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Abstract. The nth order eigenvalue problem:

∆nx(t) = (−1)n−kλf(t, x(t)), t ∈ [0, T ],
x(0) = x(1) = · · · = x(k − 1) = x(T + k + 1) = · · · = x(T + n) = 0,

is considered, where n ≥ 2 and k ∈ {1, 2, . . . , n − 1} are given. Eigenvalues
λ are determined for f continuous and the case where the limits f0(t) =
lim

n→0+

f(t,u)
u

and f∞(t) = lim
n→∞

f(t,u)
u

exist for all t ∈ [0, T ]. Guo’s fixed point
theorem is applied to operators defined on annular regions in a cone.

1. Introduction

Define the operator ∆ to be the forward difference

∆u(t) = u(t+ 1)− u(t),
and then define

∆iu(t) = ∆(∆i−1u(t)), i ≥ 1.

For a < b integers define the discrete interval [a, b] = {a, a+1, . . . , b}. Let
the integers n, T ≥ 2 be given, and choose k ∈ {1, 2, . . . , n − 1}. Consider
the nth order nonlinear difference equation

∆nx(t) = (−1)n−kλf(t, x(t)), t ∈ [0, T ],(1)

satisfying the boundary conditions

(2) x(0) = x(1) = · · · = x(k − 1) = x(T + k + 1) = · · · = x(T + n) = 0.
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We determine eigenvalues λ that yield a solution to (1) and (2), where

(A)f : [0, T ]× R+ → R+

is continuous, where R+ denotes the nonnegative reals,

(B) For all t ∈ [0, T ], f0(t) = lim
u→0+

f(t, u)
u

and f∞(t) = lim
n→∞

f(t, u)
u

both exist.
We apply Guo’s fixed point theorem using cone methods, Guo and Lak-

shmikantham [14], and Krasnosel’skĭi [19], to accomplish this. This method
was first applied to differential equations in the landmark paper by Erbe
and Wang [12]. Our proof will follow along the lines of those in Henderson
[16], Lauer [17], and Merdivenci [20], additionally utilizing techniques from
Peterson [21], Hartman [15], Eloe and Kaufmann [11], Agarwal and Wong
[6,7], Agarwal and Henderson [1], and Agarwal, Henderson and Wong [2].
A key to applying this fixed point theorem involves discrete concavity of
solutions of the boundary value problem in conjunction with a lower bound
on an appropriate Green’s function. Extensive use of the results by Eloe [8]
concerning a lower bound for the Green’s function will be made. Related re-
sults for nth order differential equation may be found in Agarwal and Wong
[3,4], Eloe and Henderson [9,10], and Fang [13].

2. Preliminaries

Let G(t, s) be the Green’s funtion for the disconjugate boundary value
problem

Lx(t) ≡ ∆nx(t) = 0, t ∈ [0, T ],(3)

and satisfying (2), where, as shown in Kelly and Peterson [18], G(t, s) is the
unique function satisfying:
(a) G(t, s) is defined for all t ∈ [0, T + n], s ∈ [0, T ]
(b) LG(t, s) = δts for all t ∈ [0, T ], s ∈ [0, T ] where δts = 1 if t = s, δts = 0

if t 
= s,
(c) For all s ∈ [0, T ], G(t, s) satisfies the boundary conditions (2) in t.
We will use G(t, s) as the kernel of an integral operator preserving a cone

in a Banach space. This is the setting for our fixed point theorem.
Let B be a Banach space and let P ⊂ B be such that P is closed and

non-empty. Then P is a cone provided (i) au+ bv ∈ P for all u, v ∈ P and
for all a, b ≥ 0, and (ii) u,−u ∈ P implies u = 0.
Applying the following fixed point theorem from Guo, Guo and Laksh-

mikantham [14], will yield solutions of (1), (2) for certain λ.

Theorem 1. Let B be a Banach space, and let P ⊂ B be a cone. Let Ω1
and Ω2 be two bounded open sets in B such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

H : P ∩ (Ω2\Ω1) → P
be a completely continuous operator such that, either
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(i) ‖Hx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Hx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2,
or

(ii) ‖Hx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Hx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2.
Then H has a fixed point in P ∩ (Ω2\Ω1).

We now apply Theorem 1 to the eigenvalue problem (1), (2), following
along the lines of methods incorporated by Henderson [16]. Note that x(t)
is a solution of (1), (2) if, and only if,

x(t) = (−1)n−kλ
T∑

s=0
G(t, s)f(s, x(s)), t ∈ [0, T ].

Hartman [15] extensively studied the boundary value problem (1), (2),
with (−1)n−kλf(t, u) ≥ 0. We begin by stating three Lemmas from Hart-
man.

Lemma 1. Let G(t, s) denote the Green’s function of (3), (2). Then

(−1)n−kG(t, s) ≥ 0, (t, s) ∈ [k, T + k]× [0, T ].

Lemma 2. Assume that u satisfies the difference inequality
(−1)n−k∆nu(t) ≥ 0, t ∈ [0, T ], and the homogeneous boundary conditions,
(2). Then u(t) ≥ 0, t ∈ [0, T + k].

Lemma 3. Suppose that the finite sequence u(0), . . . , u(j) has Nj nodes and
the sequence ∆u(0), . . . ,∆u(j − 1) has Mj nodes. Then Mj ≥ Nj − 1.

Eloe [8] employed these three lemmas to arrive at the following theorem
that gives a lower bound for the solution to the class of boundary value
problems studied by Hartman.

Theorem 2. Assume that u satisfies the difference inequality
(−1)n−k∆nu(t) ≥ 0, t ∈ [0, T ], and the homogeneous boundary conditions,
(2). Then for t ∈ [k, T + k],

(−1)n−ku(t) ≥ ν!
[(T + 1) · · · (T + ν)]‖u‖,

where ‖u‖ = max
t∈[k,T+k]

|u(t)| and u = max{k, n− k}.

We remark that Agarwal and Wong [5] have recently sharpened the in-
equality of Theorem 2. However, this sharper inequality is of little conse-
quence for this work.
Eloe also contributed the following corollary.

Corollary 1. Let G(t, s) denote the Green’s function for the boundary value
problem, (3), (2). Then for all s ∈ [0, T ], t ∈ [k, T + k],

(−1)n−kG(t, s) ≥ ν!
[(T + 1) · · · (T + ν)]‖G(·, s)‖,

where ‖G(·, s)‖ = max
t∈[k,T+k]

|G(t, s)| and ν = max{k, n− k}.
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To fulfill the hypotheses of Theorem 1, let

B = {u : [0, T + n] → R u(0) = u(1) = · · · = u(k − 1)

= u(T + k + 1) = · · · = u(T + n) = 0},
with ‖u‖ = max

t∈[t,T+k]
|u(t)|. Now, (B, ‖ · ‖) is a Banach space.

Let

σ =
ν!

[(T + 1) · · · (T + ν)] ,(4)

and define a cone

P = {u ∈ B|u(t) ≥ 0 on [0, T + n] and min
t∈[k,T+k]

u(t) ≥ σ‖u‖}.

Also choose τ, η ∈ [k, T + k] such that

(−1)n−k
T∑

s=k

G(τ, s)f∞(s) = max
t∈[k,T+k]

T∑
s=k

G(t, s)f∞(s),(5)

(−1)n−k
T∑

s=k

G(η, s)f0(s) = max
t∈[k,T+k]

.(−1)n−k
T∑

s=k

G(t, s)f0(s),(6)

3. Main Results

Theorem 3. Assume conditions (A) and (B) are satisfied. Then, for each
λ satisfying

1

σ(−1)n−k
T∑

s=0
G(τ, s)f∞(s)

< λ <
1

T∑
s=k

‖G(·, s)‖f0(s)
.

there exists at least one solution of (1), (2) in P.

Proof. Let λ be given as in Theorem 3. Let ε > 0 be such that

1

σ(−1)n−k
T∑

s=k
G(τ, s)(f∞(s)− ε)

≥ λ ≥ 1
T∑

s=0
‖G(·, s)‖(f0(s) + ε)

.

Define a summation operator H : P → B by

Hx(t) = (−1)n−kλ
T∑

s=0
G(t, s)f(s, x(s)), x ∈ P.(7)

We seek a fixed point of H in the cone P. By the nonnegativity of f
and (−1)n−kG,Hx(t) ≥ 0 on [0, T + n], and from the properties of G, Hx
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satisfies the boundary conditions. Now if we choose x ∈ P, we have

Hx(t) = (−1)n−kλ
T∑

s=0
G(t, s)f(s, x(s))

≤ λ
T∑

0=0
‖G(·, s)‖f(s, x(s)), t ∈ [k, T + k].

So

‖Hx‖ = max
t∈[k,T+k]

|Hx(t)| ≤ λ
T∑

s=0
‖G(·, s)‖f(s, x(s)).

Hence, if x ∈ P, (−1)n−kG(t, s) ≥ σ‖G(·, s)‖, for t ∈ [k, T + k] and
s ∈ [0, T ], and thus,

min
t∈[k,T+k]

Hx(t) = min
k,T+k]

(−1)n−kλ
T∑

s=0
G(t, s)f(s, x(s))

≥ σλ
T∑

s=0
‖G(·, s)‖f(s, x(s))

≥ σ‖Hx‖.
Thus H : P → P. Additionally, H is completely continuous.
Now consider f0(t). For each t ∈ [0, T ], there exists kt > 0 such that

f(t, u) ≤ (f0(t) + ε)u for 0 < u ≤ kt. Let K1 = min
t∈[0,T ]

kt. So, for x ∈ P with

‖x‖ = K1, we have

Hx(t) = (−1)n−kλ
T∑

s=0
G(t, s)f(s, x(s))

≤ λ
T∑

s=0
‖G(·, s)‖(f0(s) + ε)x(s)

≤ λ
T∑

s=0
‖G(·, s)‖(f0(s) + ε)‖x‖

≤ ‖x‖, t ∈ [k, T + k].

Therefore, ‖H(x)‖ ≤ ‖x‖. Hence, if we set
Ω1 = {u ∈ B|‖u‖ < K1}

then

‖Hx‖ ≤ ‖x‖ for all x ∈ P ∩ ∂Ω1.(8)

Next consider f∞(t). For each t ∈ [0, T ], there exists k̃t > 0 such
that f(t, u) ≥ (f∞(t) − ε)u for all u ≥ k̃t. Let K̃2 = max

t∈[0,T ]
k̃t and K2 =
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max {2K1,
1
σ K̃2}. Define

Ω2 = {u ∈ B|‖u‖ < K2}
If x ∈ P with ‖x‖ = K2, then min

t∈[k,T+k]
x(t) ≥ σ‖x‖ ≥ K̃2, and

Hx(τ) = (−1)n−kλ
T∑

s=0
G(τ, s)f(s, x(s))

≤ (−1)n−kλ
T∑

s=0
G(τ, s)f(s, x(s))

≥ (−1)n−kλ
T∑

s=0
G(τ, s)f∞(s)− ε)x(s)(s, x(s))

≥ σ(−1)n−kλ
T∑

s=k

G(τ, s)(f∞(s)− ε)‖x‖

≥ ‖x‖.
Thus, ‖Hx‖ ≥ ‖x‖, and so

‖Hx‖ ≥ ‖x‖ for all x ∈ P ∩ ∂Ω2(9)

So with (8) and (9) we have shown that H satisfies the first condition of
Theorem 1. Thus we can conclude that H has a fixed point u(t) ∈ P ∩
(Ω̄2\Ω1). This fixed point, u(t), is a solution of (1), (2) corresponding to the
given value of λ.

Theorem 4. Assume conditions (A) and (B) are satisfied. Then, for each
λ satisfying

1

σ(−1)n−k
T∑

s=k
G(η, s)f0(s)

< λ <
1

T∑
s=0

‖G(·, s)‖f∞(s)
,

there exists at least solution of (1), (2) in P.

Proof. Let λ be given as stated above. Let ε > 0 be such that

1

σ(−1)n−k
T∑

s=k
G(η, s)(f0(s)− ε)

≤ λ ≤ 1
T∑

s=0
‖G(·, s)‖(f∞(s) + ε)

Let H be the cone preserving, completely continuous operator defined in (7).
Consider f0(t). For each t ∈ [0, T ] there exists kt > 0 such that f(t, u) ≥

(f0(t)−ε)u for 0 < u ≤ kt. Let K1 = min
t∈[0,T ]

kt. So, for x ∈ P with ‖x‖ = K1,
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we have

Hx(η) = (−1)n−kλ
T∑

s=0
G(η, s)f(s, x(s))

≥ (−1)n−kλ
T∑

s=k

G(n, x)f(x, x(s))

≥ (−1)n−kλ
T∑

s=0
G(η, s)(f0(s)− ε)x(s)

≥ σ(−1)n−kλ
T∑

s=k

G(η, s)(f0(s)− ε)‖x‖

≥ ‖x‖.
Therefore, ‖Hx‖ ≥ ‖x‖. Hence, if we set

Ω1 = {u ∈ B|‖u‖ < K1},

‖Hx‖ ≥ ‖x‖, for all x ∈ P ∩ ∂Ω1.(10)

Next consider f∞(t). For each t ∈ [0, T ] there exists k̃t > 2K1 such that
f(t, u) ≤ (f∞(t) + ε)u for all u ≥ k̃t. There exists sets I, J ⊂ [0, T ], with
I ∪ J = [0, T ], such that for all t ∈ I, f(t, u) is bounded as a function of u,
and for all t ∈ J, f(t, u) is unbounded as a function of u.
Choose M > 0 such that for all positive u and for all t ∈ I, f(t, u) ≤ M .

Let

κt = max
{
k̃t,

M

f∞(t) + ε

}

For each t ∈ J choose κt ≥ k̃t such that f(t, u) ≤ f(t, κt), for 0 < u ≤ κt.
Let K2 = max

t∈[0,T ]
κt. By the continuity of f , for all t ∈ J there exists µt,

where κt ≤ µt ≤ K2, such that f(t, u) ≤ f(t, µt) for all 0 < u ≤ K2. Now

Hx(t) = (−1)n−kλ
T∑

s=0
G(t, s)f(s, x(s))

≤ λ
∑
s∈J

‖G(·, s)‖M + λ
∑
s∈I

‖G(·, s)‖f(s, µs)

≤ λ
∑
s∈I

‖G(·, s)‖(f∞(s) + ε)κs + λ
∑
s∈J

‖G(·, s)‖(f∞(s) + ε)µs

≤ λ
T∑

s=0
‖G(·, s)‖(f∞(s) + ε)K2

= λ
T∑

s=0
‖G(·, s)‖(f∞(s) + ε)‖x‖

≤ ‖x‖ t ∈ [k, T + k],
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for x ∈ P with ‖x‖ = K2. Now if we take

Ω2 = {u ∈ B|‖u‖ < K2},
then

‖Hx‖ ≤ ‖x‖ for all x ∈ P ∪ ∂Ω2.(11)

Thus, with (10) and (11), we have shown that H satisfies the hypotheses
to Theorem 1(ii), which yields a fixed point of H belonging to P ∩ (Ω̄2\Ω1).
this fixed point is a solution of (1), (2) corresponding to the given λ.
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