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Abstract. Various eigenvalue and range results are given for perturbations
of m-accretive and maximal monotone operators. The eigenvalue results
improve and extend some recent results by Guan and Kartsatos, while the
range theorem gives an affirmative answer to a recent problem of Kartsatos.

1. Introduction and preliminaries

Let X be a real Banach space with norm ‖ · ‖ and normalized duality
mapping J . An operator T : X ⊃ D(T ) → 2X is said to be “accretive” if for
every x, y ∈ D(T ) and every u ∈ Tx, v ∈ Ty there exists j ∈ J(x− y) such
that

< u− v, j >≥ 0(1)

An accretive operator T is “strongly accretive” if there exists a positive
constant c such that the inequality (1) holds with 0 replaced by c‖x − y‖2.
An accretive operator T is “m-accretive” if R(T + λI) = X for some λ > 0,
(or, equivalently, for all λ > 0). For anm-accretive operator T , the resolvents
Jλ : X → D(T ) of T are defined by Jλ = (I+λT )−1 for all λ > 0. The Yosida
approximants Tλ : X → X of T are defined by Tλ = 1

λ(I−Jλ). For the main
properties of Jλ and Tλ the reader is referred to Barbu [1], Browder[2] and
Lakshmikantham and Leela [9].

In what follows, the symbols ∂D, D denote the strong boundary and
closure of the set D, respectively. We denote by Br(0) the open ball of X
with center at zero and radius r > 0. The symbol → (⇀) means strong
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(weak) convergence. We denote by N, R+ the set of positive integers and
the set [0,∞), respectively.

An operator T : X ⊃ D(T ) → 2X is called “bounded” if T (A) = ∪{Tx :
x ∈ A} is bounded for any bounded set A ⊂ D(T ). The operator T is
said to be “φ-expansive” on E ⊂ D(T ) if there exists a continuous strictly
increasing function φ : R+ → R+ such that φ(0) = 0 and

‖u− v‖ ≥ φ(‖x− y‖)(2)

for every x, y ∈ E and all u ∈ Tx, v ∈ Ty. T is called “compact” if it
continuous and maps bounded subsets of D(T ) onto relatively compact sets.
It is “demicontinuous” (“completely continuous”) if it is strong-weak (weak-
strong) continuous on D(T ). A linear operator in a reflexive Banach space
is completely continuous if and only if it is compact.

By a “cone” we mean a closed and convex subset K of X which is closed
under multiplication by nonnegative scalars and such that K ∩ (−K) = {0}.

Recently, Guan and Kartsatos [4] established several results concerning
the eigenvalue problem for a pair of operators T and C, where T is at
least accretive or monotone while C is at least compact or bounded and
continuous.

One of our objectives in this paper is to complement and improve the
above results by using a well known theorem of Guo and Leray-Schauder
degree theory. Our second objective is to provide an affirmative answer to a
problem of Kartsatos [8] concerning ranges of perturbed maximal monotone
operators (Theorem 2.4).

Before we state and prove our main results, we need some auxiliary results
which follow. Unless otherwise stated, the symbol d(·, ·, ·) denotes the Leray-
Schauder degree.

The following two lemmas can be found in [4].

Lemma 1.1. Let C : D → X be compact, where D ⊂ X is open and
bounded. Assume that there exists y0 ∈ X such that y0 �= 0 and (I − C)x �=
λy0, λ ≥ 0, x ∈ ∂D. Then d(I − C,D, 0) = 0.

Lemma 1.2. Let X be a real infinite dimensional Banach space and K ⊂ X
be a compact set. Assume that there exists a positive constant α such that
‖x‖ ≥ α, for every x ∈ K. Then there exists y0 ∈ X with ‖y0‖ = 1 and
{ty0 : t ≥ α} ∩K = ∅.

We can now use the above Lemmas to deduce the following known result
due to Guo [5]. Its proof is given for completeness.

Theorem 1.1. Let X be a real infinite dimensional Banach space and let
D ⊂ X be open and bounded. Let C : D → X be compact and assume that
there exists a positive constant α such that ‖Cx‖ ≥ α, x ∈ ∂D. Assume,
further, that Cx = µx, x ∈ ∂D imply µ �∈ (0, 1]. Then d(I − C,D, 0) = 0.

Proof. Choose y0 as in Lemma 1.2 with K = −C(∂D). Then {ty0 : t ≥
α} ∩K = ∅.
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We shall show that there exists λ∗ ≥ 1 such that

(I − λ∗C)x �= ηy0, η ≥ 0, x ∈ ∂D.(3)

Indeed, assume (3) is false. Then there exist xn ∈ ∂D, λn, ηn ∈ (0,∞) such
that λn → ∞ and

(I − λnC)xn = ηny0.(4)

Notice that {xn} is bounded. We know that xn/λn → 0 as n → ∞. Hence,∥∥∥∥Cxn +
(
ηn

λn

)
y0

∥∥∥∥ → 0(5)

as n → ∞. Since {Cxn} is bounded, we may assume that ηn/λn → µ as
n → ∞. Then

‖Cxn + µy0‖ → 0(6)

as n → ∞, which implies µ ≥ α. This contradicts the fact {ty0 : t ≥ α}∩K =
∅. Using Lemma 1.1, we see that d(I − λ∗C,D, 0) = 0.

Now, we consider the following compact homotopy

H(t, x) ≡ x− [tλ∗ + (1 − t)]Cx, t ∈ [0, 1], x ∈ D.

By our assumption, H(t, x) �= 0, t ∈ [0, 1], x ∈ ∂D. By the Leray-Schauder
degree theory, we have d(I − C,D, 0) = d(I − λ∗C,D, 0) = 0. The proof of
Theorem 1.1 is complete.

Theorem 1.2. Let X be a real Banach space and K ⊂ X be a cone. Let
D ⊂ X be an open, bounded set. Assume that C : D → K is a compact
operator satisfying the following conditions:
(i) inf{‖Cx‖ : x ∈ ∂D} > 0;
(ii) Cx = µx, x ∈ ∂D imply µ �∈ (0, 1].
Then d(I − C,D, 0) = 0.

Proof. LetM = sup{‖x‖ : x ∈ D} and d = inf{‖Cx‖ : x ∈ ∂D} > 0. Letting

τ0 > max
{
2M
d
, 1

}
,

we have x �= τ0Cx for all x ∈ ∂D. We shall show that there exists τ > τ0
and some u0 ∈ X, with u0 �= 0, such that

x− τCx �= tu0,(7)

for any t ≥ 0, x ∈ ∂D. In fact, (7) holds for t = 0 and any τ > τ0, u0 ∈
X. Thus, we only need to show (7) for t > 0. If this is not the case, then for
any u ∈ K, with ‖u‖ = 1, there exist xn ∈ ∂D, τn > τ0, tn ∈ (0,∞) such
that τn → ∞ and

xn − τnCxn = tnu.(8)

Notice that ∥∥∥∥xn

τn
− Cxn

∥∥∥∥ =
∥∥∥∥ tnτnu

∥∥∥∥ =
tn
τn
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and
xn

τn
− Cxn∥∥∥∥xn

τn
− Cxn

∥∥∥∥
=

tnu

τn

∥∥∥∥xn

τn
− Cxn

∥∥∥∥
= u.(9)

Since {xn} is bounded and C is compact, we may assume that Cxn → y as
n → ∞. From (9) we know that −y/‖y‖ = u ∈ K. On the other hand, since
C : D → K, we have y ∈ K and hence y/‖y‖ = −u ∈ K. Thus, u = 0, which
is a contradiction to ‖u‖ = 1. By Lemma 1.1,

d(I − τC,D, 0) = 0.(10)

Now, we consider the compact homotopy

H(t, x) ≡ x− (tτ + 1 − t)Cx, t ∈ [0, 1], x ∈ D.(11)

We have H(t, x) �= 0, for any t ∈ [0, 1], x ∈ ∂D. By the Leray-Schauder
degree theory we have d(I−C,D, 0) = d(I− τC,D, 0) = 0, which completes
the proof of of Theorem 1.2.

From Theorem 1.2 we have the following two results. Since their proofs are
straightforward, we omit them.

Theorem 1.3. Let X be a real Banach space and K a cone in X. Let D ⊂ X
be an open, bounded and such that 0 ∈ D. Assume that C : D → K
is compact and such that inf{‖Cx‖ : x ∈ ∂D} > 0. Then there exists
(λ, x) ∈ (0,∞) × (K ∩ ∂D) such that Cx = λx.

Theorem 1.4. Let X, D, K be as in Theorem 1.3. Assume that C : ∂D ∩
K → K is compact and that there exists a constant α > 0 such that
inf{‖Cx‖ : x ∈ ∂D ∩ K} > α. Then the conclusion of Theorem 1.3 is
true.

2. Main results

We start with a theorem which improves the corresponding result (The-
orem 2.5) in Guan and Kartsatos [4]. We do not assume that X and X∗
are uniformly convex. We also assume that C compact, but not necessarily
completely continuous. Finally, we assume only the boundedness of T on
the intersection of a certain ball and its domain of definition.

Theorem 2.1. Let X be a real infinite dimensional Banach space and let
D ⊂ X be open and bounded. Let T : X ⊃ D(T ) → 2X be an m-accretive
operator with 0 ∈ T (0), 0 ∈ D ∩ D(T ) and D ⊂ D(T ). Assume that
T (Br(0) ∩ D(T )) is bounded, where r = sup{‖x‖ : x ∈ ∂D}. Let C :
D(T ) → X be compact and let there exist α > 0 such that ‖Cx‖ ≥ α, for all
x ∈ ∂D. Then (i) for every c > 0 there exists (λc, xc) such that

0 ∈ Txc + cxc − λcCxc;

(ii) if, moreover, 0 /∈ T (D(T ) ∩ ∂D) and T is φ-expansive on D(T ) ∩ ∂D,
then there exists (λ0, x0) ∈ (0,∞) × ∂D such that 0 ∈ Tx0 − λ0Cx0.
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Proof. (i) Let c > 0 be given. Since 0 ∈ D, we know that r > 0. Set
M = sup{‖y‖ : y ∈ Tx, x ∈ Br(0) ∩D(T )} and choose

λ∗ >
(M + cr)

α
.

Since T : D(T ) → 2X is m-accretive and C : D(T ) → X is compact, we see
that A = (T + cI)−1λ∗C : D → D(T ) is compact.

Now we verify that the operator A satisfies all conditions in Theorem 1.1.
(I) inf{‖Ax‖ : x ∈ ∂D} > 0. If this is not the case, there exists {xn} ⊂ ∂D

such that Axn → 0 as n → ∞. Let un = Axn. Then

λ∗Cxn ∈ Tun + cun, n ∈ N.(12)

Thus, there exist vn ∈ Tun such that

vn + cun = λ∗Cxn.(13)

Since un → 0 as n → ∞, we have un ∈ Br(0) ∩ D(T ) for all large n ∈
N . Thus, ‖vn‖ ≤ M for all large n. From (13) we have

λ∗ =
‖vn + cun‖

‖Cxn‖ ≤ M + cr

α
,

which contradicts the choice on λ∗.
(II) If Ax = µx, x ∈ ∂D, then µ /∈ (0, 1]. If this is not the case, there exist

x0 ∈ ∂D and µ0 ∈ (0, 1] such that Ax0 = µ0x0. Then µ0x0 ∈ Br(0) ∩D(T )
and λ∗Cx0 ∈ T (µ0x0) + cµ0x0. Thus we can find v0 ∈ T (µ0x0) such that

v0 + cµ0x0 = λ∗Cx0.(14)

Consequently,

λ∗ =
‖v0 + cµ0x0‖

‖Cx0‖ ≤ M + cr

α
,

i.e., a contradiction. By Theorem 1.1, we have d(I −A,D, 0) = 0, i.e.,

d(I − (T + cI)−1λ∗C,D, 0) = 0.(15)

Now we construct a compact homotopy as follows:

H(t, x) ≡ x− (T + cI)−1λ∗tCx, t ∈ [0, 1], x ∈ D.

Indeed, for every t ∈ [0, 1], (T + cI)−1λ∗tC : D → D(T ) is relatively
compact. On the other hand, for every {tn} ⊂ [0, 1], with tn → t as n → ∞,
and all x ∈ D, we have

‖(T + cI)−1λ∗tnCx− (T + cI)−1λ∗tCx‖
≤ λ∗

c
sup{‖Cx‖ : x ∈ D}|tn − t| → 0

as n → ∞. Hence, (T + cI)−1λ∗tC : [0, 1] × D → D(T ) is a compact
operator. Notice that H(0, ·) = I, 0 ∈ D. We have d(H(0, ·), D, 0) = 1.
By the Leray-Schauder degree theory, we must have (tc, xc) ∈ (0, 1] × ∂D
such that xc = (T + cI)−1λ∗Cxc. This says that 0 ∈ Txc + cxc, where
λc = λ∗tc ∈ (0,∞).
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(ii) We take c = 1
n . Then there exists (λn, xn) ∈ (0,∞) × ∂D such that

0 ∈ Txn +
1
n
xn − λnCxn.(16)

Thus, vn + 1
nxn = λnCxn, where vn ∈ Txn. Since {xn} ⊂ Br(0) ∩ D(T ),

we have ‖vn‖ ≤ M . Hence {λn} must be bounded. We may assume that
λn → λ0, Cxn → y as n → ∞. Then vn → λ0y as n → ∞. Since T is φ-
expansive on D(T )∩∂D, we know that xn → x ∈ D(T ) and λ0y ∈ Tx. Hence
Cxn → Cx as n → ∞. So, y = Cx. Thus, we have λ0Cx ∈ Tx, i.e.,
0 ∈ Tx− λ0Cx, where (λ0, x0) ∈ (0,∞) × ∂D. The proof of Theorem 2.1 is
finished.

For cones of Banach spaces we have the following two theorems.

Theorem 2.2. Let X be a real Banach space with a cone K. Let T : X ⊃
D(T ) → 2X have a continuous single-valued inverse T−1 : X → D(T ).
Assume that C : D(T ) → K is compact and there exist an open bounded set
G and a constant α > 0 such that: G ⊂ D(T ), 0 ∈ T (G), T (G) is bounded
and ‖Cx‖ ≥ α, x ∈ ∂G. Then there exists (λ, x) ∈ (0,∞) × ∂G such that
0 ∈ λTx− Cx.

Proof. Since T−1 : X → D(T ) is continuous, we know that T (G) is open and
T (G) is closed, moreover, ∂T (G) ⊂ T (∂G). Notice that CT−1 : T (G) → K
is compact and ‖CT−1u‖ ≥ α, u ∈ ∂T (G). By Theorem 1.3, there exists
(λ, u) ∈ (0,∞) ×K ∩ ∂T (G) such that CT−1u = λu. Letting x = T−1u, we
have 0 ∈ λTx− Cx, x ∈ ∂G. The proof of Theorem 2.2 is finished.

Theorem 2.3. Let X be a real Banach space and K ⊂ X be a cone. Let
T : D(T ) ⊂ K → X be an m-accretive operator with T0 = 0. Let D
be a bounded open in X with 0 ∈ D(T ) ∩ D and D ⊂ D(T ). Assume
that T (Br(0) ∩ D(T )) is bounded, where r = sup{‖x‖ : x ∈ ∂D}. Let
C : D(T ) → X be compact and assume that there exists α > 0 such that
‖Cx‖ ≥ α, x ∈ ∂D. Then

(i) For every c > 0, there exists (λc, xc) ∈ (0,∞) × ∂D ∩ K such that
0 ∈ Txc + cxc − λcCxc;

(ii) if, moreover, 0 /∈ T (D(T )∩ ∂D) and T is φ-expansive on D(T )∩ ∂D,
then there exists (λ0, x0) ∈ (0,∞) × ∂D ∩K such that 0 ∈ Tx0 − λ0Cx0.

Proof. The proof is similar to the proof of Theorem 2.1. It is therefore omit-
ted.

We now turn our attention to an open problem stated by Kartsatos in [8].
Let X be a real reflexive Banach space with norm ‖ · ‖ and normalized

duality mapping J . As it is often assumed, the spaces X, X∗ are locally
uniformly convex. Thus, J is a bicontinuous mapping.

An operator T : X ⊃ D(T ) → 2X∗
is “monotone” if for every x, y ∈ D(T )

and u∗ ∈ Tx, v∗ ∈ Ty we have

< u∗ − v∗, x− y >≥ 0(17)
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A monotone operator T is “maximal monotone” if T + λJ is surjective
for all λ > 0. An operator T : X ⊃ D(T ) → Y , with Y another real Banach
space, is “bounded” if it maps bounded subsets of D(T ) onto bounded sets.
It is “compact” if it is continuous and maps bounded subsets of D(T ) onto
relatively compact sets.

Recently, Kartsatos [8, Theorem 7] proved the following result.

Theorem K. Let T : X ⊃ D(T ) → 2X∗
be maximal monotone and C :

D(T ) → X∗. Let (T + J)−1 be compact. Let G ⊂ X be open, bounded and
such that, for some z ∈ D(T ) ∩G and v∗ ∈ Tz,

0 /∈ Tx− v∗, < u∗ + Cx, x− z >> 0, (x, u∗) ∈ (D(T ) ∩ ∂G) × Tx.

Assume, further, that the operator C(λT+J)−1 is compact, where λ is a fixed
constant, and the set C(D(T )∩G) is bounded. Then 0 ∈ (T +C)(D(T )∩G).

Kartsatos asked in [8] the following question: is Theorem K true without
the assumption that 0 /∈ Tx− v∗, for every x ∈ D(T ) ∩ ∂G?

We shall solve the above open problem, in the affirmative, by using Kart-
satos’ degree theory from [7]. For this purpose, we shall first solve the per-
turbed problem:

0 ∈ Tx+ Cx+ εJx.

By a limiting process, we can then pass to the solution of the original prob-
lem. The key step of the proof is to construct a homotopy equation:

u = H(t, u) ≡ −tC(T + εJ)−1u, t ∈ [0, 1], u ∈ X∗,

which satisfies the condition of Kartsatos [7, Theorem 1].

Theorem 2.4. Let the assumptions of Theorem K be satisfied except, pos-
sibly, the one on Tx− v∗. Then 0 ∈ (T + C)(D(T ) ∩G).

Proof. By the proof of Kartsatos [8, Theorem 7], we see that it suffices to
show Theorem 2.4 for z = 0 and 0 ∈ T0. Otherwise, we reduce the problem
to this case by a suitable transformation.

Let ε ∈ (0, 1) be given. Set U = (T + εJ)(D(T ) ∩ G), and V = (T +
εJ)(D(T ) ∩G).

Since (T + εJ)−1 : X∗ → D(T ) is continuous, we know that U ⊂ X∗ is
open and V ⊂ X∗ is closed. Thus, U ⊂ V.

Observing that U = U ∪ ∂U and V = U ∪ (T + εJ)(D(T ) ∩ ∂G), we have

∂U ⊂ (T + εJ)(D(T ) ∩ ∂G).(18)

We solve first the perturbed problem

0 ∈ Tx+ Cx+ εJx.(19)

Since T : X ⊃ D(T ) → 2X∗
is maximal monotone, we see that (19) is

equivalent to

u = −C(T + εJ)−1u.(20)

We now consider the homotopy equation

u = H(t, u) ≡ −tC(T + εJ)−1u, t ∈ [0, 1], u ∈ X∗.(21)
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It is easy to see from the resolvent identity for maximal monotone opera-
tors (see, for example, [8]) that C(T + εJ)−1 : X∗ → X∗ is compact. Notice
that H(t, ·)U = −tC(T + εJ)−1U ⊂ −tC(D(T ) ∩ G) is bounded. By Kart-
satos’ degree theory [7, Theorem 1], we only need to prove that the equation
(21) has no solution in ∂U . Assume that the contrary is true. Then there
exists xt ∈ ∂U such that

xt = −tC(T + εJ)−1xt.

Setting ut = (T + εJ)−1xt, we see that 0 ∈ Tut + εJut + tCut.
Noting that xt ∈ ∂U ⊂ V = (T + εJ)(D(T ) ∩ ∂G), we have ut = (T +

εJ)−1xt ∈ D(T ) ∩ ∂G. By our assumption, for u∗ ∈ Tut,

0 = < u∗ + tCut + εJut, ut >

= < (1 − t)u∗ + tu∗ + tCut, ut > +ε‖ut‖2

= (1 − t) < u∗, ut > +t < u∗ + Cut, ut > +ε‖ut‖2

≥ ε‖ut‖2 > 0,

i.e., a contradiction. Hence

d(I + C(T + εJ)−1, U, 0) = d(I, U, 0) = 1.

This shows that the equation (20) is solvable in u ∈ U , and hence the
equation (19) is solvable in x ∈ D(T ) ∩G.

At this point we can choose εn = 1
n . Then there exists xn ∈ D(T ) ∩ G

such that
0 ∈ Txn + Cxn +

1
n
Jxn,

which leads to

xn = (T + J)−1((1 − 1
n
)Jxn − Cxn).(22)

Since {Jxn}, {Cxn} are bounded and (T + J)−1 is compact, we see that
{xn} lies in a compact set. Without loss of generality, we may assume that
xn → x as n → ∞.

It follows from (22) that

Cxn = C(T + J)−1((1 − 1
n
)Jxn − Cxn).(23)

Since {Jxn}, {Cxn} are bounded and C(T + J)−1 is compact, we see that
{Cxn} lies in a compact set. We may assume that Cxn → y as n → ∞. Con-
sequently, taking limit on both sides of (23), we obtain

y = C(T + J)−1(Jx− y).

Set u = (T + J)−1(Jx− y). Then y = Cu and Jx− y ∈ Tu+ Ju, which
implies that Jx ∈ Tu+ Cu+ Ju.

On the other hand, by taking the limit on both sides of (22), we have

x = (T + J)−1(Jx− y) = u,

and hence Ju = Jx, 0 ∈ Tu + Cu, u ∈ D(T ) ∩ G, which ends the proof of
Theorem 2.4.
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Remark 2.1. By Theorem 2.4, we know that Corollary 4 of Kartsatos [8]
is true without the assumption that 0 /∈ Tx, for every x ∈ D(T ) ∩ ∂G.
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