
THE EFFECT OF THE GRAPH TOPOLOGY
ON THE EXISTENCE OF MULTIPEAK
SOLUTIONS FOR NONLINEAR
SCHRÖDINGER EQUATIONS

E. N. DANCER, KEE Y. LAM, AND SHUSEN YAN

Received 16 September 1998

1. Introduction

Consider the problem

−ε2�u+V (y)u = up−1, y ∈ R
N,

u > 0, y ∈ R
N,

u −→ 0, as |y| −→ +∞,

(1.1)

where V (y) is a smooth bounded function with positive lower bound, ε > 0 is
a small number, 2 < p < 2N/(N −2) if N > 2 and 2 < p < +∞ if N = 2.

Many works have been done on problem (1.1) recently (cf. [6, 7, 8, 16, 21,
22, 23]). One of the results in the papers just mentioned is that if x1,x2, . . . ,xk

are k different strictly local minimum points of V (y), then (1.1) has a k-peak
solution uε, that is, solution with exactly k local maximum points, such that uε

has exactly one local maximum point in a neighborhood of xj , j = 1, . . . ,k.
The same conclusion is also true if x1,x2, . . . ,xk are k different strictly local
maximum points of V (y). Actually, it is proved in [23] that (1.1) has a multipeak
solution with all its peaks near an isolated maximum point of V (y). Thus a
natural question is what will happen if V (y) attains its local minimum or local
maximum on a connected set. Especially, if V (y) attains its local minimum on
a connected set which contains infinitely many points, it is interesting to study
whether (1.1) has multipeak solution concentrating on this set. Generally, this
is not true as shown in Example 1.6.

The main results of this paper consist of three parts. First, we study how the
topological structure of the local minimum set of the potential V (y) affects the
existence of multipeak solutions for (1.1). We show that if the minimum set of
V (y) has nontrivial reduced homology, then for each k ≥ 1, (1.1) has at least
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one k-peak solution such that each local maximum point of this solution tends
to a point in this minimum set as ε → 0.

Second, we construct solutions with their peaks near a connected maximum
set of V (y). Unlike the case of minimum sets, we show that for any connected
maximum set of V (y) and for any positive integer k ≥ 2, (1.1) always has at
least N different solutions with all their peaks tending to this maximum set as
ε → 0.

Suppose that M1 and M2 are two disjoint connected sets such that V (y)

attains a local minimum or a local maximum on M1 and on M2. The third
problem studied in this paper is to construct a (k1 +k2)-peak solution uε such
that uε has exactly ki local maximum points near Mi , i = 1,2.

Before we state our results precisely, we give some notations first.
For any constant V̄ > 0, let UV̄ (y) be the unique solution of

−�u+ V̄ u = up−1, y ∈ R
N,

u > 0, y ∈ R
N,

u ∈ H 1(
R

N
)
, u(0) = max

y∈RN
u(y).

(1.2)

Let w be the unique solution of

−�u+u = up−1, y ∈ R
N,

u > 0, y ∈ R
N,

u ∈ H 1(
R

N
)
, u(0) = max

y∈RN
u(y).

(1.3)

Then UV̄ (y) = V̄ 1/(p−2)w(V̄ y). Denote Uε,z,V̄ (y) = UV̄ ((y −z)/ε).
For any fixed integer k > 0 and Vj > 0, j = 1, . . . ,k, we denote

Eε,x,k =
{
v ∈ H 1(

R
N
) : 〈Uε,xj ,Vj

,v
〉
ε
=
〈
∂Uε,xj ,Vj

∂xji

,v

〉
ε

= 0,

j = 1, . . . ,k, i = 1, . . . ,N

}
,

(1.4)

where 〈u,v〉ε =∫
RN ε2DuDv+V (y)uv. We also denote ‖v‖2

ε =∫
RN ε2|Du|2 +

V (y)v2.

Definition 1.1. Let M be a connected compact set in R
N . M is said to be a local

minimum (maximum) set of V (y) if there are constants γ > 0 and VM , such
that V (y) = VM for y ∈ M , V (y) > VM(V (y) < VM) for y ∈ Mγ \M , where
Mγ = {z : z ∈ R

N,d(z,M) ≤ γ }.
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Throughout this paper, all the homologies are with Z2-coefficients. Now we
are ready to state our main results.

Theorem 1.2. Suppose that M is a connected compact local minimum set of
V (y) such that ∂Mγ is a C1-manifold of dimension N −1 for each γ > 0 small.
Moreover, we assume that for any γ > 0 small, the following conditions hold:

V (y) ≤ VM +ad(y,M)h,
∣∣DmV (y)

∣∣= O
(
d(y,M)h−m

)
, (1.5)

for m = 1, . . . , [h], y ∈ Mγ ,

〈DV (y),n〉 ≥ c0γ
h−1, ∀y ∈ ∂Mγ , (1.6)

where a, c0, and h ≥ 2 are some positive constants, n is the outward unit normal
of ∂Mγ at y. If the reduced homology of M is nontrivial, then for each integer
k ≥ 2, there is an ε0 > 0, such that for every ε ∈ (0,ε0], (1.1) has at least one
k-peak solution of the form

uε =
k∑

j=1

αε,jUε,xε,j ,VM
+vε, (1.7)

where vε ∈ Eε,x,k and as ε → 0,

αε,j −→ 1,

∣∣xε,i −xε,j

∣∣
ε

−→ ∞, xε,j −→ xj ∈ M,
∥∥vε

∥∥2
ε
= o
(
εN
)
,

(1.8)
for i,j = 1, . . . ,k and i 
= j . Moreover, if k = 2, (1.1) has at least cuplength(M)

distinct solutions of the form (1.7) satisfying (1.8).

For any set M , denote

Ak =
(

Mγ ×·· ·×Mγ︸ ︷︷ ︸
k

\
⋃
i 
=j

{∣∣xi −xj

∣∣< d
})

/σk, (1.9)

where d > 0 and γ > 0 are small constants, σk is the group of permutations of
k letters acting on Mγ ×·· ·×Mγ︸ ︷︷ ︸

k

\⋃i 
=j {|xi −xj | < d}.

Theorem 1.3. Suppose that M is a connected compact local maximum set of
V (x). Then for each positive integer k ≥ 2, there is an ε0 > 0, such that for
every ε ∈ (0,ε0], (1.1) has at least CatAk

(Ak) solutions of the form

uε =
k∑

j=1

αε,jUε,xε,j ,VM
+vε, (1.10)
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where vε ∈ Eε,x,k and as ε → 0,

αε,j −→ 1,

∣∣xε,i −xε,j

∣∣
ε

−→ ∞, xε,j −→ xj ∈ M,
∥∥vε

∥∥2
ε
= o
(
εN
)
,

(1.11)
for i,j = 1, . . . ,k and i 
= j .

Theorem 1.4. Let M1, . . . ,Ml be disjoint connected compact sets such that
∂Mi,γ is a C1-manifold of dimension N − 1 for each γ > 0 small and i =
1, . . . , l. Suppose that the following conditions hold: there are constants h ≥ 2,
c1 ≥ c0 > 0 such that

VMi
≤ V (y) ≤ VMi

+c1d
(
y,Mi

)h
,∣∣DmV (y)

∣∣= O
(
d
(
y,Mi

)h−m
)
,


 ∀y ∈Mi,γ , m = 1, . . . , [h], i = 1, . . . , l1,

〈DV (y),n〉 ≥ c0γ
h−1, ∀y ∈ ∂Mi,γ , i = 1, . . . , l1,

c0d
(
y,Mi

)h ≤ VMi
−V (y) ≤ c1d

(
y,Mi

)h
,∣∣DmV (y)

∣∣= O
(
d
(
y,Mi

)h−m
)
,


 ∀y ∈ Mi,γ , m = 1, . . . , [h],

i = l1 +1, . . . , l.

(1.12)

(i) If each Mi , i = 1, . . . , l1, has nontrivial reduced homology, then for any
positive integer ki , i = 1, . . . , l, there is an ε0 > 0 such that for each ε ∈ (0,ε0],
(1.1) has at least one solution of the form

uε =
l∑

i=1

ki∑
j=1

αε,i,jUε,xε,i,j ,VMi
+vε, (1.13)

where vε ∈ E
ε,x,

∑l
i=1 ki

and as ε → 0,

αε,i,j −→ 1,
∥∥vε

∥∥2
ε
= o
(
εN
)
,∣∣xε,i,j −xε,i,m

∣∣
ε

−→ ∞, xε,i,j −→ xi,j ∈ Mi,

(1.14)

for i = 1, . . . , l, j,m = 1, . . . ,ki , and j 
= m.
(ii) If some of the minimum sets Mi1, . . . ,Mit have trivial reduced homology,

then the conclusion in (i) holds for kij = 1, j = 1, . . . , t .

The basic idea to prove Theorem 1.2 can also be used to obtain the following
result.
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Theorem 1.5. Let M be a connected compact local minimum or maximum
set. Then there is an ε0 > 0, such that for each ε ∈ (0,ε0], (1.1) has at least
CatM(M) single peak positive solutions of the form

uε = αεUε,xε,VM
+vε, (1.15)

where vε ∈ Eε,xε,1, and as ε → 0, αε → 1, xε → x0 ∈ M , and ‖vε‖2
ε = o(εN).

The assumption that M has nontrivial topology is essential in Theorem 1.2,
as shown by the following example.

Example 1.6. Let V (y) = V (|y|) be a smooth function satisfying V (y) = 1 for
|y| ≤ 1, and V (|y|) is strictly increasing in |y| > 1. Then we see that the mini-
mum set of V (y) is the unit ball in R

N . By the moving plane method of Gidas,
Ni, and Nirenberg [19], we know that every solution of (1.1) is radially sym-
metric and strictly decreasing. Therefore, the solution has a unique maximum
point, and thus is a single peak solution.

Example 1.7. A typical example of V (y) satisfying the conditions in Theorem
1.4 is that V (y) = V (|y|) and V (r) attains its local minimum or maximum at rl >
· · ·>r1 >0 with V ′′(ri) 
=0, i =1, . . . , l. In this case, Mi ={y : |y|=ri}, h=2.

Remark 1.8. If M is an N -dimensional smooth manifold without boundary,
tubular neighborhoods of M are useful for verifying the conditions in Theorem
1.4.

Remark 1.9. By Proposition C.3, we know that a lower bound for CatAk
Ak

is N . So (1.1) has at least N different k-peak solutions concentrating on the
connected compact local maximum set of V (y).

Since the work by Bahri and Coron [2], the effect of the domain topology on
the existence and multiplicity of the solutions is one of the subjects which attract
much attention. See, for example, [2, 3, 4, 10, 11, 12, 14, 15]. In [3], the category
of the domain was used to estimate the number of the single peak solutions, while
in [12, 14, 15], the effect of the domain topology on the existence of multipeak
solutions was studied. The domain in problem (1.1) has trivial topology, so our
results here emphasize the effect of the topology of the level set of the potential
V (y) on the existence and multiplicity of multipeak solutions for (1.1).

Finally, we point out that the idea in this paper works for the singularly
perturbed Neumann problem

−ε2�u+u = up−1 in �, u > 0 in �,
∂u

∂n
= 0 in ∂�, (1.16)

where � is a bounded domain in R
N . The role of the mean curvature function

of the boundary ∂� in (1.16) is similar to that of the potential V (x) in (1.1).
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The estimates in Appendix C can be used to improve the multiplicity results in
[13, 25]. For example, as a direct corollary of Proposition C.3 and the results in
[13, 25], we have the following corollary.

Corollary 1.10. For each integer k ≥ 2, there is ε0 > 0 such that for each
ε ∈ (0,ε0],

(i) equation (1.16) has at least N boundary k-peak solutions with all their
local maximum points near the global minimum set of the mean curva-
ture function of ∂�;

(ii) equation (1.16) has at least N interior k-peak solutions.

This paper is arranged as follows. In Section 2, we reduce the problem of find-
ing a multipeak solution for (1.1) to a finite-dimensional problem. Theorem 1.2
is proved in Section 3. Section 4 is devoted to the proof of Theorems 1.3 and 1.5.
In Section 5, we prove Theorem 1.4. Some basic estimates and the topological
results needed in the proof of the main results are presented in the appendices.

2. Reduction to finite-dimensional problem

First, we define

Dε =
{
(α,x,v) : ∣∣αj −1

∣∣≤ δ, v ∈ Eε,x,k, ‖v‖ε ≤ δεN/2,

x =(x1, . . . ,xk

)
, xj ∈R

N,

∣∣xi−xj

∣∣
ε

≥R, i,j =1, . . . ,k, i 
=j

}
,

(2.1)

where δ > 0 is a fixed small constant and R > 0 is a fixed large constant.
We also define

J (α,x,v) = I


 k∑

j=1

αjUε,xj ,Vj
+v


 , ∀(α,x,v) ∈ Dε, (2.2)

where

I (u) = 1

2

∫
RN

(
ε2|Du|2 +V (y)u2)− 1

p

∫
RN

|u|p. (2.3)

It is well known now (see [1, 24]) that, if δ > 0 is small enough and R > 0
is large enough,

u =
k∑

j=1

αjUε,xj ,Vj
+v (2.4)
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is a positive critical point of I (u) if and only if (α,x,v) is a critical point of
J (α,x,v) in Dε. So we need to solve the following system:

∂J

∂αj

= 0, j = 1, . . . ,k, (2.5)

∂J

∂xjl

=
N∑

h=1

Ghj

〈
∂2Uε,xj ,Vj

∂xjh∂xjl

,v

〉
ε

, j = 1, . . . ,k, l = 1, . . . ,N, (2.6)

∂J

∂v
=

k∑
j=1

BjUε,xj ,Vj
+

k∑
j=1

N∑
l=1

Gjl

∂Uε,xj ,Vj

∂xjl

, (2.7)

for some constants Bj ,Gjl ∈ R, j = 1, . . . ,k, l = 1, . . . ,N .
In this section, we reduce the problem of solving the system (2.5), (2.6), and

(2.7) to a finite-dimensional problem. We need the following proposition.

Proposition 2.1. There is an ε0 > 0, such that for each ε ∈ (0,ε0], there exists a
unique C1-map (αε(x),vε(x)) : R

kN \∪i 
=j {|xi −xj | ≤ εR} → R
k+ ×H 1(RN)

such that vε ∈ Eε,x,k , (2.5) and (2.7) hold for some constants Bj and Gjl .
Moreover,

vε

(
σkx
)= vε(x), σkαε

(
σkx
)= αε(x), (2.8)

|α−1|εN/2 +‖v‖ε = O


 k∑

j=1

(
εN/2

∣∣V (xj

)−Vj

∣∣+ [h]∑
m=1

εN/2+m
∣∣DmV

(
xj

)∣∣)



+O

(
εN/2

∑
i 
=j

w(1+τ)/2
(∣∣xi −xj

∣∣
ε

))
,

(2.9)

εBj , Gjl = O


ε

k∑
j=1

(∣∣V (xj

)−Vj

∣∣+ [h]∑
m=1

εm
∣∣DmV

(
xj

)∣∣)



+O


ε
∑
i 
=j

w(1+τ)/2
(∣∣xi −xj

∣∣
ε

) ,

(2.10)

where τ > 0 is a fixed small constant.

Proof. We can follow the same procedure as in [5] to prove the existence part.
Equation (2.8) is a direct consequence of the fact J (α,x,v) = J (σkα,σkx,v)

and the uniqueness of (αε(x),vε(x)) satisfying (2.5) and (2.7). To get the esti-
mate (2.9), we just need to use Lemma A.3. We can solve a system as in [24,
pages 22–23] and use Lemma A.4 to get the estimate (2.10). Since the procedure
is quite standard, we omit the details. �
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Let (αε(x),vε(x)) be the map obtained in Proposition 2.2. Define

K(x) = J
(
αε(x),x,vε(x)

)
. (2.11)

In order to solve (2.5), (2.6), and (2.7), we only need to find a critical point
for K(x) in a suitable domain. So we need the following propositions.

Proposition 2.2. Suppose that F(x) is a C2-function defined in a bounded
domain � of R

kN . If F satisfies either F(x) > c or ∂F (x)/∂n > 0 at each
x ∈ ∂�, where n is the outward unit normal of ∂� at x, then

#
{
x : DF(x) = 0,x ∈ Fc

}≥ CatFc

(
Fc
)
, (2.12)

where Fc = {x : x ∈ �,F(x) ≤ c}. In particular, F(x) has at least one critical
point in Fc.

Proof. Notice that our assumption implies that the flow

dx(t)

dt
= −DF

(
x(t)

)
, x(0) = x0 ∈ Fc, (2.13)

does not leave �. In fact, suppose that x(t) touches the boundary at some
time t0. Since F is decreasing along x(t), then F(x(t0)) ≤ c. Thus, by assump-
tion, ∂F (x(t0))/∂n > 0, which implies that −DF(x(t0)) points into �. So
x(t) moves into �. Then Proposition 2.2 follows directly from the Ljusternik-
Schnirelman theory. �

Proposition 2.3. Suppose that F(x) is a C2-function defined in a bounded
domain � of R

kN . Let c2 > c1 be two constants such that neither c2 nor c1 is
a critical value of F(x). If F satisfies either F(x) < c1 or ∂F (x)/∂n > 0 for
each x ∈ ∂�, then

#
{
x : DF(x) = 0, x ∈ Fc2 \Fc1

}≥ CatFc2

(
Fc2 ,F c1

)
. (2.14)

In particular, if Fc2 cannot be deformed into Fc1 , F has at least one critical
point in Fc2 \Fc1 .

Proof. Similar to Proposition 2.2, our assumption implies that the

dx(t)

dt
= −DF

(
x(t)

)
, x(0) = x0 ∈ Fc2 , (2.15)

does not leave � before it reaches Fc1 . So Proposition 2.2 follows directly from
the Ljusternik-Schnirelman theory. �
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3. Multipeak solutions concentrating on the minimum set

Suppose that M is a connected compact local minimum set of V (y) and Mγ =
{y : d(y,M) ≤ γ }. For k ≥ 2, let

�γ =
{
x =(x1, . . . ,xk

) : xj ∈Mγ ,j =1, . . . ,k,

∣∣xi −xj

∣∣
ε

≥R,∀i 
= j

}
. (3.1)

Define

cε,1 = εN
(
kV

p/(p−2)−N/2
M A−T εαh

)
, cε,2 = εN

(
kV

p/(p−2)−N/2
M A+η

)
,

(3.2)
where T > 0 is a large constant and α ∈ (0,1) is a fixed constant close to 1. We
also let

Kc = {x : x ∈ �εα ,K(x) ≤ c
}
. (3.3)

In this section, we apply Proposition 2.3 to prove that for ε > 0 small, K(x)

has a critical point in Kcε,2 \Kcε,1 . First, we prove the following lemma.

Lemma 3.1. For each x ∈ ∂�εα , either K(x) < cε,1, or ∂K(x)/∂n > 0.

Proof. We divide the proof of this lemma into two steps.
Step 1. Suppose that |xi −xj |/ε = R for some i 
= j . We claim that x ∈ Kcε,1 .

In fact, by using Proposition 2.1 and Lemma A.2, we obtain

K(x)=I

(
k∑

l=1

Uε,xl,VM

)
+O

(
εN
∣∣αε −1

∣∣2 +‖v‖2
ε

)

=εN
k∑

j=1

V
p/(p−2)−N/2
M A−

k−1∑
i=1

∫
RN


 k∑

j=i+1

Uε,xj ,VM


p−1

Uε,xi ,VM

+O

(
k∑

l=1

(
εN
∣∣V (xl

)−VM

∣∣+ [h]∑
m=1

εN+m
∣∣DmV

(
xl

)∣∣))

+O

(
εN
∑
i 
=j

w1+τ

(∣∣xi −xj

∣∣
ε

))

=εN
k∑

j=1

V
p/(p−2)−N/2
M A−

k−1∑
i=1

∫
RN


 k∑

j=i+1

Uε,xj ,VM


p−1

Uε,xi ,VM

+O

(
εN+αh +εN

∑
i 
=j

w1+τ

(∣∣xi −xj

∣∣
ε

))
.

(3.4)
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From (3.4), we have

K(x) ≤ εN
(
kV

p/(p−2)−N/2
M A−cw(R)

)
+O

(
εN+αh

)
< cε,1. (3.5)

Thus x ∈ Kcε,1 .
Step 2. Suppose that xi ∈ ∂Mεα for some i. Without loss of generality, we
assume that i = 1. We claim that either K(x) < cε,1, or ∂K/∂n > 0, where n is
the outward unit normal of ∂Mεα at x1.

For any xj ∈ Mεα and m ≥ 2, we have

∣∣V (xj

)−VM

∣∣= O
(
εαh
)
,

∣∣DmV
(
xj

)∣∣εm =O
(
d
(
xj ,M

)h−m
εm
)
=O

(
εα(h−m)εm

)=O
(
εαh+2(1−α)

)
.

(3.6)

So, by Proposition 2.1 and Lemma A.4, we have

∂K

∂x1l

= ∂J

∂x1l

+
〈
∂J

∂v
,

∂v

∂x1l

〉
ε

= ∂J

∂x1l

+
k∑

j=1

N∑
h=1

Ghj

〈
∂Uε,xj ,VM

∂xjh

,
∂v

∂x1l

〉
ε

= ∂J

∂x1l

−
N∑

h=1

G1h

〈
∂2Uε,x1,VM

∂xh1∂x1l

,v

〉
ε

= ∂J

∂x1l

+O

(
εN−1

∑
i 
=j

e−(1+τ)(|xi−xj |/ε) +εN+αh

)

= c1ε
NDlV

(
x1
)−(p−1)

k∑
j=2

∫
RN

U
p−2
ε,x1,VM

Uε,xj ,VM

∂Uε,x1,VM

∂x1l

+O

(
εN−1

∑
i 
=j

e−(1+τ)(|xi−xj |/ε) +εN−1+αh+2(1−α)

)
.

(3.7)

Let η = minj 
=i |xi −xj |. We distinguish two cases.
(i) Suppose that U(η/ε) > Lεαh, where L > T is a large constant. In this

case, we claim that K(x) < cε,1. In fact, it follows from (3.4) that

K(x) ≤ εNkV
p/(p−2)−N/2
M A−c′εNw

(
η

ε

)
+O

(
εN+αh

)
≤ εNkV

p/(p−2)−N/2
M A−c′LεN+αh +CεN+αh < cε,1,

(3.8)

if L > T is large enough.
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(ii) Suppose that U(η/ε) ≤ Lεαh. In this case, we prove that ∂K(x)/∂n > 0,
where n is the outward unit normal of ∂Mεα at x1. Since for any j 
= 1,

∫
RN

U
p−2
ε,x1,VM

Uε,xj ,VM

∂Uε,x1,VM

∂x1l

= (c+o(1)
)
εN−1w

(∣∣xj −x1
∣∣

ε

)
xjl −x1l∣∣xj −x1

∣∣ ,
(3.9)

and for small β > 1−α,

〈
xj −x1∣∣xj −x1

∣∣ ,n
〉
≤ εβ, ∀xj ∈ Mεα ∩Bεα

(
x1
)
, (3.10)

we see that

∫
RN

U
p−2
ε,x1,VM

Uε,xj ,VM

∂Uε,x1,VM

∂n
≤εβ

(
c+o(1)

)
εN−1w

(∣∣x1 −xj

∣∣
ε

)
≤εβ

(
c+o(1)

)
εN−1Lεαh, ∀xj ∈Mεα∩Bεα

(
x1
)
.

(3.11)

On the other hand, if |xj −x1| > εα , then

∫
RN

U
p−2
ε,x1,VM

Uε,xj ,VM

∂Uε,x1,VM

∂n
= O

(
εN−1e−1/ε1−α

)
. (3.12)

Combining (3.7), (3.11), and (3.12), we obtain

∂K(x)

∂n
≥ c1ε

N
〈
DV

(
x1
)
,n
〉−εβL

(
c+o(1)

)
εN−1+αh +O

(
εN−1+αh+2(1−α)

)
≥ c′εN+α(h−1) −L

(
c+o(1)

)
εN−1+αh+β > 0.

(3.13)

Combining Steps 1 and 2, we complete the proof of this lemma. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. In view of Lemma 3.1 and Proposition 2.3, we see that

#
{
x : DK(x) = 0,x ∈ Kcε,2 \Kcε,1

}≥ Cat�εα

(
Kcε,2 ,Kcε,1

)
. (3.14)

It is easy to check that

Kcε,2 = �εα . (3.15)
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On the other hand, we claim that

Tc′ε lnε−1 \TεR ⊂ Kcε,1 ⊂ TCε lnε−1 \TεR, (3.16)

where Tτ = ∪i 
=j {|xi −xj | ≤ τ, xi,xj ∈ Mεα }, C > c′ > 0 are some suitable
constants.

In fact, it follows from Lemma A.2 that

cε,1 = εNkV
p/(p−2)−N/2
M A−T εN+αh > K(x)

= εNkV
p/(p−2)−N/2
M A−

∑
i 
=j

∫
RN

U
p−1
ε,xi ,VM

Uε,xj ,VM
+O

(
εN+αh

)
,

(3.17)

which implies |xi −xj | ≤ Cε ln(1/ε) for some i 
= j if T > 0 is large enough.
Thus,

Kcε,1 ⊂ TCε lnε−1 \TεR. (3.18)

On the other hand, it is easy to check

Tc′ε lnε−1 \TεR ⊂ Kcε,1, (3.19)

if c′ > 0 is small enough. So the claim follows.
Since TCε lnε−1 \TεR can be deformed into Tc′ε lnε−1 \TεR , we have

Cat�εα

(
Kcε,2 ,Kcε,1

)= Cat�εα

(
�εα ,Tc′ε lnε−1 \TεR

)
. (3.20)

As a result, we have

#
{
x : DK(x) = 0, x ∈ Kcε,2 \Kcε,1

}≥ Cat�εα

(
�εα ,Tc′ε lnε−1 \TεR

)
, (3.21)

On the other hand, it follows from the definition that

Cat�εα

(
�εα ,Tc′ε lnε−1 \TεR

)≥ CatMk
εα

(
Mk

εα ,Tc′ε lnε−1

)
. (3.22)

So we have

#
{
x : DK(x) = 0, x ∈ Kcε,2 \Kcε,1

}≥ CatMk
εα

(
Mk

εα ,Tc′ε lnε−1

)
. (3.23)

By Proposition B.4, we know that Mk
εα cannot be deformed into Tc′ε lnε−1 . Hence

the right-hand side of (3.23) is greater than or equal to 1, and thus we have proved
the first part of Theorem 1.2.

By Proposition B.5, we know that if k = 2,

#
{
x : DK(x) = 0, x ∈ Kcε,2 \Kcε,1

}
≥ CatM2

εα

(
M2

εα ,Tc′ε lnε−1

)
≥ 2cuplength

(
Mεα

)= 2cuplength(M).

(3.24)
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Thus, the number of the two-peak solutions for (1.1) is at least

1

2
#
{
x : DK(x) = 0, x ∈ Kcε,2 \Kcε,1

}≥ cuplength(M). (3.25)

So we complete the proof of Theorem 1.2. �

4. Multipeak solutions concentrating on the maximum set

In this section, we assume that M is a local compact maximum set of V (y). Let

�δ =
{
x = (x1, . . . ,xk

) : xj ∈ Mδ,j = 1, . . . ,k,

∣∣xi −xj

∣∣
ε

≥ R,∀ i 
= j

}
,

Ak,δ = �δ/σk.

(4.1)

Define

K1
([x])= J

(
αε(x),x,vε(x)

)
, ∀ [x] ∈ Ak,δ. (4.2)

By (2.8) of Proposition 2.1, K1([x]) is well defined in Ak,δ . It is not difficult
to prove that Ak,δ is a covering space of �δ . As a result, [x] ∈ Ak,δ is a critical
point of K1 if and only if x ∈ �δ is a critical point of K .

Proof of Theorem 1.3. First, fix δ > 0 small such that

γ1 =: VM −max
∂Mδ

V (x) > 0. (4.3)

Then take a small positive constant γ satisfying γ < min(γ1,w(R)). Let δ1 > 0
small enough such that

V (x) > VM −τγ, ∀x ∈ Mδ1, (4.4)

where τ > 0 is a small constant.
Define

cε = εN
(
kV

p/(p−2)−N/2
M −γ

)
. (4.5)

Then it follows from Lemma A.2 that

J
(
αε(x),x,vε(x)

)
< cε,k, (4.6)

if d(xi,M) = δ for some i, or |xi −xj | = εR for some i 
= j . That is,

K1
([x])< cε,k, ∀[x] ∈ ∂

(
Ak,δ

)
. (4.7)

Applying Proposition 2.2 to −K1, we obtain

#
{[x] : [x] ∈ Ak,δ,DK1([x]) = 0,K1([x])≥cε,k

}≥ CatAk,δ

({
K1([x])≥cε,k

})
.

(4.8)
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On the other hand, it is easy to check from (3.4) that

A′
k,δ1

=:
(

Mδ1 ×·· ·×Mδ1︸ ︷︷ ︸
k

\
⋃
i 
=j

{(∣∣xi −xj

∣∣/ε)≥ 1

ε1/2

})
/σk ⊂{K1([x])≥cε,k

}
.

(4.9)
Combining (4.8) and (4.9), we obtain

#
{[x] : [x] ∈ Ak,δ, DK1

([x])= 0,K1
([x])≥ cε,k

}≥ CatAk,δ

(
A′

k,δ1

)
. (4.10)

But Ak,δ and A′
k,δ1

are homotopically equivalent, so we see

#
{[x] : [x] ∈ Ak,δ,DK1

([x])= 0,K1
([x])≥ cε,k

}
≥ CatAk,δ

(
A′

k,δ1

)= CatAk,δ

(
Ak,δ

)
.

(4.11)

Thus we have completed the proof of Theorem 1.3. �

Proof of Theorem 1.5. Suppose that M is a connected compact local minimum
set. Let (αε(x),vε(x)) be the map obtained in Proposition 2.1 (k = 1). Define

K3(x) = J
(
αε(x),x,vε(x)

)
, ∀x ∈ Mγ ,

c′
ε = εNV

p/(p−2)−N/2
M A+εNη,

(4.12)

where η > 0 is a small constant satisfying η < min∂Mγ V (x)−VM . Then it is
easy to check that

K3(x) > c′
ε, ∀x ∈ ∂Mγ , M ⊂ K

c′
ε

3 . (4.13)

As a result, we have

#
{
x : x ∈ Mγ ,DK3(x) = 0, x ∈ K

c′
ε

3

}
≥ CatMγ (M). (4.14)

The case that M is a maximum set can be treated in a similar way. So we
complete the proof of Theorem 1.5. �

5. Multipeak solution concentrating on different sets

Suppose that M1 and M2 are two disjoint minimum or maximum sets of V (y).
The aim of this section is to construct a solution u for (1.1) such that u has ki

peaks near Mi , i = 1,2.

Proof of Theorem 1.4. For the simplicity of the notation, we only prove Theorem
1.4 for l = 2.
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For any γ > 0, define

�1,γ =
{(

x1, . . . ,xk1

) : xi ∈ M1,γ ,

∣∣xi −xj

∣∣
ε

≥ R,∀i 
= j

}
,

�2,γ =
{(

xk1+1, . . . ,xk1+k2

) : xi ∈ M2,γ ,

∣∣xi −xj

∣∣
ε

≥ R,∀i 
= j

}
,

�∗
γ = �1,γ ×�2,γ .

(5.1)

For any x ∈ �∗
γ , let (αε(x),vε(x)) be the map obtained in Proposition 2.1.

Define

K(x) = J
(
αε(x),x,vε(x)

)
. (5.2)

Since the interaction between the peaks near M1 and the peaks near M2 is
exponentially small, we have

K(x) = εN
2∑

i=1

kiV
p/(p−2)−N/2
i A+εNB

k1∑
j=1

(
V
(
xj

)−VM1

)
V

2/(p−2)−N/2
M1

+εNB

k1+k2∑
j=k1+1

(
V
(
xj

)−VM2

)
V

2/(p−2)−N/2
M2

−
k1−1∑
i=1

∫
RN


 k1∑

j=i+1

Uε,xj ,M1


p−1

Uε,xi ,M1

−
k1+k2−1∑
i=k1+1

∫
RN


 k1+k2∑

j=i+1

Uε,xj ,M2


p−1

Uε,xi ,M2

+O


k1+k2∑

j=1

[h]∑
m=1

εN+m
∣∣DmV

(
xj

)∣∣



+O


εN

∑
1≤i<j≤k1+k2

w1+τ

(∣∣xi −xj

∣∣
ε

)

+O


εN

k1∑
j=1

∣∣V (xj

)−VM1

∣∣2 +εN

k1+k2∑
j=k1+1

∣∣V (xj

)−VM2

∣∣2

 .

(5.3)

Case 1. Suppose that both M1 and M2 are maximum sets. In this case, similar
to the proof of Theorem 1.3, using (5.3), we can check that

max
x∈∂�∗

δ

K(x) < max
x∈�∗

δ

K(x). (5.4)
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As a result, the maximum point xε of K(x) in �∗
δ is an interior point of �∗

δ , and
thus a critical point of K(x).
Case 2. Suppose that both M1 and M2 are minimum sets with nontrivial topol-
ogy. Let

c′
ε,1 = εN

2∑
i=1

V
p/(p−2)−N/2
Mi

kiA−T εN+αh,

c′
ε,2 = εN

(
2∑

i=1

V
p/(p−2)−N/2
Mi

kiA+η

)
,

Kc = {x : x ∈ �∗
εα ,K(x) ≤ c

}
,

(5.5)

where α ∈ (0,1) is a fixed constant close to 1.
Using (5.3), we see that K(x) < c′

ε,1 if |xi −xj | = εR for some xi,xj ∈ M1,εα

or xi,xj ∈ M2,εα .
Suppose that x1 ∈ ∂M1,εα . Define η1 = min1≤i<j≤k1+k2 |xi −xj |. Then, sim-

ilar to Lemma 3.1, we have K(x) < c′
ε,1 if w(η1/ε) > Lεαh, and ∂K(x)/∂n >

0 if w(η1/ε) ≤ Lεαh. So, in order to prove that K(x) has critical point in
Kc2,ε \Kc1,ε , we just need to prove that Kcε,2 cannot be deformed into Kcε,1 .

It is easy to check that Kcε,2 = �∗
εα .

Since

�1,εα ×(T2,c′ε lnε−1 \T2,εR

)∪(T1,c′ε lnε−1 \T1,εR

)×�2,εα ⊂ Kcε,1

⊂ �1,εα ×(T2,Cε lnε−1 \T2,εR

)∪(T1,Cε lnε−1 \T1,εR

)×�2,εα ,
(5.6)

where Tl,c = ∪i 
=j {|xi − xj | ≤ c, xi,xj ∈ Ml,εα }, l = 1,2, C > 0 is a large
constant and c′ > 0 is a small constant, we see that if Kcε,2 could be de-
formed into Kcε,1 , then M

k1
1,εα × M

k2
2,εα could be deformed into T1,c′ε lnε−1 ×

M
k2
εα,2 ∪ M

k1
εα,1 × T2,c′ε lnε−1 . This is a contradiction to Proposition B.2, since

H∗(Mi,εα ,Ti,c′ε lnε−1) 
= 0, i = 1,2. So we have completed the proof of Theorem
1.4(i). Using Proposition B.4, we can prove Theorem 1.4(ii) in a similar way.
Case 3. Suppose that M1 is a minimum set and M2 is a maximum set. We only
consider the case that M1 has nontrivial topology. Let

c′
ε,1 = εN

2∑
i=1

V
p/(p−2)−N/2
Mi

kiA−T εN+αh,

c′
ε,2 = εN

(
2∑

i=1

V
p/(p−2)−N/2
Mi

kiA+η

)
.

(5.7)

Denote

�′
εα = �1,εα ×�2,δ, Kc = {x : x ∈ �′

εα ,K(x) ≤ c
}
, (5.8)

where α ∈ (0,1) is a fixed constant close to 1.
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From (5.3), we have K(x) < c′
ε,1 for x ∈ �1,εα ×∂�2,δ ∪∂T1,εR ×�2,δ .

We claim that if K(x) ≥ c′
1,ε, then

d
(
xj ,M2

)≤ Cεα, (5.9)∑
1≤i<j≤k1

w

(∣∣xi −xj

∣∣
ε

)
+

∑
k1+1≤i<j≤k1+k2

w

(∣∣xi −xj

∣∣
ε

)
≤ Cεαh. (5.10)

In fact, suppose that K(x) ≥ c′
1,ε. Then we get from (5.3)

∑
1≤i<j≤k1

w

(∣∣xi −xj

∣∣
ε

)
+

∑
k1+1≤i<j≤k1+k2

w

(∣∣xi −xj

∣∣
ε

)

+
k1+k2∑

j=k1+1

(
VM2−V

(
xj

))+O


 k1+k2∑

j=k1+1

[h]∑
m=1

εmd
(
xj ,M2

)h−m


≤Cεαh.

(5.11)

But by assumption, VM2 −V (xj ) ≥ Cd(xj ,M2)
h. Thus, (5.11) implies (5.9).

Using (5.11) again, we deduce (5.10).
Assume that x1 ∈ ∂M1,εα and K(x) ≥ c′

1,ε. Similar to Lemma 3.1, using
(5.9) and (5.10), we can prove ∂K(x)/∂n > 0. So we conclude that if K(x) has
no critical point in Kcε,2 \Kcε,1 , then Kcε,2 can be deformed into Kcε,1 .

It is easy to check

Kcε,2 = �′
εα ,

�1,εα ×∂�2,δ ∪(T1,c′ε lnε−1 \T1,εR

)×�2,δ ⊂ Kcε,1 .
(5.12)

On the other hand, if K(x) ≤ c′
1,ε, then

∑
1≤i<j≤k1

w

(∣∣xi −xj

∣∣
ε

)
+

∑
k1+1≤i<j≤k1+k2

w

(∣∣xi −xj

∣∣
ε

)

+
k1+k2∑

j=k1+1

(
VM2 −V

(
xj

))+O


 k1+k2∑

j=k1+1

εmd
(
xj ,M2

)h−m


≥ cεαh,

(5.13)

which implies that

∑
1≤i<j≤k1

w

(∣∣xi −xj

∣∣
ε

)
+

∑
k1+1≤i<j≤k1+k2

w

(∣∣xi −xj

∣∣
ε

)

+C

k1+k2∑
j=k1+1

d
(
xj ,M2

)h ≥ cεαh.

(5.14)
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Thus, we obtain

Kcε,1 ⊂ A =: (T1,Cε lnε−1 \T1,εR

)×�2,δ ∪�1,εα ×B, (5.15)

where

B = {x′ = (xk1+1, . . . ,xk1+k2

) ∈ �2,δ : d(xj ,M2
)≥ c′εα, for some j

}
∪(T2,Cε lnε−1 \T2,εR

)
.

(5.16)

But A can be deformed into �1,εα ×∂�2,δ ∪∂T1,εR ×�2,δ , so we see that �′
εα

can be deformed into �1,εα ×∂�2,δ ∪∂T1,εR ×�2,δ . But H∗(�1,εα ,∂T1,εR) 
= 0,
H∗(�2,δ,∂�2,δ) 
= 0. Thus we get a contradiction. �

Remark 5.1. If both M1 and M2 are local maximum sets of V (y), using the
same technique as that in Section 4, we see that the number of the solutions
with ki peaks near Mi,ki ≥ 2, i = 1,2, is at least

CatA1,k1×A2,k2

(
A1,k1 ×A2,k2

)
, (5.17)

where

Al,k1 =
(

Ml,γ ×·· ·×Ml,γ︸ ︷︷ ︸
ki

\
⋃
i 
=j

{∣∣xi −xj

∣∣< d
})

/σkl
, l = 1,2. (5.18)

We have CatA×B(A×B) ≥ cuplength(A×B)+1. On the other hand, it follows
from the Künneth’s formula that cuplength(A × B) ≥ cuplength(A) +
cuplength(B). (We stress here that all the homologies in this paper are with
Z2-coefficients.) Moreover, by the estimates in Appendix C, we have
cuplength(Ai,ki

) ≥ N − 1. Thus we see that (1.1) has at least 2N − 1 differ-
ent solutions with ki peaks near Mi , i = 1,2. Similarly, if M1, . . . ,Ml are dis-
joint connected compact local maximum sets of V (x), then the number of the
solutions with kj peaks near Mj , kj ≥ 2, is at least l(N −1)+1.

Remark 5.2. Suppose that M is a connected compact local minimum set of
V (x). Using a similar technique as that in Section 4, we can prove that if M has
nontrivial reduced homology, then the number of the k-peak solutions with all
the peaks near M is at least CatAk

(Ak,∂Td/σk), where Td = ∪i 
=j {|xi −xj | ≤
d, xi,xj ∈ Mγ } and d > 0 is a small constant.
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Appendices

A. Basic estimates

Lemma A.1. There is

I
(
Uε,z,V̄

)= εN V̄ p/(p−2)−N/2A+εN
(
V (z)− V̄

)
V̄ 2/(p−2)−N/2B

+εNO

( [h]∑
m=1

∣∣DmV (z)
∣∣εm +ε[h]+1

)
,

(A.1)

where A = (1/2−1/p)
∫
RN wp and B = (1/2)

∫
RN w2.

Proof. First, noting that Uε,z,V̄ = V̄ 1/(p−2)w(V̄ 1/2((y −z)/ε)), we have

I
(
Uε,z,V̄

)= εN V̄ p/(p−2)−N/2A

+ 1

2

∫
RN

(
V (z)− V̄

)
U2

ε,z + 1

2

∫
RN

(
V (y)−V (z)

)
U2

ε,z.
(A.2)

But

|V (y)−V (z)| = O

( [h]∑
m=1

|y −z|m∣∣DmV (z)
∣∣+ε[h]+1

)
, (A.3)

and thus

∫
RN

(
V (y)−V (z)

)
U2

ε,z = εNO

( [h]∑
m=1

∣∣DmV (z)
∣∣εm +ε[h]+1

)
. (A.4)

So the result follows from (A.2) and (A.4). �

Lemma A.2. The following holds

I


 k∑

j=1

Uε,zj ,Vj


=A

k∑
j=1

εNV
p/(p−2)−N/2
j

+B

k∑
j=1

εN
(
V
(
zj

)−Vj

)
V

2/(p−2)−N/2
j

−
k−1∑
i=1

∫
RN

Uε,zi ,Vi


 k∑

j=i+1

Uε,zj ,Vj


p−1
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+εNO


 k∑

j=1

(∣∣V (zj

)−Vj

∣∣2+ [h]∑
m=1

∣∣DmV
(
zj

)∣∣εm

)
+ε[h]+1




+εNO


∑

i 
=j

w1+τ

(∣∣zi −zj

∣∣
ε

) .

(A.5)

Proof. We have

I


 k∑

j=1

Uε,zj ,Vj


=

k∑
j=1

I
(
Uε,zj ,Vj

)+ 1

2

∑
i 
=j

∫
RN

(
V (y)−Vj

)
Uε,zi ,Vi

Uε,zj ,Vj

+
∑
i 
=j

∫
RN

U
p−1
ε,zi ,Vi

Uε,zj ,Vj

+ 1

p

∫
RN




 k∑

j=1

Uε,zj ,Vj


p

−
k∑

j=1

U
p
ε,zj ,Vj


 .

(A.6)

On the other hand, we also have∑
i 
=j

∫
RN

(
V (y)−V

(
zj

))
Uε,zi ,Vi

Uε,zj ,Vj

=O

(
εN

(∣∣V (zj

)−Vj

∣∣+ [h]∑
m=1

∣∣DmV
(
zj

)∣∣εm+ε[h]+1
)∑

i 
=j

w

(∣∣zi−zj

∣∣
ε

))
,

(A.7)∫
RN




 k∑

j=1

Uε,zj ,Vj


p

−
k∑

j=1

U
p
ε,zj ,Vj




= p
∑
i 
=j

∫
RN

U
p−1
ε,zi ,Vi

Uε,zj ,Vj
+p

k−1∑
i=1

∫
RN

Uε,zi ,Vi


 k∑

j=i+1

Uε,zj ,Vj


p−1

+εNO


∑

i 
=j

w1+τ

(∣∣zi −zj

∣∣
ε

) .

(A.8)

Combining (A.6), (A.7), (A.8), and Lemma A.1, we get the desired estimate.
�
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Lemma A.3. For any v ∈ Eε,x,k ,

∣∣∣∣∣∣
k∑

j=1

∫
RN

(
V (y)−Vj

)
Uε,xj ,Vj

v

∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫

RN


 k∑

j=1

U
p−1
ε,xj ,Vj

−

 k∑

j=1

Uε,xj ,Vj


p−1


v

∣∣∣∣∣∣∣
= O


εN/2


 k∑

j=1

(∣∣V (xj

)−Vj

∣∣+ [h]∑
m=1

∣∣DmV
(
xj

)∣∣εm

)
+ε[h]+1




‖v‖ε

+O

(
εN/2

∑
i 
=j

w(1+τ)/2
(∣∣xi −xj

∣∣
ε

))
‖v‖ε,

∣∣∣∣∣∣
k∑

j=1

∫
RN

(
V (y)−V

(
xj

))
Uε,xj ,Vj

Uε,xi ,Vi

∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
∫

RN


 k∑

j=1

U
p−1
ε,xj ,Vj

−

 k∑

j=1

Uε,xj ,Vj


p−1


Uε,xi

∣∣∣∣∣∣∣
= O


εN


 k∑

j=1

(∣∣V (xj

)−Vj

∣∣+ [h]∑
m=1

∣∣DmV
(
xj

)∣∣εm

)
+ε[h]+1






+O

(
εN
∑
i 
=j

w(1+τ)/2
(∣∣xi −xj

∣∣
ε

))
.

(A.9)

Proof. The proof of this lemma is similar to that of Lemmas A.1 and A.2, and
thus we omit the details. �

Lemma A.4. Let (αε(x),vε(x)) be the map obtained in Proposition 2.1. Then

∂J

∂xil

= c1ε
NDlV

(
x1
)−(p−1)

∑
j 
=i

∫
�

U
p−2
ε,xi ,Vi

Uε,xj ,Vj

∂Uε,x1,V1

∂x1l

+O

(
εN−1

∑
i 
=j

e−(1+τ)(|xi−xj |/ε)
)
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+O

(
εN−1

k∑
j=1

[h]∑
m=2

∣∣DmV
(
xj

)∣∣εm +εN+h

)

+O

(
εN−1

k∑
j=1

(∣∣V (xj

)−Vj

∣∣2 +
[h]∑

m=1

∣∣DmV
(
xj

)∣∣2ε2m

))
,

(A.10)

where c1 > 0 is a constant and

〈
∂J

∂v
,Uε,xi ,Vi

〉
=O

(
εN
∑
i 
=j

e−(1+τ)(|xi−xj |/ε) +εN+h

)

+O

(
εN

k∑
j=1

(∣∣V (xj

)−Vj

∣∣+ [h]∑
m=1

∣∣DmV
(
xj

)∣∣εm

))
.

(A.11)

Proof. We have

∂J

∂xil

=
k∑

j=1

∫
RN

(
V (y)−Vj

)
Uε,xj ,Vj

∂Uε,xi ,Vi

∂xil

+
k∑

j=1

∫
RN

U
p−1
ε,xj ,Vj

∂Uε,xi ,Vi

∂xil

−
∫

RN


 k∑

j=1

Uε,xj ,Vj


p−1

∂Uε,xi ,Vi

∂xil

+O

(
εN−1

(∑
i 
=j

e−(1+τ)(|xi−xj |/ε) +ε2([h]+1)

))

+O

(
εN−1

k∑
j=1

(∣∣V (xj

)−Vj

∣∣2 +
[h]∑

m=1

∣∣DmV
(
xj

)∣∣2ε2m

))

=
∫

RN

V (y)Uε,xi ,Vi

∂Uε,xi ,Vi

∂xil

−(p−1)

k∑
j=2

∫
�

U
p−2
ε,xi ,Vi

Uε,xj ,Vj

∂Uε,xi ,Vi

∂xil

+O

(
εN−1

(∑
i 
=j

e−(1+τ)(|xi−xj |/ε) +ε2([h]+1)

))

+O

(
εN−1

k∑
j=1

(∣∣V (xj

)−Vj

∣∣2 +
[h]∑

m=1

∣∣DmV
(
xj

)∣∣2ε2m

))
.

(A.12)
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But∫
RN

V (y)Uε,xi ,Vi

∂Uε,xi ,Vi

∂xil

= 1

2

∫
RN

∂V (y)

∂yl

U2
ε,xi ,Vi

= c1ε
NDlV

(
xi

)
+O

(
εN−1

k∑
j=1

[h]∑
m=2

∣∣DmV
(
xj

)∣∣εm +εN+[h]+1
)

.

(A.13)

So we see that (A.10) follows from (A.12) and (A.13). Equation (A.11) can be
proved similarly. �

B. Some topological results

In this section, we give some topological results needed in the proof of our main
results. First, we recall the definition for the relative category (see [18]).

Definition B.1. Let Y and A be closed subsets of a topological space X. Then
CatX(A,Y) is the least integer k such that A = ∪k

j=0Aj , where, for 0 ≤ j ≤ k,
Aj is closed and there exists hj ∈ C([0,1]×Aj ,X) such that

(a) hj (0,x) = x for x ∈ Aj , 0 ≤ j ≤ k,
(b) h0(1,x) ∈ Y for x ∈ A0 and h0(t,x) = x for x ∈ A0 ∩Y and t ∈ [0,1],
(c) hj (1,x) = xj for x ∈ Aj and some xj ∈ X, 1 ≤ j ≤ k.

From the definition, we see that CatX(A,Y ) ≥ 1 if A cannot be deformed
into a subset of Y within X.

From now on, we assume that all the sets appearing in the propositions of
this section are subsets in R

m for some positive integer m.

Proposition B.2. Suppose that there are positive integers p1 and q1 such that
Hp1(A,A′) 
= 0, Hq1(B,B ′) 
= 0. Then

Ht

(
A×B,A′ ×B ∪A×B ′) 
= 0 (B.1)

for some positive integer t . In particular, A×B cannot be deformed into A′ ×
B ∪A×B ′.

Proof. Choose the largest positive integers p and q satisfying Hp(A,A′) 
= 0
and Hq(B,B ′) 
= 0. Then it follows from Künneth formula [17] that

Hp+q

(
A×B,A′ ×B ∪A×B ′)=Hp

(
A,A′)⊗Hq

(
B,B ′)⊕ other group. (B.2)

So, H∗(A×B,A′ ×B ∪A×B ′) 
= 0. �
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Proposition B.3. Let M be a compact n-dimensional manifold with boundary.
Then Hn(M,∂M) 
= 0.

Proof. This result is well known. See, for example, [20]. �

Proposition B.4. Suppose that M has nontrivial reduced homology. Then
H∗(Mk,T ) 
= 0, where T = ∪i 
=j {(x1, . . . ,xk) ∈ Mk : xi = xj }.

Proof. For the proof of Proposition B.4, see [14]. �

Proposition B.5. We have

cuplength
(
Mγ ×Mγ ,T2

)≥ 2cuplength
(
Mγ

)−1, (B.3)

where T2 = {x = (x1,x2) ∈ M2
γ : |x1 −x2| ≤ d} and d > 0 is a small constant.

As a result,

CatMγ ×Mγ

(
Mγ ×Mγ ,T2

)≥ 2cuplength
(
Mγ

)
. (B.4)

Proof. For the proof of Proposition B.5, see [14]. �

C. Some estimates of the cuplength

Let B(RN,k) be the configuration space of k distinct unordered points of R
N

defined as follows:

B
(
R

N,k
)= F

(
R

N,k
)
/σk, (C.1)

where

F
(
R

N,k
)= R

N ×·· ·×R
N︸ ︷︷ ︸

k

\
⋃
i 
=j

{(
x1, . . . ,xk

) ∈ R
kN : xi = xj

}
. (C.2)

It is not difficult to check that both F(RN,k) and B(RN,k) are path connected if
N ≥ 2. The geometry of such configuration spaces has been extensively studied
by topologists in recent years. For sophisticated techniques in this respect, the
readers can refer to [9]. In this section, we give a lower bound of the category
of B(RN,k), obtained by elementary considerations of the cuplength, relying
on the fact that the symmetric group σk contains the alternating group σ̂k as a
normal subgroup of index 2. The main result of this section is the following.

Proposition C.1. If k = 2 or 3, cuplength(B(RN,k)) ≥ N − 1. If k ≥ 4,
cuplength(B(RN,k)) ≥ 2t − 1, where t is the smallest positive integer satis-
fying 2t > N −1.

The proof of Proposition C.1 for k = 2 is quite easy. In fact, since B(RN,2)

has the same homotopy type as the real projective space RP N−1, we see that
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cuplength(B(RN,2)) = cuplength(RP N−1) = N −1. To prove Proposition C.1
for k ≥ 3, we need to do more work.

First, we recall a general fact in algebraic topology. A two-to-one covering
map p : B̃ → B between connected spaces B̃ and B gives rise naturally to a
1-dimensional cohomology class θp ∈ H 1(B). One elegant way to describe θp

is that for any connected B, H 1(B) is identifiable with the group of homomor-
phisms from the fundamental group π1(B) to Z2. Another way of description
is that θp is represented by the cocycle whose value on a loop ω in B is zero or
one according to whether or not ω is the p-image of a loop ω̃ in B̃.

For later purpose, we consider here two examples.
Let p1 : SN−1 → RP N−1 be the double covering from a sphere to a real

projective space of dimension N − 1. In this case, θp1 is the generator of the
group H 1(RP N−1) = Z2. We know that the cuplength of θp1 is N −1, that is,

θp1 ∪·· ·∪θp1︸ ︷︷ ︸
l

= 0 (C.3)

if and only if l ≥ N . See, for example, [17].
For a further example consider B̃ = SN−1 ×T SN−1, obtained from SN−1 ×

SN−1 by identifying each pair (x1,x2) with its opposite (−x1,−x2). There is
then a double covering map q : B̃ → B, where B = RP N−1 × RP N−1, q is
defined via q(x1,x2) = (p1(x1),p2(x2)) and p1,p2 are the double coverings
for the two individual factors, respectively. Now

H 1(B) = H 1(
RP N−1)⊕H 1(

RP N−1)= Z2 ⊕Z2, (C.4)

with generators denoted by θp1 ⊗1 and 1⊗θp2 , respectively. Because of sym-
metry, one clearly has

θq = θp1 ⊗1+1⊗θp2 (C.5)

in this circumstance.
Consider the iterated cup product

θ l
q = θq ∪·· ·∪θq︸ ︷︷ ︸

l

. (C.6)

We have the following lemma.

Lemma C.2. The iterated cup product θ l
q is zero if and only if l ≥ 2t , where 2t

is the smallest power of 2 strictly exceeding N −1.

Proof. Remember that we are working mod 2 since Z2 is used as coefficient
group for cohomology.

If l = 2t , then

θ l
q = (θp1 ⊗1+1⊗θp2

)2t = θ2t

p1
⊗1+1⊗θ2t

p2
= 0, (C.7)

since 2t ≥ N .
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If l < 2t , write

l = 2β1 +2β2 +·· ·+2βs (C.8)

with t > β1 > β2 > · · · > βs ≥ 0. Let l1 = 2β1 and l2 = l − l1. Then l = l1 + l2
with l1 < N , l2 < N , and

(
l
l1

)
is odd. Note that (θp1 ⊗ 1 + 1 ⊗ θp2)

l contains,
upon binomial expansion, the nonzero term(

l

l1

)(
θp1 ⊗1

)l1 ∪(1⊗θp2

)l2 =
(

l

l1

)
θ l1
p1

⊗θ l2
p2

, (C.9)

which lies in Hl1(RP N−1)⊗Hl2(RP N−1), a direct summand of Hl(RP N−1×
RP N−1). Thus θ l

q 
= 0. �

We are now ready to prove Proposition C.1.

Proof of Proposition C.1. Define B̃(RN,k) = F(RN,k)/σ̂k , where σ̂k is the
alternating group.

Suppose that k ≥ 4. First, we consider the case k = 2h, where h is even.
Construct a continuous map

f̂ : SN−1 ×SN−1 −→ B̃
(
R

N,k
)
, (C.10)

by sending (a,b) in SN−1 ×SN−1 to the orbit of(
a,−a,2a,−2a, . . . , (h−1)a,−(h−1)a,hb,−hb

)
(C.11)

under the σ̂k-action on F(RN,k). It can be easily checked that because h is
even, f̂ sends (−a,−b) to the same σ̂k-orbit. Therefore, it induces a map
f̃ : SN−1 ×T SN−1 → B̃(RN,k). Bringing in the double coverings p and q,
we form the following commutative diagram:

SN−1 ×T SN−1
f̂ ��

q

��

B̃
(
R

N,k
)

p

��
RP N−1 ×RP N−1 F �� B

(
R

N,k
)
,

(C.12)

where F is a uniquely induced map. Note once more that for any point u in
RP N−1 ×RP N−1 and its image point v = F(u) in B(RN,k), the restriction of
f̃ maps q−1(u) to p−1(v) bijectively. By the natural way θp and θq arise from
their respective double coverings, we see that for the induced homomorphism

F ∗ : H 1(B(RN,k
))−→ H 1(

RP N−1 ×RP N−1), (C.13)

F ∗(θp) naturally equals θq .
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By Lemma C.2, θ l
q 
= 0 if l is less than 2t , the smallest power of 2 exceeding

N −1. Since F ∗ is a homomorphism of cohomology rings, the same must be
true for θ l

p. Thus we have exhibited in B(RN,k) a nonzero cupproduct of length
2t −1, and our claim follows.

If k = 2h+ j , where h is even and 1 ≤ j ≤ 3, we can use the same proof
by modifying the map f̂ into the one which sends (a,b) and (−a,−b) to the
σ̂k-orbit of(

a,−a,2a,−2a, . . . , (h−1)a,−(h−1)a,hb,−hb,c1, . . . ,cj

)
(C.14)

instead, where c1, . . . ,cj are j distinct points fixed in R
N , each having distance

greater than h+1 from the origin.
Suppose that k = 3. Define a map f̂ : SN−1 → B̃(RN,3) by sending a ∈

SN−1 to the orbit of (a,−a,0) in F(RN,3) under the σ̂3-action. We have the
following commutative diagram:

SN−1
f̂ ��

p1

��

B̃
(
R

N,k
)

p

��

RP N−1 F �� B
(
R

N,k
)
,

(C.15)

where F is a uniquely induced map. Since the nonzero element θp1∈H 1(RP N−1)

has cuplength N −1 (see the first example above), we can prove in a similar way
as above that θN−1

p 
=0. So we have proved Proposition C.1 for the case k=3. As
we mentioned before, the Proposition C.1 is quite easy to prove if k = 2. �

As a direct consequence of Proposition C.1, we have the following proposi-
tion.

Proposition C.3. If k ≥ 4, then CatAk
(Ak) ≥ 2t , where t is the smallest positive

integer satisfying 2t > N −1. If k = 2,3, then CatAk
(Ak) ≥ N . Here

Ak =
(

Mγ ×·· ·×Mγ︸ ︷︷ ︸
k

\
⋃
i 
=j

{∣∣xi −xj

∣∣< d
})

/σk. (C.16)

Proof. Let x0 ∈ Mγ and let δ > 0 be so small that Bδ(x0) ⊂ Mγ . We also let

Vk =
(

Bδ

(
x0
)×·· ·×Bδ

(
x0
)︸ ︷︷ ︸

k

\
⋃
i 
=j

{∣∣xi −xj

∣∣≤ d
})

/σk, (C.17)

then B(RN,k) and Vk are homotopically equivalent. So

CatAk
Ak ≥ CatB(RN ,k)

(
Vk

)= CatB(RN ,k)

(
B
(
R

N,k
))

≥ cuplength
(
B
(
R

N,k
))+1.

(C.18)
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So Proposition C.3 follows from Proposition C.1. �
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