖ua − ûa‖L1 ,

from which the desired estimate is established.
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