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We prove new existence results for linearly coupled system of wave and beam
equations. The main concept is the matrix spectrum which is a natural extension
of standard definition. Using invariant subspaces together with degree theoretic
argument we obtain information about the range of the abstract operator.

1. Introduction

We consider a system of wave and beam operators with linear coupling and
damping having the form

∂2u

∂t2
− ∂2u

∂x2
−a11u−a12v−g1(t,x,u,v) = h1(t,x) in �,

∂2v

∂t2
+ ∂4v

∂x4
+β

∂v

∂t
−a21u−a22v−g2(t,x,u,v) = h2(t,x) in �,

u(t,0) = u(t,π) = 0, t ∈]0,2π [,
v(t,0) = v(t,π) = vxx(t,0) = vxx(t,π) = 0, t ∈]0,2π [,

u(·,x),v(·,x) are 2π -periodic in t,

(1.1)

where h = (h1,h2) is a given function in L2(�;R2) with � =]0,2π [×]0,π [,
β > 0, the function g(t,x,s) = (g1(t,x,s),g2(t,x,s)) from �×R2 to R2 is 2π -
periodic in t , measurable in (t,x) for each s ∈ R2 and continuous in s for almost
all (t,x) ∈ �. Moreover, we assume that g(t,x, ·) has at most linear growth.
With suitable nonlinearity g (1.1) provides a reasonable model for a suspension
bridge, where the main cable is described as a vibrating string and the road bed
as a vibrating beam.
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We will study the existence of weak solutions and therefore it is relevant to
transform system (1.1) into the operator equation

�u−�u−�(u) = h, u ∈ D(�) (1.2)

in � = [L2(�)]2, where � is the Nemytskii operator generated by g, � is the
constant multiplication operator induced by the coupling matrix A := (alk) and
� : D(�) ⊂ � → � is the abstract realization of the linear differential operator.
We define the matrix spectrum of � as the set

σM(�) = {
A ∈ R2×2 | (�−�)−1 : � −→ � � or is not bounded

}
. (1.3)

The set σM(�) is closed in R2×2 and hence the “resolving set” of � is divided
into open components. We will apply the extension of the Leray-Schauder degree
introduced by Berkovits and Mustonen [4] for a class of mappings related to our
model problem. If A /∈ σM(�), we can use the homotopy argument to obtain
nonresonance results for (1.2) (see [8]). In this note we deal with the resonance
case A ∈ σM(�). Using suitable reduction to invariant subspaces we can find
solution for (1.2), provided � and h satisfy some auxiliary symmetry conditions.
Indeed, if the coupled wave-beam operator � −� is completely reduced by a
closed linear subspace V and N(V ) ⊂ V , any solution of the reduced equation

�|V u−�|V u−�|V (u) = h, u ∈ D(�)∩V, h ∈ V, (1.4)

is also a weak solution for the original equation (1.2). It is possible that A ∈
σM(�) but �|V −�|V is injective in the subspace V and hence we can apply
the known nonresonance results for the reduced equation (1.4).

The method of invariant subspaces is widely used in the study of ordinary
differential equations and for a single wave equation by Coron, Vejvoda, among
others. (See [5, 9, 11, 15].)

Problem (1.1) has been studied mainly in the case of gradient type nonlin-
earities � with no damping, that is, with β = 0. We refer the reader to the
papers of Brezis and Nirenberg [10], Amann [1], Mawhin [13, 14], Fonda and
Mawhin [12], where also a survey on the recent results and relevant references
can be found. For previous results on the existence of the periodic solutions of
the systems of wave equations we also refer to [2, 6, 7].

2. Prerequisites

Let H be a real separable Hilbert space with inner product 〈·, ·〉 and correspond-
ing norm ‖·‖. We recall some basic definitions. A mapping F : H → H is

• bounded, if it takes any bounded set into a bounded set,
• demicontinuous, if uj → u (norm convergence) implies F(uj ) ⇀ F(u)

(weak convergence),
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• monotone, if 〈F(u)−F(v),u−v〉 ≥ 0 for all u,v ∈ H ,
• strongly monotone, if there exists α > 0 such that 〈F(u) − F(v),

u−v〉 ≥ α‖u−v‖2 for all u,v ∈ H ,
• of class (S+), if for any sequence with uj ⇀ u, lim sup〈F(uj ),

uj −u〉 ≤ 0, it follows that uj → u,
• quasimonotone, if for any sequence uj ⇀u, lim sup〈F(uj ),uj −u〉≥ 0.

The class of mappings considered in this paper is given in the following
definitions.

Definition 2.1. A linear densely defined operator L : D(L) ⊂ H → H is ad-
missible in H , if it is closed, normal, ImL = (KerL)⊥ and the inverse K of the
restriction of L to ImL∩D(L) is compact on ImL.

Denote by P and Q = I −P the orthogonal projections to KerL and ImL =
(KerL)⊥, respectively.

Definition 2.2. A bounded, demicontinuous map N : H → H is an admissible
perturbation in H , if there exists a bounded demicontinuous map S : H → H

of class (S+) such that PN = PS.

We are interested in the case where L is not selfadjoint and therefore we
include the complex spectrum of L into consideration. We recall that the com-
plexification HC = H + iH of H has the usual linear structure and inner prod-
uct 〈·, ·〉C induced by H . For each w = u + iv ∈ HC it is natural to denote
w̄ = u− iv. We define the complex linear operator LC : D(LC) ⊂ HC → HC

by setting D(LC) = D(L)+ iD(L) and LC(u+ iv) = Lu+ iLv for all u+ iv ∈
D(LC). It is clear that ImLC = (KerLC)⊥, LC is normal and its partial inverse
KC is compact. Consequently, LC has a pure point spectrum σC(L) = {µj }j∈Z

with the corresponding orthonormal basis {φj }j∈Z of HC such that

LCφj = µjφj ∀j ∈ Z. (2.1)

Note that for any complex eigenvalue µj = αj + iβj also its complex conjugate
µ̄j = αj − iβj is an eigenvalue with corresponding eigenvector φ̄j . For each
u ∈ D(L) we have the spectral representation

Lu =
∑
j∈Z

µj

〈
u,φj

〉
C
φj . (2.2)

For any map N : H → H the equation

Lu−N(u) = 0, u ∈ D(L), (2.3)

can be written equivalently as

Q
(
u−KQN(u)

)+PN(u) = 0, u ∈ H. (2.4)
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The equivalence of (2.3) and (2.4) is due to the fact that KQ−P is the right
inverse of L−P . If N is bounded, demicontinuous and of class (S+), then there
exists a topological degree for mappings of the form F = Q(I + C) + PN ,
where C is compact (see [4]). In fact, it is sufficient that N is admissible, that
is, there exists an auxiliary bounded demicontinuous map S : H → H of class
(S+) such that PN = PS. This observation is quite obvious, since only the
P -component of N appears in F . However, it has some interesting implications
as we will see later on (see also [3]). The degree theory given in [4] is a unique
extension of the classical Leray-Schauder degree. It is single-valued and has the
usual properties of degree, such as additivity and invariance under homotopies.
Let the corresponding degree function be dH . In order to simplify our notations
we define a further degree function “degH ” by setting

degH (L−N,G,0) ≡ dH

(
Q(I −KQN)+PN,G,0

)
(2.5)

for any open set G ⊂ H such that 0 /∈ (L − N)(∂G ∩ D(L)). By the term
reference map we refer to any linear injection L−N0 with L and N0 admissible.
For a reference map we have (see [4])

degH

(
L−N0,G,y

) 
= 0 for any y ∈ (
L−N0

)(
D(L)∩G

)
. (2.6)

3. On systems

Let H be a real separable Hilbert space and denote � = Hn with n ≥ 2. We
assume that Lk : D(Lk) ⊂ H → H is a linear densely defined closed, normal
operator with ImLk = (KerLk)

⊥ for each k = 1,2, . . . ,n. The inverse Kk of the
restriction of each Lk to ImLk ∩D(Lk) is a bounded linear operator on ImLk .
We shall further assume that the inverse Kk of each Lk is compact and hence
each Lk is admissible. We define the diagonal operator � : D(�) ⊂ � → �
by setting

�u = (
L1u1,L2u2, . . . ,Lnun

)T
, u = (

u1,u2, . . . ,un

)T ∈ D(�), (3.1)

where D(�) = D(L1)×D(L2)×·· ·×D(Ln). Now the complexification �C =
�+ i� = (HC)n and � as well as �C inherits the properties of the component
operators. We shall use the notations 〈·, ·〉 and ‖ · ‖ for the inner product and
norm in any real Hilbert space and the subscript “C” whenever the norm, inner
product or spectrum is complex. For simplicity we shall frequently use the same
symbol for an operator and its complexification. The inverse � = �−1 : Im � →
Im � is compact with �u = (K1u1, . . . ,Knun)

T for all u = (u1,u2, . . . ,un)
T ∈

Im �. We denote by � and � the orthogonal projections onto Ker � and Im �,
respectively. Let � : � → � be a (possibly nonlinear) bounded demicontinuous
map. As described in Section 2, a topological degree is available for maps of
the form �−�, where � is admissible and � is any admissible perturbation.
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Consider first linear maps of the following type. Let A = (alk) be a real
n×n-matrix and � : � → � the constant multiplication operator induced by
A, that is, for any u = (u1,u2, . . . ,un)

T ∈ �

�u = w = (
w1,w2, . . . ,wn

)T
, (3.2)

with wl = ∑n
k=1 alkuk , l = 1,2, . . . ,n. Clearly σ(�) = σ(A), a real point

spectrum which may be empty if n is even. Similarly σC(�) = σC(A) for the
complex spectra. If the matrix A is strictly positive, it is not hard to prove that

〈�u,u〉 ≥ α‖u‖2 ∀u ∈ �, (3.3)

where α = min{(Ax,x)Rn; |x|Rn = 1} is positive. Hence the operator � is of
class (S+). In order to tackle more specific situations we assume that dim KerLk

= ∞ for k = 1,2, . . . ,p and dim KerLk < ∞ for k = p + 1, . . . ,n, where
0 ≤ p ≤ n. If p = n we assume that A > 0 and if p = 0, no positivity is needed.
For the general case, we formulate the condition:

(PC) The matrix (alk)
p

l,k=1 is strictly positive.

We have the following useful result adopted from [3].

Lemma 3.1. Assume that 1 ≤ p ≤ n and the positivity condition (PC) holds.
Then there exists a bounded linear operator SA : � → � of class (S+) such
that �SA = ��, that is, � is an admissible linear perturbation.

It is important to realize the meaning of SA; it is only needed to guarantee the
existence of the topological degree. All concrete calculations will be done with
�, not with SA. We shall impose a further “common eigenbasis”-assumption:

(CE) The operators Lk , k = 1,2, . . . ,n, have a common complex eigenbasis
{ψj }j∈
.

Here we can assume that the index set 
 ⊂ Z. We denote the corresponding
complex eigenvalues by {µ(k)

j }j∈
. Hence Lkψj = µ
(k)
j ψj for all j ∈ 
, k =

1,2, . . . ,n. Although assumption (CE) is very restrictive from the general point
of view it can be verified in many applications. It trivially holds in case L1 =
L2 = ·· · = Ln. For any u = (u1,u2, . . . ,un)

T ∈ � we denote �uj =∑n
k=1〈uk,ψj 〉Cek , where {ek} is the standard basis of Rn. Hence we can write

u =
∑
j∈


�ujψj , ‖u‖2 =
∑
j∈


∥∥�uj

∥∥2
Cn . (3.4)

It is easy to see that for any u ∈ D(�) we have a quasidiagonal representation

(�−�)(u) =
∑
j∈


[(
Mj −A

)�uj

]
ψj , (3.5)

where Mj = diag(µ
(1)
j ,µ

(2)
j , . . . ,µ

(n)
j ). By (3.5) we get the following result

(cf. [8]).
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Lemma 3.2. Assume (CE). The operator � − � is injective if and only if
det(Mj − A) 
= 0 for all j ∈ 
. Moreover, an injective operator � − � is
onto if and only if supj ‖(Mj −A)−1‖ < ∞.

Note that in case Lk = L for all k = 1,2, . . . ,n, the injectivity condition in
Lemma 3.2 can be written as σC(L)∩σC(A) = ∅. By condition (PC) we get the
following result (cf. [8]).

Lemma 3.3. Assume (PC), that is, the matrix (alk)
p

l,k=1 is strictly positive. If the
operator �−� is injective, then it is bijective.

We get a simple formula for the norm of (�−�)−1.

Lemma 3.4. Assume that (CE) and (PC) hold. Then det(Mj −A) 
= 0 for all
j ∈ Z, if and only if the operator � − � is bijective. Moreover, (� − �)−1 is
bounded and ∥∥(�−�)−1

∥∥ = sup
j

∥∥(
Mj −A

)−1∥∥ < ∞. (3.6)

In general, the operator �−� can be injective without being surjective (cf.
[3]). However, in the special case L1 = L2 = ·· · = Ln, injectivity implies bi-
jectivity without any positivity condition (see [7]). We recall now the concept
of the matrix spectrum introduced in [8]. Given a linear operator � with do-
main and range in � = Hn, we define the matrix resolvent of the operator � as
the set

ρM(�) = {
A ∈ Rn×n | Im(�−�) = �, �−� has a bounded inverse

}
. (3.7)

The matrix spectrum of the operator � is then the set

σM(�) = {
A ∈ Rn×n | A /∈ ρM(�)

}
. (3.8)

It is not hard to prove that the matrix spectrum σM(�) is a closed set in Rn×n

(see [8]). In the particular case where � has the properties given at the begin-
ning of the section, that is, � is an admissible diagonal operator, it is not hard
to prove that Im(�−�) is closed whenever the positivity condition (PC) holds.
Then also the degree theory is available and any invertible operator �−� is a
reference map. Recall that a linear operator � is completely reduced by a closed
linear subspace V ⊂ � if

PV

(
D(�)

) ⊂ D(�), �PV u = PV �u ∀u ∈ D(�), (3.9)

where PV is the orthogonal projection from � onto V . The use of degree theory
in an invariant subspace is justified by the following result.
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Lemma 3.5. Assume that L and N are admissible in H , L is completely reduced
by a closed linear subspace V ⊂ H and N(V ) ⊂ V . Then L|V and N |V are
admissible in V .

Proof. Denote L̃ = L|V and Ñ = N |V . It is easy to verify that L̃ : D(L)∩V →
V is admissible in V and P̃ = PPV = PV P is the orthogonal projection onto
Ker L̃. Since N is admissible, there exists a bounded demicontinuous map S :
H → H of class (S+) with PS = PN . Denote S̃ = PV S|V . Then S̃ : V → V is
a bounded demicontinuous map of class (S+). Moreover, P̃ S̃(u) = PV PS(u) =
PV PN(u) = P̃ Ñ(u) for all u ∈ V . Hence Ñ is admissible in V . �

In the sequel we will need a generalization of the well-known result σ(�) =
σ(�|V )∪σ(�|V ⊥). The concept of the matrix spectrum is defined in the space
Hn and hence it is too narrow to deal with invariant subspaces. Therefore we
define more general “spectrum-like” sets. Indeed, let H be any real separable
Hilbert space and T a linear operator with domain and range in H . Denote

ρBL(T ) = {
A ∈ L(H) | Im(T −A) = H, T −A has a bounded inverse

}
,

σBL(T ) = {
A ∈ L(H) | A /∈ ρBL(T )

}
.

(3.10)
Here “BL” stands for “bounded linear” and L(H) is the space of bounded linear
operators in H. The set σBL(T ) is closed in L(H). We have in analogy with
Lemma 3.3 the following result.

Lemma 3.6. Assume that L : D(L) ⊂ H → H is admissible and S ∈ L(H) is
some admissible linear perturbation. Then S ∈ σBL(L) if and only if L−S is
not injective.

Clearly A ∈ σM(�) if and only if � ∈ σBL(�). Moreover, if � is completely
reduced by a closed subspace V ⊂ �, then the sets σBL(�|V ) and σBL(�|V ⊥)

are well defined. We obtain the following result.

Lemma 3.7. Assume that � and � are admissible and � is a constant multi-
plication operator induced by the matrix A ∈ Rn×n. Assume that both � and �
are completely reduced by a closed subspace V ⊂ Hn. Then

A ∈ σM(�) iff �|V ∈ σBL
(
�|V

)
or �|V ⊥ ∈ σBL

(
�|V ⊥

)
. (3.11)

The straightforward proof of Lemma 3.7 is omitted here. If the maps � and �
are admissible, then it is easy to prove that the “geometric multiplicity” of any
“eigenmatrix” A ∈ σM(�) is finite, that is, dim Ker(� − �) < ∞. Assuming
(CE), that is, the existence of a common complex eigenbasis, we can write
σM(�) = (∪j∈
σj )∪σ∞, where σj = {A ∈ Rn×n | det(Mj −A) = 0}, j ∈ 
,
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and σ∞ = {A ∈ Rn×n | A /∈ ∪j∈
σj , supj ‖(Mj −A)−1‖ = ∞}. Now ∪j∈
σj

corresponds to the usual point spectrum and σ∞ to the continuous spectrum. As
noted above, Lemma 3.3 implies A /∈ σ∞ whenever the positivity condition (PC)
holds for A and � is admissible. By homotopy argument, we get the following
basic existence result. Using the results in [7, 8] together with Lemmas 3.5 and
3.7 we obtain the following result.

Theorem 3.8. Assume that � is admissible, the condition (PC) holds for A ∈
σM(�) and the operators � and � are completely reduced by a closed linear
subspace V ⊂ �. Assume that � : � → � is such that �(V ) ⊂ V and (� +
�)|V is admissible in V . If �|V /∈ σBL(�|V ) and

lim sup
u∈V,‖u‖→∞

∥∥�(u)
∥∥

‖u‖ <
1∥∥(

(�−�)|V
)−1∥∥ , (3.12)

then the equation

�u−�u−�(u) = h, u ∈ D(�)∩V (3.13)

admits at least one solution for any h ∈ V .

4. Wave-beam system

We consider first a linear system of wave and beam equations with linear cou-
pling and damping having the form

∂2u

∂t2
− ∂2u

∂x2
−a11u−a12v = h1(t,x) in �,

∂2v

∂t2
+ ∂4v

∂x4
+β

∂v

∂t
−a21u−a22v = h2(t,x) in �,

u(t,0) = u(t,π) = 0, t ∈]0,2π [,
v(t,0) = v(t,π) = vxx(t,0) = vxx(t,π) = 0, t ∈]0,2π [,

u(·,x),v(·,x) are 2π -periodic in t,

(4.1)

where h = (h1,h2) is a given function in L2(�;R2) with � =]0,2π [×]0,π [
and β > 0. Here, the coupling matrix is

A =
(

a11 a12

a21 a22

)
. (4.2)

Denoting H = L2(�) and φjk(t,x) = (1/π)sin(jx)exp(ikt), (t,x) ∈ �, j ∈
Z+, k ∈ Z, the set {φjk} forms an orthonormal basis in HC. The wave operator
∂tt −∂xx with periodic Dirichlet boundary conditions has in L2(�) the abstract
realization

L1u =
∑
j,k

λ
(1)
jk

〈
u,φjk

〉
C
φjk (4.3)
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with λ
(1)
jk = j2 −k2, j ∈ Z+, k ∈ Z and

D
(
L1

) =
{
u ∈ L2(�) |

∑
j,k

∣∣j2 −k2
∣∣2∣∣〈u,φjk

〉
C

∣∣2
< ∞

}
. (4.4)

Clearly L1 is selfadjoint, KerL1 is infinite-dimensional and L1 has a pure point
spectrum σ(L1) = {λ(1)

jk | j ∈ Z+, k ∈ Z}. Note that the spectrum is unbounded
from below and from above. The beam operator (with damping) ∂tt +∂xxxx +β∂t

has an analogous realization

L2v =
∑
j,k

(
λ

(2)
jk + iβk

)〈
v,φjk

〉
C
φjk, v ∈ D

(
L2

)
, (4.5)

where λ
(2)
jk = j4 −k2, j ∈ Z+, k ∈ Z. If β > 0, then the operator L2 is normal,

KerL2 = {0} and σC(L2) = {j4 − k2 + iβk | j ∈ Z+, k ∈ Z}. In case β = 0
the operator L2 is selfadjoint with infinite-dimensional kernel. We will always
assume that β > 0. The diagonal operator � = diag(L1,L2) is defined on
D(�) = D(L1)×D(L2) ⊂ � = H 2. Then � is normal with compact (partial)
inverse from Im � into Im �. A vector w = (u,v)T ∈ [L2(�)]2 is a weak
solution of the wave-beam system (4.1) if and only if it is a solution of the
operator equation

�w−�w = h, w = (u,v)T ∈ D(�) ⊂ � = H 2, (4.6)

where h = (h1,h2)
T ∈ �. Denote Mjk = diag(λ

(1)
jk ,λ

(2)
jk + iβk). The operator

�−� is injective if and only if

det
(
Mjk −A

) = det

(
λ

(1)
jk −a11 −a12

−a21 λ
(2)
jk + iβk−a22

)

= 0 (4.7)

for all j ∈ Z+, k ∈ Z. Moreover, assuming the positivity condition (PC), which
in this case means that a11 > 0, the operator � is admissible and by Lemma 3.3
the injectivity of � − � implies its surjectivity and hence � − � is a refer-
ence map. We now study more closely the case A ∈ σM(�). If a11 > 0, then
dim Ker(�−�) < ∞. In fact, for a wave-beam system (with β > 0) it is easy to
see that dim Ker(�−�) = ∞ if and only if a11 = 0 and a12a21 = 0. Note that
the condition det(Mj0 −A) = 0 is equivalent to j6 −a11j

4 −a22j
2 +detA = 0.

Moreover, det(Mjk −A) = 0, k 
= 0, only in the special case, where a11 = λ
(1)
jk

and a12a21 = 0.

5. Existence results

Consider now the linearly coupled system (1.1) of wave and beam equations
with some nonlinear perturbation. Indeed, let the given function g(t,x,s) =
(g1(t,x,s),g2(t,x,s)) from �×R2 to R2 be 2π -periodic in t , measurable in
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(t,x) for each s ∈ R2 and continuous in s for a. a. (t,x) ∈ �. Assume that g

satisfies the growth condition∣∣g(t,x,s)
∣∣ ≤ c0|s|+k0(t,x) (5.1)

for all s ∈ R2 and a.a. (t,x) ∈ � with some constant c0 ≥ 0 and k0 ∈ L2(�).
We consider a system of a wave equation and a beam equation with linear
coupling and damping with β > 0 and a11 > 0. Assume that A ∈ σM(�). Then
dim Ker(�−�) < ∞. Denote 
0 = {(j,k) ∈ Z+ ×Z | det(Mjk −A) = 0} and

WA = spC

{
ψj,kel | l = 1,2, (j,k) ∈ 
0

}∩�. (5.2)

Then Ker(�−�) ⊂ WA and the operators � and � are completely reduced by
the finite-dimensional subspace WA. In order to apply Theorem 3.8, the main
problem is to find natural conditions ensuring the condition “�(V ) ⊂ V ” in
Theorem 3.8. We will deal with three separate cases: g = g(t, s), g = g(x,s),
and g = g(s).

(A) Assume that β > 0, a11 > 0, � + � is admissible, A ∈ σM(�), g =
g(t, s), that is, g is independent of x, and g(t, s) is odd in s. For any r ≥ 2,
r ∈ Z+ we define the space

Vr =
{
u ∈ � | u

(
t,x + 2π

r

)
= u(t,x) for a.a. t ∈]0,2π [, x ∈

]
0,π − 2π

r

[
,

u(t,x) = −u

(
t,

2π

r
−x

)
for a.a t ∈]0,2π [, x ∈

]
0,

2π

r

[}

= spC

{
ψjkel | j

r
∈ Z+, k ∈ Z, l = 1,2

}
∩�.

(5.3)

Now the operators � and � are completely reduced by Vr . Moreover, we can
take r such that {(j,k) | j/r ∈ Z+, k ∈ Z}∩
0 = ∅ (for instance r > max{j |
(j,k) ∈ 
0}). Then �|Vr /∈ σBL(�|Vr ). It is easy to see that N(Vr) ⊂ Vr and
hence it is relevant to consider the reduced equation

�|Vr u−�|Vr u−N |Vr (u) = h, u ∈ D(L)∩Vr, (5.4)

for any h ∈ Vr . Any solution of (5.4) is also a weak solution for the original
equation. The reduced operator �|Vr −�|Vr is injective and hence we can apply
Theorem 3.8. Indeed, we obtain the following result.

Theorem 5.1. Assume that β > 0, a11 > 0, A ∈ σM(�). Moreover, assume that
g = g(t, s), g(t, ·) is odd and � + � is admissible. If {(j,k) | j/r ∈ Z+, k ∈
Z}∩
0 = ∅ and there exist constants ηr ≥ 0 and Cr ≥ 0 such that

ηr <
∥∥(

(�−�)|Vr

)−1∥∥−1
,

∥∥�|Vr (u)
∥∥ ≤ ηr‖u‖+Cr ∀u ∈ Vr, (5.5)
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then the equation

�u−�u−�(u) = h, u ∈ D(L)∩Vr, (5.6)

admits at least one solution for any h ∈ Vr .

Proof. By the assumptions of the theorem �(Vr) ⊂ Vr and

lim sup
u∈Vr ,‖u‖→∞

∥∥�(u)
∥∥

‖u‖ <
1∥∥(

(�−�)|Vr

)−1∥∥ , (5.7)

and hence the conclusion follows from Theorem 3.8. �

As a direct consequence of the above theorem we get the following result.

Corollary 5.2. If

c0 <
∥∥(

(�−�)|Vr

)−1∥∥−1
, (5.8)

where c0 ≥ 0 is the constant in the growth condition (5.1), then Theorem 5.1
holds with ηr = c0.

Note that ∥∥(
(�−�)|Vr

)−1∥∥ = sup
j/r∈Z+,k∈Z

∥∥(
Mjk −A

)−1∥∥. (5.9)

Unfortunately, it seems difficult to find out whether or not the equation admits
a solution for any h ∈ Ker(� − �)⊥ or even for any h ∈ W⊥

A . For a given
concrete A ∈ σM(�) it is easy to find out all the values of r ∈ Z+ for which
�|Vr /∈ σBL(�|Vr ).

(B) Assume now that β > 0, a11 > 0, �+� is admissible, A ∈ σM(�) and
g = g(x,s), that is, g is independent of t . Moreover, assume that det(Mj0−A) 
=
0 for all j ∈ Z+. This means that j6 −a11j

4 −a22j
2 +detA 
= 0 for all j ∈ Z+

and hence k 
= 0 for all (j,k) ∈ 
0. Since A ∈ σM(�) we necessarily have
a11 ∈ σ(L1) and a12a21 = 0. In this special case we define for any r ∈ Z+
the space

Er =
{
u ∈ � | u

(
t + 2π

r
,x

)
= u(t,x) for a.a. t ∈

]
0,2π − 2π

r

[
, x ∈]0,π [

}

= spC

{
ψjk | j ∈ Z+,

k

r
∈ Z

}
∩�.

(5.10)

The operators � and � are completely reduced by Er . Taking r ∈ Z+ such that
{(j,k) | j ∈ Z+, k/r ∈ Z}∩
0 = ∅ it is clear that �|Er /∈ σBL(�|Er ). Since g

is independent of t we have N(Er) ⊂ Er . Hence we get the following result.
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Theorem 5.3. Assume that β > 0, a11 > 0, A ∈ σM(�). Moreover, assume that
g = g(x,s) and �+� is admissible. If {(j,k) | j ∈ Z+, k/r ∈ Z}∩
0 = ∅ and
there exist constants ηr ≥ 0 and Cr ≥ 0 such that

ηr <
∥∥(

(�−�)|Er

)−1∥∥−1
,

∥∥�|Er (u)
∥∥ ≤ ηr‖u‖+Cr ∀u ∈ Er, (5.11)

then the equation

�u−�u−�(u) = h, u ∈ D(L)∩Er, (5.12)

admits at least one solution for any h ∈ Er .

Note that in case �(0) 
= 0, Theorem 5.3 gives nontrivial solution for the
equation �u−�u−�(u) = 0, u ∈ D(L). However, since always Er ∩Er ′ 
= {0}
the above result cannot be used to find multiple solutions for equation �u−�u−
�(u) = 0. Of course, an analogous corollary as in case (A) can be formulated.

(C) Assume now that β > 0, A ∈ σM(�) is arbitrary (no positivity condition!)
and g = g(s). We assume only that g satisfies the Caratheodory conditions and
the growth condition (5.1). Define first the subspace

Z0 = {
u ∈ � | u(t +π,π −x) = u(t,x) for a.a. t ∈]0,π [, x ∈]0,π [}

= spC

{
ψjkel | j ∈ Z+, k ∈ Z with j +k is odd, l = 1,2

}∩�.
(5.13)

The operators � and � are completely reduced by Z0 and �(Z0) ⊂ Z0. The most
remarkable fact is that dim Ker �|Z0 = {0} implying that the inverse of �|Z0 is
compact. Thus we can employ Leray-Schauder degree in the space Z0 and no
monotonicity is needed. Moreover, it is easy to see that dim Ker((�−�)|Z0) <

∞ for all �|Z0 ∈ σBL(�|Z0). There are now three separate cases we are able to
deal with.

(i) First, if �|Z0 /∈ σBL(�|Z0) then we obtain the following variant: if

c0 <
∥∥(

(�−�)|Z0

)−1∥∥−1
, (5.14)

where c0 ≥ 0 is the constant in the growth condition (5.1), then the equation

�u−�u−�(u) = h, u ∈ D(L)∩Z0, (5.15)

admits at least one solution for any h ∈ Z0.
(ii) If �|Z0 ∈ σBL(�|Z0) and g is odd we denote Xr = Z0 ∩ Vr , where

r ∈ Z+ is such that {(j,k) | j/r ∈ Z+, k ∈ Z} ∩ 
0 = ∅. In analogy with
Theorem 5.1 we get the result: if

c0 <
∥∥(

(�−�)|Xr

)−1∥∥−1
, (5.16)

then the equation

�u−�u−�(u) = h, u ∈ D(L)∩Xr, (5.17)

admits at least one solution for any h ∈ Xr .
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(iii) Assume that �|Z0 ∈ σBL(�|Z0), but det(Mj0 −A) 
= 0 for all j ∈ Z+, j

odd. Hence k 
= 0 for all (j,k) ∈ 
0, j +k odd. Moreover, necessarily a12a21 =
0 and a11 = λjk for some pair (j,k) ∈ Z+ × Z with j + k odd and k 
= 0.
Denoting Yr = Z0 ∩Er , where {(j,k) | j ∈ Z+, k/r ∈ Z, j +k odd}∩
0 = ∅,
we get as in case (B): if

c0 <
∥∥(

(�−�)|Yr

)−1∥∥−1
, (5.18)

then the equation

�u−�u−�(u) = h, u ∈ D(L)∩Yr, (5.19)

admits at least one solution for any h ∈ Yr .
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