ON A PROBLEM OF LOWER LIMIT IN THE STUDY OF NONRESONANCE

A. ANANE AND O. CHAKRONE

ABSTRACT. We prove the solvability of the Dirichlet problem

ſ	$-\Delta_p u$	=	f(u) + h	in	Ω,
l	u	=	0	on	$\partial \Omega$

for every given h, under a condition involving only the asymptotic behaviour of the potential F of f with respect to the first eigenvalue of the p-Laplacian Δ_p . More general operators are also considered.

1. INTRODUCTION

This paper is concerned with the existence of solutions for the problem

$$(\mathcal{P}_p) \left\{ \begin{array}{rrr} -\Delta_p u &=& f(u) + h \quad in \quad \Omega, \\ u &=& 0 \qquad on \quad \partial \Omega \end{array} \right.$$

where Ω is a bounded domain of \mathbb{R}^N , $N \ge 1$, Δ_p denotes the p-Laplacian $\Delta_p u = div(|\nabla u|^{p-2}\nabla u)$, 1 , <math>f is a continuous function from \mathbb{R} to \mathbb{R} and h is a given function on Ω .

A classical result, essentially due to Hammerstein [H], asserts that if f satisfies a suitable polynomial growth restriction connected with the Sobolev imbeddings and if

(F₁)
$$\limsup_{s \to \pm \infty} \frac{2F(s)}{|s|^2} < \lambda_1,$$

then problem (\mathcal{P}_2) is solvable for any h. Here F denotes the primitive $F(s) = \int_0^s f(t) dt$ and λ_1 is the first eigenvalue of $-\Delta$ on $H_0^1(\Omega)$. Several improvements of this result have been considered in the recent years.

¹⁹⁹¹ Mathematics Subject Classification. 35J60, 35P30.

Key words and phrases. p-Laplacian, nonresonance, first eigenvalue. Received: May 20, 1997.

In 1989, the case N=1 and p=2 was considered in [Fe,O,Z]. It was shown there that (\mathcal{P}_2) is solvable for any $h \in L^{\infty}(\Omega)$ if

(F₂)
$$\liminf_{s \to \pm \infty} \frac{2F(s)}{|s|^2} < \lambda_1.$$

If $N \geq 1$ and p=2, [F,G,Z] showed later that (\mathcal{P}_2) is solvable for any $h \in L^{\infty}(\Omega)$ if

(F₃)
$$\liminf_{s \to \pm \infty} \frac{2F(s)}{|s|^2} < (\frac{\pi}{2R(\Omega)})^2,$$

where $R(\Omega)$ denotes the radius of the smallest open ball $B(\Omega)$ containing Ω . This result was extended to the p-laplacian case in [E,G.1], where solvability of (\mathcal{P}_p) was derived under the condition

(F₄)
$$\liminf_{s \to \pm \infty} \frac{pF(s)}{|s|^p} < (p-1) \{ \frac{1}{R(\Omega)} \int_0^1 \frac{dt}{(1-t^p)^{\frac{1}{p}}} \}^p$$

Note that (F_4) reducer to (F_3) when p = 2.

The question now naturally arises whether $(p-1)\left\{\frac{1}{R(\Omega)}\int_0^1 \frac{dt}{(1-t^p)^{\frac{1}{p}}}\right\}^p$ can be replaced by λ_1 in (F_4) , where λ_1 denotes the first eigenvalue of $-\Delta_p$ on $W_0^{1,p}(\Omega)$ (cf. Anane [A]).

Observe that for N > 1 and p = 2, $(\frac{\pi}{2R(\Omega)})^2 < \lambda_1$, and a similar strict inequality holds when $1 . One of our purposes in this paper is to show that the constants in <math>(F_3)$ and (F_4) can be inproved a little bit.

Denote by $l(\Omega) = l$ the length of the smallest edge of an arbitrary parallelepiped containing Ω . In the first part of the paper we assume

(F₅)
$$\liminf_{s \to \pm \infty} \frac{pF(s)}{|s|^p} < C_p(l)$$

where $C_p(l) = C_p = (p-1) \{ \frac{2}{l} \int_0^1 \frac{dt}{(1-t^p)^{\frac{1}{p}}} \}^p$.

Observe that for N = 1, $C_p = \lambda_1$ is the first eigenvalue of $-\Delta_p$ on $\Omega =]0, l[$. In particular: $C_2 = (\frac{\pi}{l})^2$, and we recover the result of [Fe,O,Z]. It is clear that (F_5) is a weaker hypothesis than (F_4) . The difference between (F_5) and (F_4) is particularly important when Ω is a rectangle or a triangle. However $C_p(l) < \lambda_1$ when N > 1, and the question raised above remains open.

In the second part of the paper we investigate the question of replacing Δ_p by the second order elliptic operator

$$A_p(u) = \sum_{1 \le i,j \le N} \frac{\partial}{\partial x_i} (|\nabla u|_a^{p-2} a_{ij}(x) \frac{\partial u}{\partial x_j}),$$

where $|\nabla u|_a^2 = \sum_{1 \le i,j \le N} a_{ij}(x) \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j}$. Observe that the method used in [F,G,Z], and [E,G.1] exploits the symmetry of the Laplacian or p-laplacian. It is not clear whether it can be adapted to more general second order elliptic operators like A_p above.

While this paper was being completed, we learned of a work by P.Omari and Grossinho (Cf. [GR,O.1], [GR,O.2]), where a result of the same type as

ours is established in the case of the linear operator $A_2(u)$. The authors in [GR,O.2] also consider parabolic operators.

2. The case of the p-laplacian

In this section we will consider the problem (\mathcal{P}_p) where Ω is a bounded domain of \mathbb{R}^N , $N \ge 1$, 1 , <math>f is a continuous function from \mathbb{R} to \mathbb{R} and $h \in L^{\infty}(\Omega)$.

Denote by [AB] the smallest edge of an arbitrary parallelepiped containing Ω . Making an orthogonal change of variables, we can always suppose that AB is parallel to one of the axis of \mathbb{R}^N . So $\Omega \subset P = \prod_{j=1}^N [a_j, b_j]$ with, for some i, $|AB| = b_i - a_i = \min_{1 \le j \le N} \{b_j - a_j\}$, a quantity which we denote by $l(\Omega) = l$.

Theorem 1. Assume

(F)
$$\liminf_{s \to \pm \infty} \frac{pF(s)}{|s|^p} < C_p,$$

where $C_p = C_p(l)$ is defined in the introduction. Then for any $h \in L^{\infty}(\Omega)$ (\mathcal{P}_p) has a solution $u \in W_0^{1,p}(\Omega) \cap C^1(\Omega)$.

Definition 1. An upper solution for (\mathcal{P}_p) is defined as a function $\beta : \overline{\Omega} \to \mathbb{R}$ such that:

- $\beta \in C^1(\overline{\Omega})$
- $\Delta_p \beta \in C(\overline{\Omega})$

•
$$-\Delta_p \beta(x) \ge f(\beta(x)) + h(x)$$
 a.e.x in Ω

A lower solution α is defined by reversing the inequalities above.

Lemma 1. Assume that (\mathcal{P}_p) admits an upper solution β and a lower solution α with $\alpha(x) \leq \beta(x)$ in Ω . Then (\mathcal{P}_p) admits a solution $u \in W_0^{1,p}(\Omega) \cap C^1(\Omega)$, with $\alpha(x) \leq u(x) \leq \beta(x)$ in Ω .

Proof. This lemma is well known when p = 2 (see, e.g., [F.G.Z]). We sketch a proof in the general case 1 .

Define

$$\tilde{f}(x,s) = \begin{cases} f(\beta(x)) & \text{if} \quad s \ge \beta(x) \\ f(s) & \text{if} \quad \alpha(x) \le s \le \beta(x) \\ f(\alpha(x)) & \text{if} \quad s \le \alpha(x). \end{cases}$$

By a simple fixed point argument and the results of Di Benedetto [B], there is a solution $u \in W_0^{1,p}(\Omega) \cap C^1(\Omega)$ of

$$(\tilde{\mathcal{P}}) \begin{cases} -\Delta_p u &= \tilde{f}(x, u) + h(x) \text{ in } \Omega, \\ u &= 0 \text{ on } \partial\Omega. \end{cases}$$

We claim that $\alpha(x) \leq u(x) \leq \beta(x)$ in Ω , which clearly implies the conclusion. To prove the first inequality, one multiplies the equation $(\tilde{\mathcal{P}})$ by

 $w = u - u_{\alpha}$, where $u_{\alpha}(x) = \max(u(x), \alpha(x))$, integrates by parts and uses the fact that α is a lower solution we obtain $\langle (-\Delta_p u) - (-\Delta_p (u - w)), w \rangle \leq 0$, which implies w = 0 (since $-\Delta_p$ is strictly monotone).

Lemma 2. Let a < b and M > 0, and assume

(F⁺)
$$\liminf_{s \to +\infty} \frac{pF(s)}{|s|^p} < C_p(b-a).$$

Then there exists $\beta_1 \in C^1(I)$ such that $\Delta_p \beta_1 \in C(I)$ and

$$\begin{cases} -\Delta_p \beta_1(t) \geq f(\beta_1(t)) + M & \forall t \in I, \\ \beta_1(t) \geq 0 & \forall t \in I, \end{cases}$$

where I = [a, b]

Lemma 3. Assume

(F⁻)
$$\liminf_{s \to -\infty} \frac{pF(s)}{|s|^p} < C_p(b-a).$$

Then there exists $\alpha_1 \in C^1(I)$ such that $\Delta_p \alpha_1 \in C(I)$ and

$$\begin{cases} -\Delta_p \alpha_1(t) \leq f(\alpha_1(t)) - M & \forall t \in I, \\ \alpha_1(t) \leq 0 & \forall t \in I. \end{cases}$$

Accepting for a moment the conclusion of these two lemmas, let us turn to the

Proof of Theorem 1. By Lemma 1 it suffices to show the existence of an upper solution and a lower solution for (\mathcal{P}_p) . Let us describe the construction of the upper solution (that of the lower solution is similar).

Let $M > ||h||_{\infty}$ and $i \in \{1, 2, ..., N\}$ such that $b - a = b_i - a_i = \min_{1 \le j \le N} b_j - a_j$. By Lemma 2 there exists $\beta_1 : I \to \mathbb{R}$ such that $\beta_1 \in C^1(I), \ \Delta_p \beta_1 \in C(I)$ and

$$\begin{cases} -\Delta_p \beta_1(t) \geq f(\beta_1(t)) + M & \forall t \in I \\ \beta_1(t) \geq 0 & \forall t \in I \end{cases}$$

Writing $\beta(x) = \beta_1(x_i)$ for all $x \in \overline{\Omega}$, it is clear that $\beta \in C^1(\overline{\Omega}), -\Delta_p \beta(x) = -\Delta_p \beta_1(x_i) \in C(\overline{\Omega})$, and we have:

$$\begin{aligned} -\Delta_p \beta(x) &= -\Delta_p \beta_1(x_i) \\ &\geq f(\beta_1(x_i)) + M \\ &= f(\beta(x)) + M \\ &\geq f(\beta(x)) + h(x) \quad a.e.x \in \Omega \end{aligned}$$

The proof of Theorem 1 is thus complete.

Proof of Lemma 2. The proof of Lemma 3 follows simiarly.

First case.

Suppose $\inf_{s\geq 0} f(s) = -\infty$. Then $\exists \beta \in \mathbb{R}^*_+$ such that $f(\beta) < -M$, and the constant function β provides a solution to the problem in Lemma 2.

Second case.

Suppose now $\inf_{s\geq 0} f(s) > -\infty$. Let K > M such that $\inf_{s\geq 0} f(s) > -K + 1$. Thus $f(s) + K \geq 1$ for all $s \geq 0$. Define $g : \mathbb{R} \to \mathbb{R}$ by:

$$g(s) = \begin{cases} f(s) + K & if \quad s \ge 0, \\ f(0) + K & if \quad s < 0, \end{cases}$$

and denote $G(s) = \int_0^s g(t) dt$ for all s in \mathbb{R} . It is easy to see that $g(s) \ge 1 \quad \forall s \in \mathbb{R}$ and that

$$\liminf_{s \to +\infty} \frac{pG(s)}{s^p} = \liminf_{s \to +\infty} \frac{pF(s)}{s^p} < C_p.$$

Now it is clearly sufficient to prove the existence of a function $\beta_1 : I \to \mathbb{R}$ such that $\beta_1 \in C^1(I), \ \Delta_p \beta_1 \in C(I)$ and

$$\left\{ \begin{array}{rrr} -\Delta_p\beta_1(t) &=& g(\beta_1(t)) \quad \forall t\in I, \\ \beta_1(t) &\geq& 0 \qquad \forall t\in I. \end{array} \right.$$

For that purpose we will need the following three lemmas.

Lemma 4. Define

$$\tau_G(d) = \int_0^d \frac{dt}{\left(p\{G(d) - G(s)\}\right)^{\frac{1}{p}}}$$

for d > 0. Then

$$\limsup_{d \to +\infty} \tau_G(d) \ge \left(\int_0^1 \frac{dt}{(1-t^p)^{\frac{1}{p}}}\right) (\liminf_{s \to +\infty} \frac{pG(s)}{|s|^p})^{\frac{-1}{p}}.$$

In particular (F⁺) implies $\limsup_{d \to +\infty} \tau_G(d) > (p-1)^{-\frac{1}{p}} \frac{(b-a)}{2}$.

Proof. Let be a positive number such that $\liminf_{s\to+\infty} \frac{pG(s)}{s^p} < \rho < C_p$. Then $\limsup_{s\to+\infty} (K(s)) = +\infty$ where $K(s) = \rho |s|^p - pG(s)$. Let w_n be the smallest number in [0, n] such that $\max_{0 \le s \le n} K(s) = K(w_n)$; it is easily seen that w_n is increasing with respect to n. Since $\rho |s|^p - pG(s) < \rho w_n^p - pG(w_n) \quad \forall s \in [0, w_n[$, we have

$$\begin{aligned} \tau_G(w_n) &> \rho^{-\frac{1}{p}} \int_0^{w_n} \frac{dt}{(w_n^p - s^p)^{\frac{1}{p}}} \\ &= \rho^{-\frac{1}{p}} \int_0^1 \frac{dt}{(1 - s^p)^{\frac{1}{p}}} \end{aligned}$$

and therefore

$$\limsup_{d \to +\infty} \tau_G(d) \ge \rho^{-\frac{1}{p}} \int_0^1 \frac{dt}{(1-s^p)^{\frac{1}{p}}}$$

for all ρ such that $\liminf_{s \to +\infty} \frac{pG(s)}{s^p} < \rho < C_p$, which clearly implies the lemma.

Lemma 5. Let d > 0 and consider the mapping T_d defined by

$$T_d(u)(t) = d - \int_a^t \left(\left[\int_a^r g(u(s)) \, ds \right]^{\frac{1}{p-1}} \right) dr$$

in the Banach space C(I). Then T_d has a fixed point.

Proof. Clearly by Ascoli's theorem T_d is compact. The proof of Lemma 5 uses a homotopy argument based on the Leray Schauder topological degree. So T will have a fixed point if the following condition holds:

 $\exists r > 0 \text{ such that } (I - \lambda T_d)(u) \neq 0 \ \forall u \in \partial B(0, r) \ \forall \lambda \in [0, 1], \text{ where } \partial B(0, r) = \{u \in C(I); \ \|u\|_{\infty} = r\}.$

To prove that this condition holds, suppose by contradiction that $\forall n = 1, 2, ... \exists u_n \in \partial B(0, n), \exists \lambda_n \in [0, 1]$ such that: $u_n = \lambda_n T_d(u_n)$. The latter relation means

(1)
$$u_n = \lambda_n d - \lambda_n \int_a^t \left\{ \int_a^r g(u_n(s)) \, ds \right\}^{\frac{1}{p-1}} dr.$$

Therefore $u_n \in C^1(I)$ and we have successively

(2)
$$\begin{cases} u'_n(t) = -\lambda_n \{\int_a^t g(u_n(s)) \, ds\}^{\frac{1}{p-1}} \leq 0, \\ u'_n(a) = 0, \end{cases}$$

 $\Delta_p u_n \in C(I)$ and

(3)
$$-\Delta_p u_n(t) = -(|u'_n(t)|^{p-2}u'_n(t))^{p-1} = ((-u'_n(t))^{p-1})^{p-1} = \lambda_n^{p-1}g(u_n(t)).$$

Note that by (2), $u'_n(t) < 0$ in [a, b], so that u_n is decreasing. Hence, for n > d, $u_n(b) = -n$. Multiplying the equation (3) by $u'_n(t)$, we obtain

(4)
$$-\frac{p-1}{p}\frac{d}{dt}(-u'_n(t))^p = \lambda_n^{p-1}\frac{d}{dt}G(u_n(t)).$$

Indeed

By (4) we have

$$(p-1)(-u'_n(t))^p = \lambda_n^{p-1} p[G(\lambda_n d) - G(u_n(t))] \\ \leq p[G(d) - G(u_n(t))]$$

since G is increasing. Hence $(p-1)^{\frac{1}{p}}(-u'_n(t))\{p[G(d)-G(u_n(t))]\}^{-\frac{1}{p}} \leq 1$. Integrating from a to b and changing variable $s = u_n(t)$ ($u_n(a) = \lambda_n d$ and $u_n(b) = -n$), we obtain

$$(p-1)^{\frac{1}{p}} \int_{-n}^{\lambda_n d} [p(G(d) - G(s))]^{-\frac{1}{p}} \, ds \le b - a,$$

i.e.

$$0 \leq (p-1)^{\frac{1}{p}} \int_{0}^{\lambda_{n}d} [p(G(d) - G(s))]^{-\frac{1}{p}} ds = (b-a) + (p-1)^{\frac{1}{p}} \int_{0}^{-n} [p(G(d) - G(s))]^{-\frac{1}{p}} ds.$$

Since G(s) = sg(0) for $s \le 0$, we obtain

$$0 \leq (b-a) + (p-1)^{\frac{1}{p}} \int_{0}^{-n} [p(G(d) - sg(0))]^{-\frac{1}{p}} ds = (b-a) - \frac{(p-1)^{\frac{1}{p}}}{(p-1)g(0)} [p(G(d) + ng(0))]^{\frac{p-1}{p}} + \frac{(pG(d))^{\frac{p-1}{p}}}{(p-1)g(0)}$$

Letting $n \to +\infty$, we get a contradiction.

Let us denote by $u_d \in C(I)$ a fixed point of the mapping T_d of Lemma 5.

Lemma 6. $\exists d > 0$ such that $u_d(t) \ge 0 \quad \forall t \in [a, \frac{a+b}{2}].$

Proof. We know that u_d is decreasing and that $u_d(a) = d$ for all d > 0. Let us distinguish two cases. First if $\exists d > 0$ such that $u_d(b) \ge 0$, then the conclusion of Lemma 6 clearly follows.

So we can assume that $\forall d > 0$: $u_d(b) < 0$. Since $u_d(a) = d > 0$, $\exists \delta_d \in]a, b[$ such that $u_d(\delta_d) = 0$. It is clear that $u_d(t) \ge 0 \quad \forall t \in [a, \delta_d[$, and so it is sufficient to show that $\limsup_{d \to +\infty} \delta_d > \frac{a+b}{2}$. Processing as in the proof of Lemma 5 we obtain

$$(p-1)^{\frac{1}{p}}(-u'_d(t))\{p(G(d) - G(u_d(t)))\}^{-\frac{1}{p}} = 1$$

Integrating from a to δ_d and changing variable $s = u_d(t)$, one gets, $(p-1)^{\frac{1}{p}} \tau_G(d) = \delta_d - a$, and consequently

$$\limsup_{d \to +\infty} \delta_d = a + (p-1)^{\frac{1}{p}} \limsup_{d \to +\infty} \tau_G(d)$$

Now one easily deduces from Lemma 4 that $\limsup_{d \to +\infty} \delta_d > a + \frac{b-a}{2} = \frac{a+b}{2}$.

Proof of Lemma 2 Continued. Denoting $u_d(t)$ by u(t), we have $u \in C^1(I)$, $\Delta_p u \in C(I)$ and

$$\begin{cases} -\Delta_p u(t) &= g(u(t)) \quad \forall t \in I, \\ u(t) &\geq 0 \quad \forall t \in [a, \frac{a+b}{2}], \\ u'(a) &= 0. \end{cases}$$

Define a function β_1 from [a, b] to **IR** by

$$\beta_1(t) = \begin{cases} u(\frac{3a+b}{2}-t) & if \quad t \in [a, \frac{a+b}{2}], \\ u(t-\frac{b-a}{2}) & if \quad t \in [\frac{a+b}{2}, b]. \end{cases}$$

We will show that this function β fulfills the conditions of Lemma 2. To see this it is sufficient to show that:

(a) β_1 is nonegative in [a, b],

(b)
$$\beta_1 \in C^1([a, b]),$$

(c)
$$\Delta_p \beta_1 \in C([a, b])$$
 and $-\Delta_p \beta_1(t) = g(\beta_1(t))$ $\forall t \in [a, b].$

Proof of (a). If $a \le t \le \frac{a+b}{2}$, then $a \le \frac{3a+b}{2} - t \le \frac{a+b}{2}$, and if $\frac{a+b}{2} \le t \le b$, then $a \le t - \frac{b-a}{2} \le \frac{a+b}{2}$, so that the conclusion follows from the sign of u on $[a, \frac{a+b}{2}]$.

Proof of (b). $\beta_1 \in C^1([a, \frac{a+b}{2}]), \beta_1 \in C^1(]\frac{a+b}{2}, b])$, and moreover $\frac{d}{dt^+}\beta_1(\frac{a+b}{2}) = u'(a) = 0$ and $\frac{d}{dt^-}\beta_1(\frac{a+b}{2}) = u'(a) = 0$.

Proof of (c). We know that, $-(|u'(t)|^{p-2}u'(t))' = g(u(t))$ for $t \in [a, b]$ therefore

$$-|u'(t)|^{p-2}u'(t) = \int_{a}^{t} g(u(s)) \, ds$$

If $\frac{a+b}{2} \le t \le b$ then $a \le t - \frac{b-a}{2} \le \frac{a+b}{2}$, which gives

$$-(|u'(t-\frac{b-a}{2})|^{p-2}u'(t-\frac{b-a}{2})) = \int_a^{t-\frac{b-a}{2}} g(u(s)) \, ds.$$

Changing variable $u = s + \frac{b-a}{2}$, this implies

$$-|\beta_1'(t)|^{p-2}\beta_1'(t) = \int_{\frac{a+b}{2}}^t g(\beta_1(s)) \, ds,$$

hence $-\Delta_p \beta_1(t) = g(\beta_1(t))$ for all $t \in [\frac{a+b}{2}, b]$. The proof is similar for all $t \in [a, \frac{a+b}{2}]$.

3. The case of a more general operator.

Let Ω be a bounded domain in \mathbb{R}^N and let A_p be an elliptic operator of the form

$$A_p(u) = \sum_{1 \le i,j \le N} \frac{\partial}{\partial x_i} (|\nabla u|_a^{p-2} a_{ij}(x) \frac{\partial u}{\partial x_j})$$

where $(a_{ij}(x))_{1 \le i,j \le N}$ are real-valued $L^{\infty}(\Omega)$

functions verifying $a_{ij}(x) = a_{ji}(x)$ for all i, j and

$$(*) \qquad \sum_{1 \le i,j \le N} a_{ij}(x)\xi_i\xi_j = |\xi|_a^2 \ge |\xi|^2 \quad a.e.x \in \Omega \quad and \ for \ all \ \xi \in \mathbb{R}^N.$$

We now consider the problem

$$(\mathcal{P}'_p) \left\{ \begin{array}{rrr} -A_p u &=& f(u)+h & in & \Omega, \\ u &=& 0 & on & \partial\Omega. \end{array} \right.$$

Note that A_p is defined from $W_0^{1,p}(\Omega)$ to $W^{-1,p'}(\Omega)$. Note also that (*) implies that for each i, $a_{i,i}(x) > 0$ a.e. in Ω . We suppose that:

(A₀)
$$\begin{cases} \exists i' \in \{1, 2, ..., N\} \text{ such that } a_{i'i'} = cte \in \mathbb{R} \text{ and} \\ div(a_{1,i'}(x), ..., a_{N,i'}(x)) = \sum_{i \neq i'} \frac{\partial}{\partial x_i} a_{i,i'}(x) = 0. \end{cases}$$

We observe that (A_0) holds in particular when $a_{i,i'}$ i = 1, ..., N, are fixed constants.

Denote by $b = b_{i'}$ and $a = a_{i'}$ where $[a_{i'}, b_{i'}]$ is an edge of an arbitrary parallelepiped containing Ω such that $[a_{i'}, b_{i'}]$ is parallel to the $x_{i'}$ -axis and by

$$C_p(b-a) = C_p = (p-1) \{ \frac{2}{b-a} \int_0^1 \frac{dt}{(1-t^p)^{\frac{1}{p}}} \}^p$$

Theorem 2. Assume (A_0) and

(F₂)
$$\liminf_{s \to \pm \infty} \frac{pF(s)}{|s|^p} < (a_{i'i'})^{\frac{p}{2}}C_p.$$

Then (\mathcal{P}') has a solution $u \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ for any $h \in L^{\infty}(\Omega)$.

The proof of Theorem 2 follows as in Theorem 1. Upper and lower solutions are defined for A_p in the same way as in definition 1 relative to Δ_p .

Lemma 7. Assume that (\mathcal{P}') admits an upper solution β and a lower solution α , then (\mathcal{P}') admits a solution $u \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ with $\alpha(x) \leq u(x) \leq \beta(x)$.

The proof of Lemma 7 follows similar lines as Lemma 1. It sufficies to remark that $-A_p$ is strictly monotone.

Proof of Theorem 2. Let us describe the construction of the upper solution (that of lower solution is similar).

Let g be the continuous function defined by

$$g(s) = \frac{f(s)}{(a_{i'i'})^{\frac{p}{2}}}$$
 and denote $G(s) = \int_0^s g(t) dt$

Then (F_2) implies that $\liminf_{s \to \pm \infty} \frac{pG(s)}{|s|^p} < C_p$. By Lemma 2 with $M > \frac{\|h\|_{\infty}}{(a_{i'i'})^{p-1}}$, there exists $\beta_1 \in C^1(I)$ such that $\Delta_p \beta_1 \in C(I)$ and

$$\begin{cases} -\Delta_p \beta_1(t) \geq g(\beta_1(t)) + M & \forall t \in I \\ \beta_1(t) \geq 0 & \forall t \in I \end{cases}$$

Writing $\beta(x) = \beta_1(x_i)$ for all $x \in \overline{\Omega}$, we have $\beta(x) \ge 0 \quad \forall x \in \overline{\Omega}, \ \beta \in C^1(\Omega)$. Morever, by (A_0)

$$\begin{aligned} A_p(u) &= \sum_{1 \le i,j \le N} \frac{\partial}{\partial x_i} (|\nabla \beta|_a^{p-2} a_{ij}(x) \frac{\partial \beta}{\partial x_j}) \\ &= (a_{i'i'})^{\frac{p}{2}} (|\beta'_1(x_{i'})|^{p-2} \beta'_1(x_{i'}))' + |\beta'_1(x_{i'})|^{p-2} \beta'_1(x_{i'}) \sum_{i \ne i'} \frac{\partial}{\partial x_i} a_{ii'}(x) \\ &= (a_{i'i'})^{\frac{p}{2}} \Delta_p \beta(x). \end{aligned}$$

Hence

 $A_p\beta \in C(\overline{\Omega})$ and $-A_p\beta(x) = -(a_{i'i'})^{\frac{p}{2}}\Delta_p\beta(x) \geq f(\beta(x)) + h(x)$ a.e. in Ω , which shows that β is an upper solution.

4. Comments

1. It is easy to give an example of a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that

$$\limsup_{\pm\infty} \frac{pF(s)}{|s|^p} = +\infty \quad \text{and} \quad \liminf_{\pm\infty} \frac{pF(s)}{|s|^p} = 0$$

(See the work of [Fe.O.Z] in the case p = 2).

2. The problem (\mathcal{P}_p) has at least one solution for any given $h \in L^{\infty}(\Omega)$ if we assume that:

(f₀)
$$\limsup_{\pm\infty} \frac{f(s)}{|s|^{p-2}s} \le \lambda_1$$

and

(F₀)
$$\liminf_{\pm\infty} \frac{pF(s)}{|s|^p} < \lambda_1.$$

This result was proved by Del Santo and Omari [S.O] for p = 2, and was generalized by Elhachimi and Gossez [H,G.2] for p > 1.

It is clear that (f_0) is not verified in the example of comment 1 above.

3. Positive density condition. Let
$$\eta > 0$$
 and define
 $E = \{s \in \mathbb{R}^*; \frac{pF(s)}{|s|^p} < C_p - \eta\}, \quad \tilde{E} = \{s \in \mathbb{R}^*; \frac{pF(s)}{|s|^p} < \lambda_1 - \eta\}.$

Theorem 3. (Defigueiredo and Gossez [D,G]) Assume

(f₀)
$$\exists a, b > 0 \quad such that \quad |f(s)| \le a|s|^{p-1} + b \quad \forall s \in \mathbb{R},$$

(F₀)
$$\limsup_{\pm\infty} \frac{pF(s)}{|s|^p} \le \lambda_1,$$

(d)
$$\begin{cases} \liminf_{r \to +\infty} \frac{meas(\tilde{E} \cap [0,r])}{r} > 0, \\ \liminf_{r \to -\infty} \frac{meas(\tilde{E} \cap [r,0])}{-r} > 0. \end{cases}$$

Then, for any $h \in W^{-1,p'}(\Omega)$, there exists $u \in W^{1,p}_0(\Omega)$ solution of (\mathcal{P}_p) .

One says that \tilde{E} has a positive density at $+\infty$ and $-\infty$ if (d) above is verified. This condition was introduced in [D,G].

The question now naturally arises whether nonresonance still occurs in (\mathcal{P}_p) when the "liminf" condition (d) is weakened into a "limsup" condition. We have:

Corollary to Theorem 1. Assume

$$(d') \qquad \qquad \begin{cases} \limsup_{r \to +\infty} \frac{meas(E \cap [0,r])}{r} > 0, \\ \limsup_{r \to -\infty} \frac{meas(E \cap [r,0])}{-r} > 0. \end{cases}$$

Then, for any $h \in L^{\infty}(\Omega)$, there exists $u \in W_0^{1,p}(\Omega)$ solution of (\mathcal{P}_p) .

Proof. Obviously (d') implies that $E \cap \mathbb{R}_-$ and $E \cap \mathbb{R}_+$ are unbounded, so that (F) is satisfied.

Remarks 1. (a) We have not supposed (f_0) nor (F_0) in the corollary. (b) The question whether we may assume only

$$(\tilde{d}) \qquad \qquad \begin{cases} \limsup_{r \to +\infty} \frac{meas(\tilde{E} \cap [0,r])}{r} > 0, \\ \limsup_{r \to -\infty} \frac{meas(\tilde{E} \cap [r,0])}{-r} > 0, \end{cases}$$

remains open. Note that the condition $\liminf_{s\to\pm\infty} \frac{pF(s)}{|s|^p} < \lambda_1$ is weaker than (\tilde{d}) .

Acknowledgment. The authors wish to express their thanks to Professor Jean-Pierre Gossez for various interesting discussions on the subject of this paper.

References

- [A] A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris Sr. I Math. 305 (1987), 725–728.
- [B] E. di Benedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827–850.
- [D,G] D. G. de Figueiredo and J.-P.Gossez, Nonresonance below the first eigenvalue for a semilinear elliptic problem, Math. Ann. 281 (1988), 589–610.
- [E,G.1] A. El Hachimi and J.-P. Gossez, A note on a nonresonance condition for a quasilinear elliptic problem, Nonlinear Anal. 22 (1994), p229–236.
- [E,G.2] A. El Hachimi and J.-P.Gossez, On a nonresonance condition near the first eigenvalue for a quasilinear elliptic problem, Partial Differential Equations (Hansur-Lesse, 1993), 144–151, Math. Res., #82, Akademie-Verlag, Berlin, 1994.
- [Fe,O,Z] M. Fernandes, P. Omari and F. Zanolin, On the solvability of a semilinear twopoint BVP around the first eigenvalue, Differential Integral Equations, 2 (1989), 63–79.
- [F,G,Z] A. Fonda, J.-P.Gossez and F. Zanolin, On a nonresonance condition for a semilinear elliptic problem, Differential Integral Equations, 4 (1991), 945–951.
- [GR,O.1] M. R. Grossinho and P. Omari, Solvability of the Dirichlet problem for a nonlinear parabolic equation under conditions on the potential, to appear.
- [GR,O.2] M. R. Grossinho and P. Omari, A Hammerstein-type result for a semilinear parabolic problem, to appear.
- [H] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930), 117–176.
- [S,O] D. Del Santo and P.Omari, Nonresonance conditions on the potential for a semilinear elliptic problem, J. Differential Equations, 108 (1994), 120–138.

Département de mathématiques Université Mohamed I Oujda, MOROCCO

E-mail addresses: anane@sciences.univ-oujda.ac.ma, chakrone@sciences.univ-oujda.ac.ma