
EXISTENCE OF EXTREMAL PERIODIC SOLUTIONS

FOR QUASILINEAR PARABOLIC EQUATIONS
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Abstract. In this paper we consider a quasilinear parabolic equation in
a bounded domain under periodic Dirichlet boundary conditions. Our main
goal is to prove the existence of extremal solutions among all solutions ly-
ing in a sector formed by appropriately defined upper and lower solutions.
The main tools used in the proof of our result are recently obtained ab-
stract results on nonlinear evolution equations, comparison and truncation
techniques and suitably constructed special testfunction.

1. Introduction

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω, Q =

Ω×(0, τ) and Γ = ∂Ω×(0, τ), τ > 0. This paper deals with weak solutions of
the following quasilinear Dirichlet-periodic boundary value problem (PBVP
for short)

(1.1)
∂u

∂t
+Au = f(x, t, u,∇u) in Q ,

u(x, 0) = u(x, τ) in Ω and u = 0 on Γ ,




where A is a second order quasilinear differential operator in divergence form
of Leray-Lions type given by

Au(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t, u(x, t),∇u(x, t)), and ∇u =

(
∂u

∂x1
, · · · , ∂u

∂xN

)
.
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Assuming the existence of bounded upper and lower solutions an existence
result for problem (1.1) has been proved in a paper by Deuel and Hess in
[7] by applying the penalty method to an appropriately associated auxiliary
parabolic variational inequality.

The main goal of the present paper is to extend this result by proving
the existence of extremal periodic solutions among all the solutions of the
PBVP (1.1) within the sector formed by not necessarily bounded upper and
lower solutions. The proof of this extremality result is done by showing that
the solution set S enclosed by the upper and lower solutions possesses the
properties of directedness and of inductivity, where the latter means that
any well-ordered chain in S has the least upper bound in S. This, however,
requires a method of proof that is essentially different from that used in [7].

The corresponding stationary problem to (1.1) has been treated in dif-
ferent ways by Puel [11] and the author [4]. The technique used by Puel
to treat the associated elliptic problem is based among others on the lat-
tice structure of the underlying solution space which is the Sobolev space
W 1,p
0 (Ω). However, in the parabolic case considered here the underlying

solution space of problem (1.1) will be the Lions space W which is defined
by

W := {u ∈ V := Lp(0, τ ;W 1,p
0 (Ω)) | ∂u

∂t
∈ V∗},

where V∗ denotes the dual space to V. Due to the lack of regularity of the
time derivative the space W, in general, does not possess lattice stucture,
and thus the extension of the extremal solution result for elliptic problems
according to [11] to the general quasilinear parabolic problem (1.1) consid-
ered here is by no means straightforward and requires completely different
tools. Only recently in a paper by Grenon [8] (cf. also [9]) the existence of ex-
tremal solutions for quasilinear parabolic equations under initial and Dirich-
let boundary conditions has been considered. In [8] the method of proof is
based on regularization techniques and follows an idea used by Puel in the
elliptic case. Moreover, in Grenon’s paper the coefficients ai = ai(x, t, s, ξ)
of the operator A are assumed to satisfy a Lipschitz condition with respect
to the variable s standing for the solution u.

In this paper we provide an alternative approach to prove extremality
results which at the same time allows to treat a more general dependence
of the coefficients ai on the variable s expressed in terms of a modulus of
continuity condition. The interdependence of various types of monotonicity
conditions of the operator A and the modulus of continuity condition of
the coefficients ai with respect to s is discussed. Our approach is mainly
based on an associated auxiliary problem that arises from the original one
by truncation procedures and on special test function techniques. The main
tools used in the proof are existence results for nonlinear evolution equations
developed recently in [1] and comparison techniques.

The method of proof given here is a strong generalization of the method
developed in a recent paper by the author in [3] where initial and Dirichlet
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boundary conditions and an operator A of the form

Au(x, t) = −
N∑

i=1

∂

∂xi
ai(x, t,∇u(x, t)) ,

whose coefficients ai do not depend on s have been taken into account.
Finally it should be noted that the results of this paper hold true also in

case of initial-Dirichlet boundary conditions.

2. Hypotheses, definitions and the main result

Let W 1,p(Ω) denote the usual Sobolev space and (W 1,p(Ω))∗ its dual
space. For the sake of simplicity we shall assume p ≥ 2, and q ∈ R being the
dual real satisfying 1/p + 1/q = 1 . Then W 1,p(Ω) ⊂ L2(Ω) ⊂ (W 1,p(Ω))∗

forms an evolution triple with all the embeddings being continuous, dense
and compact, cf. [12].

We set V = Lp(0, τ ;W 1,p(Ω)) , denote its dual space by
V∗ = Lq(0, τ ; (W 1,p(Ω))∗) , and define a function space W by

W = {w ∈ V | ∂w
∂t

∈ V∗} ,

where the derivative ∂/∂t is understood in the sense of vector-valued distri-
butions, cf. [12]. The space W endowed with the norm

‖w‖W = ‖w‖V + ‖∂w/∂t‖V∗

is a Banach space which is separable and reflexive due to the separability and
reflexivity of V and V∗, respectively. Furthermore it is well known that the
embedding W ⊂ C([0, τ ], L2(Ω)) is continuous, cf. [10, 12]. Finally, because
W 1,p(Ω) ⊂ Lp(Ω) is compactly embedded, we have a compact embedding
of W ⊂ Lp(Q) , cf. [10, 12].

By W 1,p
0 (Ω) we denote the subspace of W 1,p(Ω) whose elements have

generalized homogeneous boundary values. Let W−1,q(Ω) denote the dual
space of W 1,p

0 (Ω). Then obviously W 1,p
0 (Ω) ⊂ L2(Ω) ⊂ W−1,q(Ω) forms

an evolution triple and all statements made above remain true also in this
situation when setting V0 = Lp(0, τ ;W 1,p

0 (Ω)) ,V∗
0 = Lq(0, τ ;W−1,q(Ω)) and

W0 = {w ∈ V0 | ∂w
∂t ∈ V∗

0} .
We impose the following conditions of Leray-Lions type on the coefficient

functions ai : Q× R × R
N �→ R, i = 1, . . . , N .

(A1) Each ai : Q × R × R
N �→ R satisfies Carathéodory conditions, i.e.,

ai(x, t, s, ξ) is measurable in (x, t) ∈ Q for all (s, ξ) ∈ R × R
N and

continuous in (s, ξ) for almost all (x, t) ∈ Q. There exist a constant
c0 > 0 and a function k0 ∈ Lq(Q) , 1/p+ 1/q = 1, such that

|ai(x, t, s, ξ)| ≤ k0(x, t) + c0(|s|p−1 + |ξ|p−1) ,
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for a.e. (x, t) ∈ Q and for all (s, ξ) ∈ R × R
N .

(A2)

N∑
i=1

(ai(x, t, s, ξ) − ai(x, t, s, ξ′))(ξi − ξ′
i) ≥ µ|ξ − ξ′|p

for a.e. (x, t) ∈ Q , for all s ∈ R, and for all ξ, ξ′ ∈ R
N with µ being

some positive constant.
(A3)

|ai(x, t, s, ξ) − ai(x, t, s′, ξ)|
≤ [k1(x, t) + |s|p−1 + |s′|p−1 + |ξ|p−1]ω(|s− s′|) ,

for some function k1 ∈ Lq(Q), for a.e. (x, t) ∈ Q , for all s, s′ ∈ R

and for all ξ ∈ R
N , where ω : [0,∞) �→ [0,∞) is the modulus of

continuity satisfying

(2.1)
∫
0+

dr

ωq(r)
= +∞ ,

which means that for any ε > 0 the integral taken over [0, ε] is divergent,

i.e., we have
ε∫
0

dr
ωq(r) = +∞ .

Remark 2.1. The proof of our extremality result, in particular the proof
of directedness of the solution set, requires a strong monotonicity condition
(A2) which is related with the modulus of continuity condition (A3). There
is an interplay between p-ellipticity and the q-modulus of continuity. Hy-
pothesis (A3) is satisfied for example in case that ω(|s− s′|) = c |s− s′|1/q

with some positive constant c, i.e., the coefficients ai(x, t, s, ξ) satisfy a
Hölder condition with respect to s. However, if we impose instead of (2.1)
the more restrictive condition

(2.2)
∫
0+

dr

ω(r)
= +∞ ,

which includes for example ω(|s− s′|) = c |s− s′| , i.e., a Lipschitz condition
with respect to s then one can relax the strong monotonicity condition (A2)
by a strict monotonicity condition (A21) and a coercivity condition (A22),
i.e.,
(A21)

N∑
i=1

(ai(x, t, s, ξ) − ai(x, t, s, ξ′))(ξi − ξ′
i) > 0
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for a.e. (x, t) ∈ Q , for all s ∈ R, and for all ξ, ξ′ ∈ R
N with ξ �= ξ′.

(A22)
N∑

i=1

ai(x, t, s, ξ)ξi ≥ ν|ξ|p − k(x, t)

for a.e. (x, t) ∈ Q , for all s ∈ R, and for all ξ ∈ R
N with some

constant ν > 0 and some function k ∈ L1(Q). In particular (A2)
may be replaced by the weaker conditions (A21) and (A22) if the
coefficients ai do not depend on s.

Let us denote by 〈·, ·〉 the duality pairing between the elements of V∗ and
V (respectively V∗

0 and V0). Then as a consequence of (A1) and (A2) the
semilinear form a associated with the operator A by

〈Au,ϕ〉 = a(u, ϕ) =
N∑

i=1

∫
Q

ai(x, t, u,∇u) ∂ϕ
∂xi

dxdt

is well-defined on V×V and the operator A : V �→ V∗ (respectively V0 �→ V∗
0 )

is continuous and bounded. The norm (strong) convergence is denoted by
→, and the weak convergence by ⇀.

A partial ordering in Lp(Q) is defined by u ≤ w if and only if w − u
belongs to the set Lp

+(Q) of all nonnegative elements of Lp(Q). This induces
a corresponding partial ordering also in the subset W of Lp(Q), and if u, ū ∈
W with u ≤ ū then

[u, ū] = {u ∈ W | u ≤ u ≤ ū}

denotes the order interval formed by u and ū. Further we assume that the
function f : Q × R × R

N �→ R satisfies the Carathéodory conditions and
associate with it its Nemytskij operator F defined by

Fu(x, t) = f(x, t, u(x, t),∇u(x, t)).

Let us introduce the notion of a (weak) solution of the PBVP (1.1).

Definition 2.1. A function u ∈ W0 is called a solution of problem (1.1) if
Fu ∈ Lq(Q) such that

(i) u(·, 0) = u(·, τ) in Ω ,
(ii) 〈∂u

∂t , ϕ〉 + a(u, ϕ) =
∫

Q
Fuϕdxdt, for all ϕ ∈ V0.

We define an upper solution for (1.1) as follows.

Definition 2.2. A function ū ∈ W is called an upper solution to PBVP
(1.1) if Fū ∈ Lq(Q) and

(i) ū ≥ 0 on Γ , ū(·, 0) ≥ ū(·, τ) in Ω ,
(ii) 〈∂ū

∂t , ϕ〉 + a(ū, ϕ) ≥ ∫
Q
Fūϕ dxdt, for all ϕ ∈ V0 ∩ Lp

+(Q).
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Similarly a function u ∈ W is a lower solution to (1.1) if the reversed
inequalities hold in (i) and (ii) of Definition 2.2.

Further we shall make the following hypotheses.
(H1) Suppose PBVP (1.1) has an upper solution ū and a lower solution u

such that u ≤ ū.
(H2) There exist a function k2 ∈ Lq

+(Q) and a constant c1 ≥ 0 such that

|f(x, t, s, ξ)| ≤ k2(x, t) + c1|ξ|p−1

for a.e. (x, t) ∈ Q and for all ξ ∈ R
N and for all s ∈ [u(x, t), ū(x, t)].

A solution u∗ is the greatest solution within [u, ū] if for any solution u ∈ [u, ū]
we have u ≤ u∗. Similarly, u∗ is the least solution in [u, ū] if for any solution
u ∈ [u, ū] it holds u∗ ≤ u. The least and greatest solutions are the extremal
ones.

The main result of this paper is the following existence and extremality
theorem.

Theorem 2.1. Let hypotheses (A1)-(A3) and (H1), (H2) be satisfied. Then
the PBVP (1.1) possesses extremal periodic solutions, i.e., the greatest solu-
tion u∗ and the least solution u∗, within the sector [u, ū] formed by the lower
and upper solution u and ū, respectively.

In the proof of Theorem 2.1 which will be given in section 4 we focus on
the existence of the greatest solution only, since the existence of the least
solution can be shown analogously. Also all preliminary results aim at this
goal.

3. Preliminaries

Throughout this section we shall assume that the hypotheses (A1)-(A3) and
(H1), (H2) are satisfied.

Lemma 3.1. Let u1, u2 ∈ W be any lower solutions of PBVP (1.1) with
u1, u2 ∈ [u, ū], where u and ū are the given lower and upper solutions,
respectively, according to hypothesis (H1). Then there exists a solution u of
the PBVP (1.1) satisfying u0 := max(u1, u2) ≤ u ≤ ū.

Proof. a) Existence result for an auxiliary problem
We define truncation operators Ti, i = 0, 1, 2 that are related with the

functions u0 = max(u1, u2), u1, u2, respectively, by

Tiu(x, t) =




ū(x, t) if u(x, t) > ū(x, t) ,

u(x, t) if ui(x, t) ≤ u(x, t) ≤ ū(x, t) ,

ui(x, t) if u(x, t) < ui(x, t) .

It is well known that these operators Ti : V �→ V are bounded and continuous
(cf. [6]) which implies by (H2) that the composed operators F ◦ Ti : V �→
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Lq(Q) are bounded and continuous as well. Furthermore, we introduce the
following cut off function b : Q× R �→ R by

b(x, t, s) =




(s− ū(x, t))p−1 if s > ū(x, t) ,

0 if u0(x, t) ≤ s ≤ ū(x, t) ,

−(u0(x, t) − s)p−1 if s < u0(x, t) .

Then one readily verifies that b is a Carathéodory function satisfying a
growth condition of the form

(3.1) |b(x, t, s)| ≤ k3(x, t) + c2|s|p−1

for some positive constant c2 and some function k3 ∈ Lq(Q), and an estimate
of the form

(3.2)
∫

Q

b(x, t, u(x, t))u(x, t) dxdt ≥ c3‖u‖p
Lp(Q) − c4

is valid for some positive constant c3 , c4.
By (3.1) it follows that the Nemytskij operator B associated with the

function b is bounded and continuous from Lp(Q) into Lq(Q).
Our approach is heavily based on existence and comparison results of the

following auxiliary PBVP

(3.3)
∂u

∂t
+Au+ γBu = F ◦ T0u+

2∑
i=1

|F ◦ Tiu− F ◦ T0u| in Q ,

u(x, 0) = u(x, τ) in Ω and u = 0 on Γ .




Let L = ∂/∂t and its domain D(L) ⊂ V0 given by

D(L) = {u ∈ W0 | u(·, 0) = u(·, τ) in Ω} ,

where L : D(L) ⊂ V0 �→ V∗
0 is defined by

〈Lu, ϕ〉 =
∫ τ

0
<
∂u

∂t
(t), ϕ(t) > dt for all ϕ ∈ V0 ,

where < ·, · > denotes the duality pairing between W−1,q(Ω) and W 1,p
0 (Ω).

The linear operator L : D(L) ⊂ V0 �→ V∗
0 can be shown to be closed, densely

defined and maximal monotone, cf. [12, Chapter 32]. Let us denote

Pu := F ◦ T0u+
2∑

i=1

|F ◦ Tiu− F ◦ T0u| ,
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then by (H2) P : V0 �→ V∗
0 is bounded and continuous and for any ε > 0 an

estimate of the form

(3.4) |〈Pu, u〉| ≤ ε‖∇u‖p
Lp(Q) + C(ε)‖u‖p

Lp(Q) + c‖u‖Lp(Q)

holds. By hypotheses (A1) and (A2) for any η > 0 we have an estimate
below

(3.5) 〈Au, u〉 ≥ µ ‖∇u‖p
Lp(Q)− η‖∇u‖p

Lp(Q)−C(η)(‖k0‖q
Lq(Q)+ ‖u‖p

Lp(Q)) .

The PBVP (3.3) may be given the form:
Find u ∈ D(L) ⊂ V0 such that

(3.6) (L+A− P + γB)u = 0 ,

where the constant γ > 0 will be specified later. The Leray-Lions conditions
(A1) and (A2) along with the properties of the operators B and P imply
that the operator A given by

A := A− P + γB

gives rise to a continuous and bounded mapping from V0 into its dual V∗
0 .

Moreover, A : V0 �→ V∗
0 is pseudomonotone with respect to the graph norm

topology of D(L) which means that for any sequence (un) in D(L) with
un ⇀ u in V0, Lun ⇀ Lu in V∗

0 and lim sup〈Aun, un − u〉 ≤ 0 it follows
Aun ⇀ Au in V∗

0 and 〈Aun, un〉 → 〈Au, u〉 , cf. e.g. [2]. Applying [2,
Theorem 5] (see also [1, Theorem 1]) the mapping L + A : D(L) �→ V∗

0 is
surjective provided that A : V0 �→ V∗

0 is coercive, i.e.,

(3.7)
〈Au, u〉
‖u‖V0

→ ∞ as ‖u‖V0 → ∞.

The coercivity of A follows from (3.2), (3.4) and (3.5) for ε and η sufficiently
small such that µ > ε + η and by choosing γ sufficiently large. Hence [2,
Theorem 5] implies the existence of at least one solution of the auxiliary
PBVP (3.3).

b) Comparison
Here we show that any solution u of the auxiliary problem (3.3) satisfies
ū ≥ u ≥ ui for i = 1, 2 which implies that also ū ≥ u ≥ u0 is fulfilled.
Hence, for any solution of (3.3) it follows Tiu = u which in turn implies that
Pu = Fu and Bu = 0 and thus u must be a solution of the original problem
(1.1) satisfying u0 ≤ u ≤ ū which proves Lemma 3.1. In what follows we
show that any solution u of (3.3) satisfies u ≥ uk for k ∈ {1, 2}.

Since u is a solution of (3.3) it satisfies

(3.8) Lu+Au+ γBu = Pu, u(·, 0) = u(·, τ)
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and the lower solution uk satisfies the inequality (with respect to the dual
order cone)

(3.9)
∂uk

∂t
+Auk ≤ Fuk

as well as

(3.10) uk(·, 0) ≤ uk(·, τ) and uk ≤ 0 on Γ .

By (A3) for any ε > 0 there exists a δ(ε) ∈ (0, ε) such that

ε∫
δ(ε)

dr

ωq(r)
= 1 .

We introduce the function hε : R �→ R+ defined by (cf. [5])

hε(t) =




0 if t < δ(ε) ,
t∫

δ(ε)

dr

ωq(r)
if δ(ε) ≤ t ≤ ε ,

1 if t > ε .

For any ε > 0 the function hε is Lipschitz continuous, nondecreasing and
satisfies

hε(t) → χ{t>0} as ε → 0 ,

where χ{t>0} denotes the characteristic function of the set {t > 0}, as well
as

0 ≤ h′
ε(t) =




1
ωq(t)

for δ(ε) ≤ t ≤ ε ,

0 otherwise .

The difference uk − u satisfies the inequalities

(3.11) (uk − u)(·, 0) ≤ (uk − u)(·, τ) and uk − u ≤ 0 on Γ.

Subtracting (3.8) from (3.9) and taking advantage of the special nonnegative
test function ϕ in the form ϕ = hε(uk − u) ∈ V0 we get

(3.12)
〈∂(uk − u)

∂t
, hε(uk − u)〉 + 〈Auk −Au, hε(uk − u)〉

≤
∫

Q

(Fuk − Pu+ γBu)hε(uk − u) dxdt .
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Let Hε be a primitive of the nonnegative function hε then by (3.11) the first
term on the left-hand side of (3.12) yields the estimate (cf. e.g. [5])

(3.13)
〈∂(uk − u)

∂t
, hε(uk − u)〉

=
∫
Ω
Hε(uk − u)(x, τ) dx−

∫
Ω
Hε(uk − u)(x, 0) dx ≥ 0

while the second term on the left-hand side of (3.12) can be estimated below
in the following way using (A2) and (A3)

(3.14)

〈Auk −Au, hε(uk − u)〉

=
N∑

i=1

∫
Q

(ai(x, t, uk,∇uk) − ai(x, t, u,∇u)) ∂

∂xi
hε(uk − u) dxdt

≥ µ

∫
Q

|∇(uk − u)|ph′
ε(uk − u) dxdt

−N

∫
Q

[|k1| + |uk|p−1 + |u|p−1 + |∇u|p−1]ω(|uk − u|)×

× h′
ε(uk − u) |∇(uk − u)| dxdt

≥ µ

2

∫
Q

|∇(uk − u)|ph′
ε(uk − u) dxdt

− c(µ)
∫

Q

gqωq(|uk − u|)h′
ε(uk − u) dxdt,

where g = |k1| + |uk|p−1 + |u|p−1 + |∇u|p−1 ∈ Lq(Q). By the definition of
the function hε we obtain from (3.14)

(3.15) 〈Auk −Au, hε(uk − u)〉 ≥ −c(µ)
∫

{δ(ε)<uk−u<ε}
gq dxdt

where the term on the right-hand side of (3.15) tends to zero as ε → 0.
By Lebesgue dominated convergence theorem the right-hand side of (3.12)

converges to

(3.16)

lim
ε→0

∫
Q

(Fuk − Pu+ γBu)hε(uk − u) dxdt

=
∫

Q

(Fuk − F ◦ T0u−
2∑

i=1

|F ◦ Tiu− F ◦ T0u|

+ γBu)χ{uk−u>0} dxdt

≤ γ

∫
Q

Buχ{uk−u>0}dxdt = −γ
∫

{uk−u>0}
(u0 − u)p−1dxdt

≤ −γ
∫

Q

[(uk − u)+]p−1 dxdt ≤ 0
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where v+ = max(v, 0). Hence, from (3.13), (3.15) and (3.16) we get as ε → 0

0 ≤
∫

Q

[(uk − u)+]p−1 dxdt ≤ 0 ,

which proves that uk ≤ u for k = 1, 2 and thus u0 ≤ u . In the same way
one can show that any solution u of the auxiliary problem satisfies u ≤ ū.
This completes the proof of the lemma.

Corollary 3.1. Let S denote the solution set of the PBVP (1.1) enclosed
by the upper and lower solution ū and u, respectively, i.e.,

S = {u ∈ W0 | u ∈ [u, ū] and u is a solution of the PBVP (1.1)}.

Then this set S is directed which means that whenever u1, u2 ∈ S there exists
an element u3 ∈ S such that u1 ≤ u3 and u2 ≤ u3 .

Proof. Since u1 and u2 are in particular lower solutions of the PBVP (1.1),
by Lemma 3.1 there exists a solution u3 within the order interval [max(u1,
u2), ū] which proves the assertion of the corollary.

The following result has been proved in [3, Lemma 3.1]

Lemma 3.2. A norm-bounded and well-ordered chain C of W0 contains an
increasing sequence which converges to sup C weakly in W0 and strongly in
Lp(Q) .

4. PROOF OF THEOREM 2.1

The proof of Theorem 2.1 will be given for the existence of the greatest
solution u∗ only, since the existence of the smallest solution u∗ can shown
by obvious dual reasoning.

First we show that the solution set S is uniformly bounded in W0, i.e.,

(4.1) ‖u‖W0 ≤ c for all u ∈ S .

To this end let u ∈ S be arbitrarily given and take as special test function
this solution. Then we get

(4.2) 〈Lu, u〉 + 〈Au− Fu, u〉 = 0 ,

where u(·, 0) = u(·, τ). The periodicity condition yields 〈Lu, u〉 = 0. Since
all solutions from S are uniformly Lp(Q)-bounded we obtain from

〈Au− Fu, u〉 = 0,

and by means of (3.5) and the estimate of the form (for any ε > 0)

|〈Fu, u〉| ≤ ε‖∇u‖p
Lp(Q) + C(ε)‖u‖p

Lp(Q) + c‖u‖Lp(Q)
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by choosing the constants ε and η sufficiently small a uniform bound for the
gradients which implies

(4.3) ‖u‖V0 ≤ c for all u ∈ S .

Finally, by means of (A1), (H2) and the uniform bound (4.3) we get

|〈Lu, ϕ〉| ≤ |〈Au,ϕ〉| + |〈Fu, ϕ〉| ≤ c for all ϕ ∈ V0 : ‖ϕ‖V0 ≤ 1

which implies ‖Lu‖V∗
0

≤ c and thus the uniform estimate (4.1) holds.
Next we shall show that Zorn’s lemma may be applied to the set S. To

this end let C be any well-ordered chain from S. By (4.1) this chain is norm-
bounded in W0 and hence from Lemma 3.2 there exists a nondecreasing
sequence (un) converging to some function w = sup C ∈ W0 weakly in W0
and strongly in Lp(Q) . Since un ∈ D(L) and D(L) is closed with respect to
the norm in W0 and convex, it follows that the limit w ∈ D(L). Furthermore,
we have

〈(A− F )un, un − w〉 = −〈Lun, un − w〉
= −〈L(un − w), un − w〉 − 〈Lw, un − w〉 → 0

as n → ∞, and by the pseudomonotonicity of the operator A−F : V0 �→ V∗
0

with respect to D(L) it follows that (cf. [1])

(4.4) (A−F )un ⇀ (A−F )w in V∗
0 and 〈(A−F )un, un〉 → 〈(A−F )w,w〉 .

The convergence properties of the sequence (un) and (4.4) allow to pass to
the limit as n → ∞ in the equation

〈(L+A− F )un, ϕ〉 = 0 for all ϕ ∈ V0 ,

which proves that the limit w = sup C is in S . Thus we have shown that
any well-ordered chain C of S possesses an upper bound in S. By applying
Zorn’s lemma the existence of a maximal element um ∈ S (with respect to
the underlying partial ordering) can be deduced. By Corollary 3.1 the set S
is directed which implies that the maximal element um is uniquely defined
and must be the greatest one.

This completes the proof of Theorem 2.1.

4.1. Special case. Assume instead of hypothesis (A2) the weaker ones
(A21) and (A22), and assume instead of (2.1) the more restrictive condition
(2.2). We are going to justify the assertion given in Remark 2.1.

The only place where the modulus of continuity comes into picture and
where the interplay with the monotonicity condition appears is in the part b)
of the proof of Lemma 3.1 that deals with the comparison of lower solutions
of the PBVP (1.1) and a solution of the auxiliary PBVP (3.3). The crucial
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step is to show that under the hypotheses (A21) and (A22) and (2.2) the
estimate (3.15) holds true. In this case by (2.2) for any ε > 0 there exists a
δ(ε) ∈ (0, ε) such that

ε∫
δ(ε)

dr

ω(r)
= 1 .

Now we introduce the function hε : R �→ R+ given by

(4.4) hε(t) =




0 if t < δ(ε) ,
t∫

δ(ε)

dr

ω(r)
if δ(ε) ≤ t ≤ ε ,

1 if t > ε .

Again we have that for any ε > 0 the function hε is Lipschitz continuous,
nondecreasing and satisfies

hε(t) → χ{t>0} as ε → 0 ,

where χ{t>0} denotes the characteristic function of the set {t > 0}, as well
as

0 ≤ h′
ε(t) =




1
ω(t)

for δ(ε) ≤ t ≤ ε ,

0 otherwise .

In order to show that an estimate similar to that of (3.15) is true also under
the new assumptions we estimate the term 〈Auk − Au, hε(uk − u)〉 below
where hε is given by (4.4).

(4.5)

〈Auk −Au, hε(uk − u)〉

=
N∑

i=1

∫
Q

(ai(x, t, uk,∇uk) − ai(x, t, u,∇u)) ∂

∂xi
hε(uk − u) dxdt

≥
N∑

i=1

∫
Q

(ai(x, t, uk,∇uk) − ai(x, t, uk,∇u))

× ∂(uk − u)
∂xi

h′
ε(uk − u) dxdt

−N

∫
Q

[|k1| + |uk|p−1 + |u|p−1 + |∇u|p−1]ω(|uk − u|)×

× h′
ε(uk − u) |∇(uk − u)| dxdt

≥ −N
∫

{δ(ε)<uk−u<ε}
g |∇(uk − u)| dxdt
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where g = |k1|+ |uk|p−1+ |u|p−1+ |∇u|p−1 ∈ Lq(Q). Since the term on the
right-hand side of (4.5) tends to zero as ε → 0 we have an estimate of the
form (3.15) and the comparison follows from here the same way as in part
b) of the proof of Lemma 3.1.
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