EXISTENCE OF A POSITIVE SOLUTION FOR AN NTH ORDER BOUNDARY VALUE PROBLEM FOR NONLINEAR DIFFERENCE EQUATIONS

JOHNNY HENDERSON AND SUSAN D. LAUER

ABSTRACT. The nth order eigenvalue problem:

$$\Delta^n x(t) = (-1)^{n-k} \lambda f(t, x(t)), \quad t \in [0, T],$$

$$x(0) = x(1) = \dots = x(k-1) = x(T+k+1) = \dots = x(T+n) = 0,$$

is considered, where $n \ge 2$ and $k \in \{1, 2, ..., n-1\}$ are given. Eigenvalues λ are determined for f continuous and the case where the limits $f_0(t) = \lim_{n \to 0^+} \frac{f(t,u)}{u}$ and $f_{\infty}(t) = \lim_{n \to \infty} \frac{f(t,u)}{u}$ exist for all $t \in [0, T]$. Guo's fixed point theorem is applied to operators defined on annular regions in a cone.

1. INTRODUCTION

Define the operator Δ to be the forward difference

$$\Delta u(t) = u(t+1) - u(t),$$

and then define

$$\Delta^{i}u(t) = \Delta(\Delta^{i-1}u(t)), i \ge 1.$$

For a < b integers define the discrete interval $[a, b] = \{a, a+1, \ldots, b\}$. Let the integers $n, T \ge 2$ be given, and choose $k \in \{1, 2, \ldots, n-1\}$. Consider the nth order nonlinear difference equation

(1)
$$\Delta^n x(t) = (-1)^{n-k} \lambda f(t, x(t)), t \in [0, T],$$

satisfying the boundary conditions

(2)
$$x(0) = x(1) = \dots = x(k-1) = x(T+k+1) = \dots = x(T+n) = 0.$$

©1996 Mancorp Publishing, Inc.

¹⁹⁹¹ Mathematics Subject Classification. 39A10, 34B15.

Key words and phrases. Nth order difference equation, eigenvalue, boundary value problem, fixed point theorem, discrete, nonlinear, Green's function.

Received: October 26, 1997.

We determine eigenvalues λ that yield a solution to (1) and (2), where

$$(A)f:[0,T]\times\mathfrak{R}^+\to\mathfrak{R}^+$$

is continuous, where \mathfrak{R}^+ denotes the nonnegative reals,

(B) For all
$$t \in [0,T], f_0(t) = \lim_{u \to 0^+} \frac{f(t,u)}{u}$$
 and $f_\infty(t) = \lim_{n \to \infty} \frac{f(t,u)}{u}$

both exist.

We apply Guo's fixed point theorem using cone methods, Guo and Lakshmikantham [14], and Krasnosel'skii [19], to accomplish this. This method was first applied to differential equations in the landmark paper by Erbe and Wang [12]. Our proof will follow along the lines of those in Henderson [16], Lauer [17], and Merdivenci [20], additionally utilizing techniques from Peterson [21], Hartman [15], Eloe and Kaufmann [11], Agarwal and Wong [6,7], Agarwal and Henderson [1], and Agarwal, Henderson and Wong [2]. A key to applying this fixed point theorem involves discrete concavity of solutions of the boundary value problem in conjunction with a lower bound on an appropriate Green's function. Extensive use of the results by Eloe [8] concerning a lower bound for the Green's function will be made. Related results for nth order differential equation may be found in Agarwal and Wong [3,4], Eloe and Henderson [9,10], and Fang [13].

2. Preliminaries

Let G(t,s) be the Green's function for the disconjugate boundary value problem

(3)
$$Lx(t) \equiv \Delta^n x(t) = 0, t \in [0, T],$$

and satisfying (2), where, as shown in Kelly and Peterson [18], G(t, s) is the unique function satisfying:

- (a) G(t,s) is defined for all $t \in [0, T+n], s \in [0, T]$
- (b) $LG(t,s) = \delta_{ts}$ for all $t \in [0,T]$, $s \in [0,T]$ where $\delta_{ts} = 1$ if $t = s, \delta_{ts} = 0$ if $t \neq s$,
- (c) For all $s \in [0, T]$, G(t, s) satisfies the boundary conditions (2) in t.

We will use G(t, s) as the kernel of an integral operator preserving a cone in a Banach space. This is the setting for our fixed point theorem.

Let \mathcal{B} be a Banach space and let $\mathcal{P} \subset \mathcal{B}$ be such that \mathcal{P} is closed and non-empty. Then \mathcal{P} is a *cone* provided (i) $au + bv \in \mathcal{P}$ for all $u, v \in \mathcal{P}$ and for all $a, b \geq 0$, and (ii) $u, -u \in \mathcal{P}$ implies u = 0.

Applying the following fixed point theorem from Guo, Guo and Lakshmikantham [14], will yield solutions of (1), (2) for certain λ .

Theorem 1. Let \mathcal{B} be a Banach space, and let $\mathcal{P} \subset \mathcal{B}$ be a cone. Let Ω_1 and Ω_2 be two bounded open sets in \mathcal{B} such that $0 \in \Omega_1 \subset \overline{\Omega}_1 \subset \Omega_2$, and let

$$H: \mathcal{P} \cap (\overline{\Omega}_2 \backslash \Omega_1) \to \mathcal{P}$$

be a completely continuous operator such that, either

(i) $||Hx|| \le ||x||, x \in \mathcal{P} \cap \partial\Omega_1$, and $||Hx|| \ge ||x||, x \in \mathcal{P} \cap \partial\Omega_2$, or

(ii) $||Hx|| \ge ||x||, x \in \mathcal{P} \cap \partial\Omega_1$, and $||Hx|| \le ||x||, x \in \mathcal{P} \cap \partial\Omega_2$. Then *H* has a fixed point in $\mathcal{P} \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

We now apply Theorem 1 to the eigenvalue problem (1), (2), following along the lines of methods incorporated by Henderson [16]. Note that x(t)is a solution of (1), (2) if, and only if,

$$x(t) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t,s) f(s,x(s)), \quad t \in [0,T].$$

Hartman [15] extensively studied the boundary value problem (1), (2), with $(-1)^{n-k}\lambda f(t,u) \ge 0$. We begin by stating three Lemmas from Hartman.

Lemma 1. Let G(t,s) denote the Green's function of (3), (2). Then

$$(-1)^{n-k}G(t,s) \ge 0, \quad (t,s) \in [k,T+k] \times [0,T].$$

Lemma 2. Assume that u satisfies the difference inequality $(-1)^{n-k}\Delta^n u(t) \ge 0, t \in [0,T]$, and the homogeneous boundary conditions, (2). Then $u(t) \ge 0, t \in [0,T+k]$.

Lemma 3. Suppose that the finite sequence $u(0), \ldots, u(j)$ has N_j nodes and the sequence $\Delta u(0), \ldots, \Delta u(j-1)$ has M_j nodes. Then $M_j \ge N_j - 1$.

Eloe [8] employed these three lemmas to arrive at the following theorem that gives a lower bound for the solution to the class of boundary value problems studied by Hartman.

Theorem 2. Assume that u satisfies the difference inequality $(-1)^{n-k}\Delta^n u(t) \ge 0, t \in [0,T]$, and the homogeneous boundary conditions, (2). Then for $t \in [k, T+k]$,

$$(-1)^{n-k}u(t) \ge \frac{\nu!}{[(T+1)\cdots(T+\nu)]} ||u||,$$

where $||u|| = \max_{t \in [k, T+k]} |u(t)|$ and $u = \max\{k, n-k\}.$

We remark that Agarwal and Wong [5] have recently sharpened the inequality of Theorem 2. However, this sharper inequality is of little consequence for this work.

Eloe also contributed the following corollary.

Corollary 1. Let G(t, s) denote the Green's function for the boundary value problem, (3), (2). Then for all $s \in [0, T], t \in [k, T + k]$,

$$(-1)^{n-k}G(t,s) \ge \frac{\nu!}{[(T+1)\cdots(T+\nu)]} \|G(\cdot,s)\|_{2}$$

where $||G(\cdot, s)|| = \max_{t \in [k, T+k]} |G(t, s)|$ and $\nu = \max\{k, n-k\}$.

To fulfill the hypotheses of Theorem 1, let

$$\begin{split} \mathcal{B} &= \{ u : [0, T+n] \to \Re \quad u(0) = u(1) = \dots = u(k-1) \\ &= u(T+k+1) = \dots = u(T+n) = 0 \}, \end{split}$$

with $||u|| = \max_{t \in [t,T+k]} |u(t)|$. Now, $(\mathcal{B}, ||\cdot||)$ is a Banach space.

Let

(4)
$$\sigma = \frac{\nu!}{\left[(T+1)\cdots(T+\nu)\right]},$$

and define a cone

$$\mathcal{P} = \{ u \in \mathcal{B} | u(t) \ge 0 \text{ on } [0, T+n] \text{ and } \min_{t \in [k, T+k]} u(t) \ge \sigma \|u\| \}$$

Also choose $\tau, \eta \in [k, T+k]$ such that

(5)
$$(-1)^{n-k} \sum_{s=k}^{T} G(\tau, s) f_{\infty}(s) = \max_{t \in [k, T+k]} \sum_{s=k}^{T} G(t, s) f_{\infty}(s),$$

(6)
$$(-1)^{n-k} \sum_{s=k}^{T} G(\eta, s) f_0(s) = \max_{t \in [k, T+k]} (-1)^{n-k} \sum_{s=k}^{T} G(t, s) f_0(s),$$

3. Main Results

Theorem 3. Assume conditions (A) and (B) are satisfied. Then, for each λ satisfying

$$\frac{1}{\sigma(-1)^{n-k}\sum_{s=0}^{T} G(\tau,s) f_{\infty}(s)} < \lambda < \frac{1}{\sum_{s=k}^{T} \|G(\cdot,s)\| f_{0}(s)}$$

there exists at least one solution of (1), (2) in \mathcal{P} .

Proof. Let λ be given as in Theorem 3. Let $\epsilon > 0$ be such that

$$\frac{1}{\sigma(-1)^{n-k}\sum_{s=k}^{T}G(\tau,s)(f_{\infty}(s)-\epsilon)} \ge \lambda \ge \frac{1}{\sum_{s=0}^{T}\|G(\cdot,s)\|(f_{0}(s)+\epsilon)}$$

Define a summation operator $H: \mathcal{P} \to \mathcal{B}$ by

(7)
$$Hx(t) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t,s) f(s,x(s)), \qquad x \in \mathcal{P}.$$

We seek a fixed point of H in the cone \mathcal{P} . By the nonnegativity of f and $(-1)^{n-k}G, Hx(t) \geq 0$ on [0, T+n], and from the properties of G, Hx

274

satisfies the boundary conditions. Now if we choose $x \in \mathcal{P}$, we have

$$Hx(t) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t,s) f(s,x(s))$$

$$\leq \lambda \sum_{0=0}^{T} \|G(\cdot,s)\| f(s,x(s)), t \in [k,T+k].$$

 So

$$||Hx|| = \max_{t \in [k, T+k]} |Hx(t)| \le \lambda \sum_{s=0}^{T} ||G(\cdot, s)|| f(s, x(s)).$$

Hence, if $x \in \mathcal{P}$, $(-1)^{n-k}G(t,s) \ge \sigma \|G(\cdot,s)\|$, for $t \in [k,T+k]$ and $s \in [0,T]$, and thus,

$$\min_{t \in [k, T+k]} Hx(t) = \min_{k, T+k]} (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t, s) f(s, x(s))$$
$$\geq \sigma \lambda \sum_{s=0}^{T} \|G(\cdot, s)\| f(s, x(s))$$
$$\geq \sigma \|Hx\|.$$

Thus $H: \mathcal{P} \to \mathcal{P}$. Additionally, H is completely continuous.

Now consider $f_0(t)$. For each $t \in [0,T]$, there exists $k_t > 0$ such that $f(t,u) \leq (f_0(t) + \epsilon)u$ for $0 < u \leq k_t$. Let $K_1 = \min_{t \in [0,T]} k_t$. So, for $x \in \mathcal{P}$ with $||x|| = K_1$, we have

$$Hx(t) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t,s) f(s,x(s))$$

$$\leq \lambda \sum_{s=0}^{T} \|G(\cdot,s)\| (f_0(s) + \epsilon) x(s)$$

$$\leq \lambda \sum_{s=0}^{T} \|G(\cdot,s)\| (f_0(s) + \epsilon)\| x\|$$

$$\leq \|x\|, \qquad t \in [k,T+k].$$

Therefore, $||H(x)|| \le ||x||$. Hence, if we set

$$\Omega_1 = \{ u \in \mathcal{B} | \| u \| < K_1 \}$$

then

(8)
$$||Hx|| \le ||x||$$
 for all $x \in \mathcal{P} \cap \partial \Omega_1$.

Next consider $f_{\infty}(t)$. For each $t \in [0,T]$, there exists $\tilde{k}_t > 0$ such that $f(t,u) \ge (f_{\infty}(t) - \epsilon)u$ for all $u \ge \tilde{k}_t$. Let $\tilde{K}_2 = \max_{t \in [0,T]} \tilde{k}_t$ and $K_2 =$

 $\max\left\{2K_1, \frac{1}{\sigma}\tilde{K}_2\right\}$. Define

$$\Omega_2 = \{ u \in \mathcal{B} | \| u \| < K_2 \}$$

If $x \in \mathcal{P}$ with $||x|| = K_2$, then $\min_{t \in [k, T+k]} x(t) \ge \sigma ||x|| \ge \tilde{K}_2$, and

$$\begin{aligned} Hx(\tau) &= (-1)^{n-k} \lambda \sum_{s=0}^{T} G(\tau, s) f(s, x(s)) \\ &\leq (-1)^{n-k} \lambda \sum_{s=0}^{T} G(\tau, s) f(s, x(s)) \\ &\geq (-1)^{n-k} \lambda \sum_{s=0}^{T} G(\tau, s) f_{\infty}(s) - \epsilon) x(s)(s, x(s)) \\ &\geq \sigma (-1)^{n-k} \lambda \sum_{s=k}^{T} G(\tau, s) (f_{\infty}(s) - \epsilon) \|x\| \\ &\geq \|x\|. \end{aligned}$$

Thus, $||Hx|| \ge ||x||$, and so

(9)
$$||Hx|| \ge ||x|| \text{ for all } x \in \mathcal{P} \cap \partial \Omega_2$$

So with (8) and (9) we have shown that H satisfies the first condition of Theorem 1. Thus we can conclude that H has a fixed point $u(t) \in \mathcal{P} \cap (\bar{\Omega}_2 \setminus \Omega_1)$. This fixed point, u(t), is a solution of (1), (2) corresponding to the given value of λ .

Theorem 4. Assume conditions (A) and (B) are satisfied. Then, for each λ satisfying

$$\frac{1}{\sigma(-1)^{n-k}\sum\limits_{s=k}^{T}G(\eta,s)f_0(s)} < \lambda < \frac{1}{\sum\limits_{s=0}^{T}\|G(\cdot,s)\|f_\infty(s)}$$

there exists at least solution of (1), (2) in \mathcal{P} .

Proof. Let λ be given as stated above. Let $\epsilon > 0$ be such that

$$\frac{1}{\sigma(-1)^{n-k}\sum_{s=k}^{T}G(\eta,s)(f_0(s)-\epsilon)} \le \lambda \le \frac{1}{\sum_{s=0}^{T} \|G(\cdot,s)\|(f_\infty(s)+\epsilon)}$$

Let H be the cone preserving, completely continuous operator defined in (7).

Consider $f_0(t)$. For each $t \in [0, T]$ there exists $k_t > 0$ such that $f(t, u) \ge (f_0(t) - \epsilon)u$ for $0 < u \le k_t$. Let $K_1 = \min_{t \in [0,T]} k_t$. So, for $x \in \mathcal{P}$ with $||x|| = K_1$,

we have

$$Hx(\eta) = (-1)^{n-k} \lambda \sum_{s=0}^{T} G(\eta, s) f(s, x(s))$$

$$\geq (-1)^{n-k} \lambda \sum_{s=k}^{T} G(n, x) f(x, x(s))$$

$$\geq (-1)^{n-k} \lambda \sum_{s=0}^{T} G(\eta, s) (f_0(s) - \epsilon) x(s)$$

$$\geq \sigma (-1)^{n-k} \lambda \sum_{s=k}^{T} G(\eta, s) (f_0(s) - \epsilon) ||x||$$

$$\geq ||x||.$$

Therefore, $||Hx|| \ge ||x||$. Hence, if we set

$$\Omega_1 = \{ u \in \mathcal{B} | \| u \| < K_1 \},$$

(10)
$$||Hx|| \ge ||x||, \text{ for all } x \in \mathcal{P} \cap \partial \Omega_1.$$

Next consider $f_{\infty}(t)$. For each $t \in [0, T]$ there exists $\tilde{k}_t > 2K_1$ such that $f(t, u) \leq (f_{\infty}(t) + \epsilon)u$ for all $u \geq \tilde{k}_t$. There exists sets $I, J \subset [0, T]$, with $I \cup J = [0, T]$, such that for all $t \in I$, f(t, u) is bounded as a function of u, and for all $t \in J$, f(t, u) is unbounded as a function of u.

Choose M > 0 such that for all positive u and for all $t \in I, f(t, u) \leq M$. Let

$$\kappa_t = \max\left\{\tilde{k}_t, \frac{M}{f_\infty(t) + \epsilon}\right\}$$

For each $t \in J$ choose $\kappa_t \geq \tilde{k}_t$ such that $f(t, u) \leq f(t, \kappa_t)$, for $0 < u \leq \kappa_t$. Let $K_2 = \max_{t \in [0,T]} \kappa_t$. By the continuity of f, for all $t \in J$ there exists μ_t , where $\kappa_t \leq \mu_t \leq K_2$, such that $f(t, u) \leq f(t, \mu_t)$ for all $0 < u \leq K_2$. Now

$$\begin{aligned} Hx(t) &= (-1)^{n-k} \lambda \sum_{s=0}^{T} G(t,s) f(s,x(s)) \\ &\leq \lambda \sum_{s \in J} \|G(\cdot,s)\| M + \lambda \sum_{s \in I} \|G(\cdot,s)\| f(s,\mu_s) \\ &\leq \lambda \sum_{s \in I} \|G(\cdot,s)\| (f_{\infty}(s) + \epsilon) \kappa_s + \lambda \sum_{s \in J} \|G(\cdot,s)\| (f_{\infty}(s) + \epsilon) \mu_s \\ &\leq \lambda \sum_{s=0}^{T} \|G(\cdot,s)\| (f_{\infty}(s) + \epsilon) K_2 \\ &= \lambda \sum_{s=0}^{T} \|G(\cdot,s)\| (f_{\infty}(s) + \epsilon)\| x\| \\ &\leq \|x\| \qquad t \in [k,T+k], \end{aligned}$$

for $x \in \mathcal{P}$ with $||x|| = K_2$. Now if we take

 $\Omega_2 = \{ u \in \mathcal{B} | \| u \| < K_2 \},$

then

(11)
$$||Hx|| \leq ||x||$$
 for all $x \in \mathcal{P} \cup \partial \Omega_2$.

Thus, with (10) and (11), we have shown that H satisfies the hypotheses to Theorem 1(ii), which yields a fixed point of H belonging to $\mathcal{P} \cap (\overline{\Omega}_2 \setminus \Omega_1)$. this fixed point is a solution of (1), (2) corresponding to the given λ .

References

- [1] R. P. Agarwal and J. L. Henderson, Positive solutions and nonlinear eigenvalue problems for third order difference equations, *Comput. Math. Appl.* (to appear).
- [2] R. P. Agarwal, J. L. Henderson, and P. J. Y. Wong, On superlinear and sublinear (n, p) boundary value problems, *Nonlinear World* (in press).
- [3] R. P. Agarwal and P. J. Y. Wong, Eigenvalue characterization for (n, p) boundary value problems, *Journal Austral. Math. Soc. Ser. B*, (to appear).
- [4] R. P. Agarwal and P. J. Y. Wong, Eigenvalues of boundary value problems for higher order differential equations, *Math. Probl. Engineering*, (to appear).
- [5] R. P. Agarwal and P. J. Y. Wong, Extension of continuous and discrete inequalities due to Eloe and Henderson, *Nonlinear Anal.* (to appear).
- [6] R. P. Agarwal and P. J. Y. Wong, On the existence of positive solutions of higher order difference equations, *Topol. Methods Nonlinear Anal.* (to appear).
- [7] R. P. Agarwal and P. J. Y. Wong, On the existence of solutions of singular boundary value problems for higher order difference equations, *Nonlinear Anal.* 28 (1997), 277-287.
- [8] P. W. Eloe, A generalization of concavity for finite differences, *Comput. Math. Appl.* (to appear).
- [9] P. W. Eloe and J. L. Henderson, Positive solutions and nonlinear multipoint conjugate eigenvalue problems, *Electron. J. Differential Equations*, 3 (1997), 1–11.
- [10] P. W. Eloe and J. L. Henderson, Positive solutions for higher order ordinary differential equations, *Electron. J. Differential Equations*, 3 (1995) 1–8.
- [11] P. W. Eloe and E. R. Kaufmann, A unique limiting Green's function for a class of singular boundary value problems, *Comput. Math. Appl.* 28 (1994), 93–99.
- [12] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, *Proc. Amer. Math. Soc.* **120** (1994), 743–748.
- [13] F. Fang, Positive Solutions of a Class of Boundary Value Problems, Ph.D. Dissert., Auburn University, 1997.
- [14] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.
- [15] P. Hartman, Difference equations: Disconjugacy, principal solutions, Green's functions, complete monotonicity, Trans. Amer. Math. Soc. 2465 (1978), 1–30.
- [16] J. L. Henderson, Positive solutions for nonlinear difference equations, Nonlinear Stud. (to appear).
- [17] S. D. Lauer, Positive Solutions for nonlinear difference equations, etc. Comm. Appl. Nonlinear Anal. 4, (1997), Number 3.
- [18] W. G. Kelley and A. C. Peterson, Difference Equations, An Introduction with Applications, Academic Press, San Diego, 1991.
- [19] M. A. Krasnosel'skii, *Positive Solutions of Operator Equations*, Noordhoff, Groningen, The Netherlands, 1964.
- [20] F. Merdivenci, Two positive solutions of a boundary value problem for difference equations, J. Differ. Equations Appl. 1 (1995), 263–270.

278

[21] A. C. Peterson, Boundary value problems for an nth order linear difference equation, SIAM J. Math. Anal. 15 (1984), 124–132.

Johnny Henderson

DEPARTMENT OF MATHEMATICS

Auburn University

Auburn, Alabama 38649, USA

E-mail address: hendej2@mail.auburn.edu

SUSAN D. LAUER DEPARTMENT OF MATHEMATICS TUSKEGEE UNIVERSITY TUSKEGEE, ALABAMA 36088, USA

E-mail address: lauersd@auburn.campus.mci.net