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1. Introduction

Let φ be an odd increasing homeomorphism from R onto R which satisfies
φ(0) = 0 and let f : [a,b]×R×R �→ R be a function satisfying Carathéodory
conditions.

Separated two-point and periodic boundary value problems containing the
nonlinear operator (φ(u′))′, or its more particular form, the so-called p-Laplace
operator, have received a lot of attention lately (cf. [6, 7, 8, 14, 15] and the
references therein).

On the other hand, three-point (or m-point) boundary value problems for the
case when (φ(u′))′ = u′′, that is, the linear operator, have been considered by
many authors (cf. [3, 9, 10, 12, 13]).

The purpose of this paper is to study the following three-point boundary
value problem which contains the nonlinear operator (φ(u′))′,(

φ(u′)
)′ = f (t,u,u′),

u′(a) = 0, u(η) = u(b),
(1.1)

where η ∈ (a,b) is given. We are interested in the case when problem (1.1) is
at resonance, meaning by this that the associated three-point boundary value
problem (

φ
(
u′(t)

))′ = 0 a < t < b,

u′(a) = 0, u(η) = u(b)
(1.2)

has the nontrivial solution u(t) = A, where A ∈ R is an arbitrary constant. For
the linear operator, three-point boundary value problems at resonance have been
recently studied in [3, 11].
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At this point we introduce some notation. We will denote by C[a,b] (C1[a,b])
the classical space of the continuous (continuously differentiable) functions de-
fined from [a,b] into R. The norm in C[a,b] is denoted by | · |∞. Also we
will denote by L1(a,b) the space of measurable real-valued functions (equiv-
alence classes) whose absolute value is Lebesgue integrable on (a,b). The
Brouwer and Leray-Schauder degree will be, respectively, denoted by degB
and degLS.

This paper is organized as follows. In Section 2, we provide an abstract
formulation for problem (1.1) and we establish a general continuation theorem
for the solvability of that problem in the same spirit of [6, 14]. Using this
result, in Section 3 we obtain two existence theorems. Thus in Theorem 3.1 of
Section 3 we generalize [3, Theorem 2.2] obtained for the linear operator within
the framework of the coincidence degree of Mawhin [17]. Our second existence
result in Section 3 is closer in spirit to the existence results of [6].

To illustrate those results we state next some consequences of them for
the particular situation containing the one-dimensional p-Laplace operator,
(φp(u′))′, where φp, p > 1, is the homeomorphism from R onto R defined
by

φp(s) = |s|p−2s for s �= 0, φp(0) = 0. (1.3)

Theorem 1.1. Consider the problem

(
φp(u′)

)′ = f (t,u,u′), t ∈ (a,b),

u′(a) = 0, u(η) = u(b),
(1.4)

where η ∈ (a,b). Assume that f : [a,b]×R×R �→ R is continuous and satisfies
the following conditions.

(i) There are nonnegative functions d1, d2, and r in L1(a,b) such that∣∣f (t,u,v)
∣∣ ≤ d1(t)|u|p−1 +d2(t)|v|p−1 +r(t), (1.5)

for a.e. t ∈ [a,b] and all u,v ∈ R.
(ii) There exists u0 > 0 such that for all |u| > u0, it holds that∣∣f (t,u,v)

∣∣ ≥ �|u|p−1 −A|v|p−1 −B, (1.6)

where � > 0, and A,B ≥ 0 are fixed constants.
(iii) There is R > 0 such that for all |u| > R, either

uf (t,u,0) > 0 for a.e. t ∈ [a,b], (1.7)

or

uf (t,u,0) < 0 for a.e. t ∈ [a,b]. (1.8)
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Then, if (
A

�
+(b−a)(p−1)

)∥∥d1
∥∥

L1(a,b)
+∥∥d2

∥∥
L1(a,b)

< 1, (1.9)

it follows that problem (1.4) has at least one solution with u ∈ C1[a,b].

Theorem 1.2. Let f : [a,b]×R
2 → R be a function satisfying Carathéodory’s

conditions. Assume that there exist functions d1, d2, r in L1(a,b) such that∣∣f (t,u,v)
∣∣ ≤ d1(t)|u|p−1 +d2(t)|v|p−1 +r(t) (1.10)

for a.e. t ∈ [a,b] and all (u,v) ∈ R
2. Suppose further that there exists an

M > 0 such that

f (t,u,v) > 0, if u > M ∀t ∈ [a,b], v ∈ R, (1.11)

f (t,u,v) < 0, if u < −M ∀t ∈ [a,b], v ∈ R. (1.12)

Then the boundary value problem (1.4) has at least one solution in C1[a,b]
provided that

(b−a)(p−1)
∥∥d1

∥∥
L1(a,b)

+∥∥d2
∥∥

L1(a,b)
< 1. (1.13)

The proofs of Theorems 1.1 and 1.2 are direct applications of Theorems 3.1
and 3.2, respectively.

In Section 4, we prove some existence results with the help of time-mapping
techniques as in [6, 7, 8]. Our main purpose here is to obtain existence results
with one-sided growth restrictions for the three-point boundary value problem.
Conditions of this type have been considered by Schmitt [20], Mawhin and Ward
[18], and Fernandes and Zanolin [4] for the periodic case and the second-order
linear differential operator, by de Figueiredo and Ruf in [1] for the second-order
linear differential operator and Neumann boundary conditions, and by Maná-
sevich and Zanolin in [16] for the one-dimensional p-Laplacian and Dirichlet
boundary value conditions.

We introduce here a technical condition for the homeomorphism φ which will
be used in Section 4 in order to guarantee some properties of the time-mapping
for non-homogeneous operators (see [6]).

We say that φ satisfies the lower σ -condition if for any σ > 1,

lim inf
s→+∞

φ(σs)

φ(s)
> 1. (1.14)

We end this section by stating a theorem which is a consequence of Theorem
4.3 in Section 4 and which illustrates the type of results that we will obtain in
that section. We first give the following definitions. For q ∈ L1(a,b), we set

qm := sup
s∈(a,b]

1

s −a

∫ s

a

q(t)dt, qm := inf
s∈(a,b]

1

s −a

∫ s

a

q(t)dt. (1.15)
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Also from [2], we recall that the number πp, which will be used below, is
defined by

πp := 2(p−1)1/p

∫ 1

0

ds

(1−sp)1/p
= 2(p−1)1/p (π/p)

sin(π/p)
. (1.16)

Theorem 1.3. Consider the problem(
φp(u′)

)′ +g(u) = q(t),

u′(a) = 0, u(η) = u(b),
(1.17)

where η ∈ (a,b) and q ∈ L1(a,b), with qm, qm defined in (1.15) such that

−∞ < qm, qm < +∞. (1.18)

The function g : R �→ R is continuous and satisfies

g(s) ≥ qm > 0 for s ≥ d > 0,

g(s) ≤ qm < 0 for s ≤ −d.
(1.19)

Suppose also that G(s) := ∫ s

0 g(t)dt satisfies

lim inf
s→+∞

pG(s)

|s|p ≤ k <

(
πp

b−a

)p

, (1.20)

then problem (1.17) has at least one solution.

The proof of this theorem will be given in Section 4.

2. Abstract formulation and a deformation lemma

We begin this section by developing a general continuation theorem for the
solvability of problem (1.1). Assume that f ∗ : [a,b] × R × R × [0,1] �→ R

satisfies the Carathéodory conditions, that is, f ∗(·, s, r,λ) is measurable for all
(s,r,λ) ∈ R × R ×[0,1], f ∗(t, ·, ·, ·) is continuous for a.e. t ∈ [a,b], and for
each R > 0 there exists a Lebesgue integrable function µR : [a,b] �→ R such
that |f ∗(t, s, r,λ)| ≤ µR(t) for a.e. t ∈ [a,b] and all (s,r,λ) with |s| ≤ R,
|r| ≤ R, and λ ∈ [0,1]. Furthermore, suppose that f ∗(t, s, r,1) = f (t, s, r) for
all (t, s, r) ∈ [a,b]×R×R.

For λ ∈ (0,1], consider the problem(
φ

(
u′

λ

))′
= f ∗(t,u,u′,λ),

u′(a) = 0, u(η) = u(b),

(2.1)

and let � ⊂ C1[a,b] be an open bounded set. We have the following continua-
tion lemma.
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Lemma 2.1. Assume that

(i) there is no solution u to (2.1), 0 < λ < 1, such that u ∈ ∂�,
(ii) the equation

F(s) :=
∫ b

η

φ−1
(∫ τ

a

f ∗(t, s,0,0)dt

)
dτ = 0 (2.2)

has no solution on ∂�∩R,
(iii) the Brouwer degree

degB[F,�∩R,0] �= 0. (2.3)

Then, problem (1.1) has a solution in �̄.

Proof. If (1.1) has a solution in ∂�, then there is nothing to prove, hence we
suppose that (1.1) has no solutions belonging to ∂�. This assumption combined
with (i) implies that there are no solutions to (2.1) in ∂� for 0 < λ ≤ 1.

We show next that (2.1), for λ ∈ (0,1], is equivalent to an abstract equation.
Indeed, define the operator 
∗ : C1[a,b]×[0,1] �→ C1[a,b], by


∗(u,λ)(t) : = u(a)+
∫ b

η

φ−1
(∫ s

a

f ∗(t,u(t),u′(t),λ
)
dt

)
ds

+λ

∫ t

a

φ−1
(∫ s

a

f ∗(τ,u(τ ),u′(τ ),λ
)
dτ

)
ds.

(2.4)

We note that for u ∈ C1[a,b] and λ ∈ [0,1], it holds that f ∗(·,u(·),u′(·),λ) ∈
L1. Thus the mapping s �→ ∫ s

a
f ∗(τ,u(τ ),u′(·),λ)dτ is absolutely continuous

and hence the operator 
∗ is well defined since φ−1(
∫ s

a
f ∗(τ,u(τ ),u′(τ ),λ)dτ)

is continuous.
Now, by integrating the equation in (2.1) and using the boundary conditions,

we find that if u is a solution of (2.1), then it satisfies

u = 
∗(u,λ), (2.5)

together with ∫ b

η

φ−1
(∫ s

a

f ∗(τ,u(τ ),u′(τ ),λ
)
dτ

)
ds = 0. (2.6)

Next, for λ ∈ (0,1], assume that u is a solution to (2.5), that is, u satisfies

u(t) = u(a)+
∫ b

η

φ−1
(∫ s

a

f ∗(t,u(t),u′(t),λ
)
dt

)
ds

+λ

∫ t

a

φ−1
(∫ s

a

f ∗(τ,u(τ ),u′(τ ),λ
)
dτ

)
ds,

(2.7)
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for all t ∈ [a,b]. Differentiating (2.7), we find that

φ

(
u′(t)

λ

)
=

∫ t

a

f ∗(τ,u(τ ),u′(τ ),λ
)
dτ, (2.8)

and hence φ(u′(t)/λ) is absolutely continuous. By differentiating (2.8) then u

satisfies the first equation in (2.1). Also from (2.8), u′(a) = 0, and evaluating
(2.7) for t = a, we find that∫ b

η

φ−1
(∫ s

a

f ∗(t,u(t),u′(t),λ
)
dt

)
ds = 0. (2.9)

Hence, from (2.7)

u(b)−u(η) = λ

∫ b

η

φ−1
(∫ s

a

f ∗(t,u(t),u′(t),λ
)
dt

)
ds = 0. (2.10)

This shows that, for λ ∈ (0,1], any solution of (2.5) (equivalently (2.7)) is
actually a solution to the boundary value problem (2.1).

Setting 
(u) := 
∗(u,1), we observe that u is a solution of (1.1) if and only
if it is a fixed point of 
.

Standard arguments show that 
∗ is a completely continuous operator. More-
over, assumption (i) of Lemma 2.1 can be restated as

u �= 
∗(u,λ) ∀u ∈ ∂�, ∀λ ∈ (0,1]. (2.11)

We show next that this is also true for λ = 0. We note from (2.4) that 
∗(u,0)(t),
t ∈ [a,b], is a real constant for each u ∈ C1[a,b]. Thus, if for some u ∈ ∂�,

u = 
∗(u,0), (2.12)

then, for all t ∈ [a,b], we have that u(t) = s ∈ R, and so u(a) = s. Hence, from
(2.7), with λ = 0,

s = s +
∫ b

η

φ−1
(∫ τ

a

f (t, s,0,0)dt

)
dτ = s +F(s), (2.13)

which implies that F(s) = 0, for s ∈ R∩ ∂�, contradicting assumption (ii) of
Lemma 2.1. In this manner we have verified that

u �= 
∗(u,λ) ∀u ∈ ∂�, ∀λ ∈ [0,1]. (2.14)

Then, from the homotopy invariance property of the Leray-Schauder degree, it
follows that

degLS
(
I −
∗(·,1),�,0

)
= degLS

(
I −
∗(·,0),�,0

) = degB
(
I −
∗(·,0)|R,�0,0

)
= degB

(
F,�0,0

) �= 0,

(2.15)

where �0 = �∩R. In this form we obtain that the mapping 
 = 
∗(·,1) has at
least one fixed point in � and hence that problem (1.1) has at least one solution
in �. �
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3. First existence results

Consider the boundary value problem (1.1) given in Section 1. We have the
following result.

Theorem 3.1. Assume that f : [a,b]×R×R �→ R in problem (1.1) is contin-
uous and satisfies the following conditions.

(i) There are nonnegative functions d1, d2, and r in L1(a,b) such that∣∣f (t,u,v)
∣∣ ≤ d1(t)φ

(|u|)+d2(t)φ
(|v|)+r(t), (3.1)

for a.e. t ∈ [a,b] and all u,v ∈ R.
(ii) There exists u0 > 0 such that for all |u| > u0, for all t ∈ [a,b] and

v ∈ R, it holds that ∣∣f (t,u,v)
∣∣ ≥ �φ

(|u|)−Aφ
(|v|)−B, (3.2)

where � > 0, and A,B ≥ 0.
(iii) There is R > 0 such that for all |u| > R, either

uf (t,u,0) > 0 ∀t ∈ [a,b], (3.3)

or

uf (t,u,0) < 0 ∀t ∈ [a,b]. (3.4)

If, in addition ‖d2‖L1(a,b) < 1, and the function � : [0,+∞) �→ [0,+∞),
defined by

�(z) := φ−1

(
A

∥∥d1
∥∥

L1(a,b)

�
(
1−∥∥d2

∥∥
L1(a,b)

)φ(z)+ A‖r‖L1(a,b)

�
(
1−∥∥d2

∥∥
L1(a,b)

) + B

�

)

+(b−a)φ−1

( ∥∥d1
∥∥

L1(a,b)(
1−∥∥d2

∥∥
L1(a,b)

)φ(z)+ ‖r‖L1(a,b)(
1−∥∥d2

∥∥
L1(a,b)

)
)

,

(3.5)

satisfies

lim sup
z→+∞

�(z)

z
< 1, (3.6)

then, problem (1.1) has at least one solution u ∈ C1[a,b].

Proof. We consider problem (2.1) with f ∗(t,u,u′,λ) = f (t,u,u′) for all λ ∈
[0,1], that is, we consider the problem(

φ

(
u′

λ

))′
= f (t,u,u′),

u′(a) = 0, u(η) = u(b),

(3.7)
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and show that Lemma 2.1(i), (ii), and (iii) are satisfied. Let u be a solution to
(3.7), for λ ∈ (0,1). Then, by (3.1),∣∣∣∣

(
φ

(
u′(t)

λ

))′∣∣∣∣ ≤ d1(t)φ
(|u(t)|)+d2(t)φ

(|u′(t)|)+r(t), (3.8)

and hence, since λ ∈ (0,1), and by integration, we find that

φ
(|u′(t)|) ≤ φ

( |u′(t)|
λ

)

≤ φ
(|u|∞

)∥∥d1
∥∥

L1(a,b)
+φ

(|u′|∞
)∥∥d2

∥∥
L1(a,b)

+‖r‖L1(a,b).

(3.9)

Therefore

φ
(|u′|∞

) ≤
∥∥d1

∥∥
L1(a,b)

1−∥∥d2
∥∥

L1(a,b)

φ
(|u|∞

)+ ‖r‖L1(a,b)

1−∥∥d2
∥∥

L1(a,b)

, (3.10)

which yields

|u′|∞ ≤ φ−1

( ∥∥d1
∥∥

L1(a,b)

1−∥∥d2
∥∥

L1(a,b)

φ
(|u|∞

)+ ‖r‖L1(a,b)

1−∥∥d2
∥∥

L1(a,b)

)
. (3.11)

In our next argument assume first that there is τ0 ∈ [a,b], such that |u(τ0)| ≤
u0. Then, since for any t ∈ (a,b)

∣∣u(t)
∣∣ =

∣∣∣∣u(
τ0

)+
∫ t

τ0

u′(s)ds

∣∣∣∣ ≤ ∣∣u(
τ0

)∣∣+|u′|∞(b−a), (3.12)

by (3.11), we find that

|u|∞ ≤ u0 +(b−a)φ−1

( ∥∥d1
∥∥

L1(a,b)

1−∥∥d2
∥∥

L1(a,b)

φ
(|u|∞

)+ ‖r‖L1(a,b)

1−∥∥d2
∥∥

L1(a,b)

)

≤ u0 +�
(|u|∞

)
.

(3.13)

Suppose next that |u(t)| > u0 for all t ∈ [a,b]. Then since u(η) = u(b), there
must be τ1 ∈ (η,b) such that u′(τ1) = 0, that is,∫ τ1

a

f
(
t,u(t),u′(t)

)
dt = 0, (3.14)

which in turn implies that there is τ0 ∈ (a,τ1), such that f (τ0,u(τ0),u
′(τ0)) = 0.

Hence from (3.2), we obtain

φ
(∣∣u(

τ0
)∣∣) ≤ Ãφ

(∣∣u′(τ0
)∣∣)+ B̃ ≤ Ãφ

(|u′|∞
)+ B̃, (3.15)
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where Ã = A/�, B̃ = B/�. This implies∣∣u(
τ0

)∣∣ ≤ φ−1(Ãφ
(|u′|∞

)+ B̃
)
. (3.16)

Now from (3.12) and (3.16), we find that

|u|∞ ≤ φ−1(Ãφ
(|u′|∞

)+ B̃
)+(b−a)|u′|∞, (3.17)

and thus by (3.10) and (3.11), it follows that

|u|∞ ≤ �
(|u|∞

)
. (3.18)

Therefore by (3.6), in both situations we obtain the existence of z0 > 0 such that
|u|∞ ≤ z0, and thus by (3.11) there is an R0 > R (R defined by hypothesis (iii))
so that condition (i) of Lemma 2.1 is satisfied for � = B(0, R̃) ⊂ C1([a,b]),
for all R̃ ≥ R0. Since hypothesis (iii) implies that conditions (ii) and (iii) of
Lemma 2.1 are satisfied for R̃ large, the proof of the theorem is completed. �

In our second application we consider the boundary value problem(
φ(u′)

)′ +f (t,u,u′) = q(t),

u′(a) = 0, u(η) = u(b),
(3.19)

where η ∈ (a,b).

Theorem 3.2. Assume that q ∈ L1(a,b), and that qm and qm defined in (1.15)
satisfy (1.18). Suppose also that f : [a,b]×R×R �→ R is Carathéodory and
satisfies the following conditions.

(i) There are nonnegative functions d1, d2, and r in L1(a,b) such that∣∣f (t,u,v)
∣∣ ≤ d1(t)φ

(|u|)+d2(t)φ
(|v|)+r(t), (3.20)

for a.e. t ∈ [a,b] and all u,v ∈ R.
(ii) There exists d > 0 such that

f (t,u,v) > qm for u ≥ d,

f (t,u,v) < qm for u ≤ −d
(3.21)

holds for a.e. t ∈ [a,b] and all v ∈ R.
(iii) There is R > 0 such that for all |u| > R, either

uf (t,u,0) > 0 for a.e. t ∈ [a,b], (3.22)

or

uf (t,u,0) < 0 for a.e. t ∈ [a,b]. (3.23)
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Furthermore, let

�(z) := (b−a)φ−1

( ∥∥d1
∥∥

L1(a,b)(
1−∥∥d2

∥∥
L1(a,b)

)φ(z)+ ‖r̃‖L1(a,b)(
1−∥∥d2

∥∥
L1(a,b)

)
)

, (3.24)

where r̃(t) = r(t)+|q(t)|. Then if

lim sup
z→+∞

�(z)

z
< 1, (3.25)

it follows that problem (3.19) has at least one solution u ∈ C1[a,b].

Remark 3.3. We note that if qm > 0 and qm < 0 in Theorem 3.2, then the
conditions in (ii) imply (3.22).

Proof. The proof is based again in Lemma 2.1 and thus we will show that
conditions (i), (ii), and (iii) of that lemma are satisfied. Thus consider problem
(2.1), where this time we take f ∗(t,u,u′,λ) := q(t)−f (t,u,u′), and thus we
consider the problem (

φ

(
u′

λ

))′
= q(t)−f (t,u,u′),

u′(a) = 0, u(η) = u(b),

(3.26)

where η ∈ (a,b), and λ ∈ (0,1). By (3.20), we obtain that∣∣q(t)−f (t,u,v)
∣∣ ≤ d1(t)φ

(|u|)+d2(t)φ
(|v|)+ r̃(t), (3.27)

and hence as in Theorem 3.1, from (3.26), we find that

|u′|∞ ≤ φ−1

( ∥∥d1
∥∥

L1(a,b)

1−∥∥d2
∥∥

L1(a,b)

φ
(|u|∞

)+ ‖r̃‖L1(a,b)

1−∥∥d2
∥∥

L1(a,b)

)
. (3.28)

Next, let u be a solution of (3.26) for some λ ∈ (0,1). We claim that there is
a t̃ ∈ [a,b], such that

−d ≤ u
(
t̃
) ≤ d. (3.29)

Indeed, integrating the equation of (3.26), we find that

φ

(
u′

λ

)
=

(∫ t

a

q(τ )dτ −
∫ t

a

f
(
τ,u(τ ),u′(t)

)
dτ

)
. (3.30)

Hence if u(t) ≥ d for all t ∈ [a,b], then from the first condition in hypothesis (ii),
we find that

φ

(
u′

λ

)
<

∫ t

a

q(τ )dτ −qm(t −a) ≤ 0, ∀t ∈ [a,b], (3.31)

which cannot be because of the boundary condition u(η) = u(b).
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Similarly, if u(t) ≤ −d for all t ∈ [a,b], then from the second condition
in (ii), ∫ t

a

f
(
t,u(t),u′(t)

)
dt < qm(t −a), (3.32)

and hence

φ

(
u′

λ

)
>

∫ t

a

q(τ )dτ −qm(t −a) ≥ 0, ∀t ∈ [a,b], (3.33)

which again cannot be. Hence in the case that the solution is a constant, say
u(t) = c, then necessarily |c| ≤ d .

In this form we find that

|u|∞ ≤ d +|u′|∞(b−a). (3.34)

Combining this inequality with (3.28), it follows that

|u|∞ ≤ d +�
(|u|∞

)
, (3.35)

and thus from (3.25) there must be a z0 > 0 such that |u|∞ ≤ z0. Hence com-
bining with (3.28), we find that there is R0 > R (R as in hypothesis (iii)), so
that for all R̃ ≥ R0 if � = B(0, R̃) ⊂ C1([a,b]), then for all λ ∈ (0,1), problem
(3.26) has no solution in ∂�. Hence hypothesis (i) of Lemma 2.1 is satisfied.
Also, by hypothesis (ii), it follows that∫ t

a

(
q(τ)−f

(
τ, R̃,0

))
dτ <

∫ t

a

(
q(τ)−qm

)
dτ ≤ 0, ∀t ∈ (a,b], (3.36)

and thus F(s) as defined in (2.2) satisfies F(R̃) < 0, for R̃ large enough. Simi-
larly F(−R̃) > 0, and hence Lemma 2.1(ii) is satisfied.

Finally, condition (iii) of this theorem implies that Lemma 2.1(iii) is also
satisfied with

degB
(
F,B

(
0, R̃

)∩R,0
) = ±1, (3.37)

for large R̃. This ends the proof of the theorem. �

Remark 3.4. We note at this point the important fact that for the two theorems
we have proved in this section there is no need of additional hypotheses on the
function φ besides being an odd increasing homeomorphism.

4. Existence results via time-mapping

In this section we will consider the problem(
φ(u′)

)′ +g(t,u) = q(t),

u′(a) = 0, u(η) = u(b),
(4.1)
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where η ∈ (a,b), g is Carathéodory, and q ∈ L1(a,b). In this respect the fol-
lowing obvious modification of Lemma 2.1 will be used.

Let g∗ : [a,b]×R×[0,1] �→ R be a function which satisfies the Carathéodory
conditions and is such that

g∗(t, s,1) = g(t, s) ∀(t, s) ∈ [a,b]×R, (4.2)

and for λ ∈ (0,1], consider the problem(
φ

(
u′

λ

))′
+g∗(t,u,λ) = q(t),

u′(a) = 0, u(η) = u(b).

(4.3)

Lemma 4.1. Let � ⊂ C0[a,b] be an open bounded set, such that

(i) there is no solution u to (4.3), 0 < λ < 1, such that u ∈ ∂�,
(ii) the equation

G(s) :=
∫ b

η

φ−1
(∫ τ

a

(
q(t)−g∗(t, s,0)

)
dt

)
dτ = 0 (4.4)

has no solution on ∂�∩R,
(iii) the Brouwer degree

degB[G,�∩R,0] �= 0. (4.5)

Then, problem (4.3) has a solution in �̄.

In our following step we show that under certain conditions on g∗ solutions
to (4.3) which are bounded from above or from below are in fact bounded. See
[18, 19], for analogous results in the periodic case for the linear operator, that
is, φ(s) = s, and [6] for the Neumann case.

Lemma 4.2. Let qm and qm be defined as in (1.15) and suppose they satisfy
(1.18). Assume that there exists d > 0 such that

g∗(t, s,λ) > qm for s ≥ d,

g∗(t, s,λ) < qm for s ≤ −d
(4.6)

holds for a.e. t ∈ [a,b] and all λ ∈ [0,1]. Then,

(i) for any solution u to (4.3), for λ ∈ (0,1), there exists a t̃ ∈ [a,b] such
that

−d ≤ u
(
t̃
) ≤ d, (4.7)

(ii) for any solution u to (4.3), for λ ∈ (0,1), we have that for each R ≥ d

there is a ρ(R) ≥ R, such that

maxu ≤ R or minu ≥ −R implies |u|∞ ≤ ρ(R), (4.8)
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(iii) if there exists R ≥ d such that there is no solution u to (4.3), with
λ ∈ (0,1) such that maxu = R, (minu = −R), then problem (4.1) has
at least one solution ũ with max ũ ≤ R (min ũ ≥ −R).

Proof. Let u be a solution to (4.3) for some λ ∈ (0,1). Since the proof of (i)
is entirely similar to that of (3.29) of Theorem 3.2, it will be omitted. Also,
and as in that theorem, we continue the proof assuming that u is a nonconstant
solution.

To prove (ii) we only consider the case maxu ≤ R, since the argument in the
case minu ≥ −R is completely similar. Thus suppose t1 and t2 are, respectively,
two points in [a,b] where u reaches its absolute maximum and minimum. We
note that t1 and t2 belong to [a,b) and thus u′(t1) = 0, and u′(t2) = 0. We assume
t1 < t2, with a similar argument for the other case. Integrating the equation of
(4.3) on [t1, t2], we find that∫ t2

t1

g∗(τ,u(τ ),λ
)
dτ =

∫ t2

t1

q(τ)dτ. (4.9)

Let A = {t ∈ [t1, t2] : u(t) < −d} and B = {t ∈ [t1, t2] : −d ≤ u(t) ≤ R}. Then,
by (4.9) and hypothesis (4.6),∫

A

∣∣g∗(τ,u(τ ),λ
)−qm

∣∣dτ

=
∫

A

(
qm −g∗(τ,u(τ ),λ

))
dτ

=
∫

A

qm dτ −
∫ t2

t1

q(τ)dτ +
∫

B

(
g∗(τ,u(τ ),λ

)−qm

)
dτ +

∫
B

qm dτ

= qm

(
t2 − t1

)−
∫ t2

t1

q(τ)dτ +
∫

B

(
g∗(τ,u(τ ),λ

)−qm

)
dτ,

(4.10)

which in turn implies that∫ t2

t1

∣∣g∗(τ,u(τ ),λ
)−qm

∣∣dτ

≤ (∣∣qm

∣∣+ ∣∣qm
∣∣)(b−a)+2

∫
B

∣∣g∗(τ,u(τ ),λ
)−qm

∣∣dτ.

(4.11)

Since g∗ satisfies the Carathéodory conditions, we find that∣∣g∗(t, s,λ)
∣∣ ≤ µ(t), a.e. t ∈ [a,b], s ∈ [−d,R] and all λ ∈ [0,1], (4.12)

and where µ = µR ∈ L1(a,b). Then, the last integral in (4.11) can be bounded
from above by

∫
B
(µ(t)−qm)dt , and thus∫ t2

t1

∣∣g∗(τ,u(τ ),λ
)−qm

∣∣dτ ≤ (
2
∣∣qm

∣∣+qm
)
(b−a)+|µ|1 := C1(R). (4.13)
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Now, by integrating the equation of (4.3) on [t1, t], we find first that∣∣∣∣φ
(

u′

λ

)∣∣∣∣ ≤
∣∣∣∣
∫ t

t1

q(τ)dτ

∣∣∣∣+
∫ t

t1

∣∣g∗(τ,u(τ ),λ
)∣∣dτ, (4.14)

and then, using (4.13), we find a constant C2(R) such that∣∣u′(t)
∣∣ ≤ C2(R) ∀t ∈ [

t1, t2
]
. (4.15)

We observe that |u|∞ is reached at t1 or t2. Also we note that there must be a
point t3 ∈ (t1, t2) such that |u(t3)| ≤ d . Thus by integrating (4.15) from t1 to t3,
and assuming first that |u|∞ is reached at t1, we obtain that

|u|∞ = ∣∣u(
t1

)∣∣ ≤ d +C2(R)(b−a) := ρ(R), (4.16)

where, without loss of generality, we have taken ρ(R) ≥ R. Since a similar
argument applies if |u|∞ is reached at t2, the proof of (ii) is completed.

Finally we prove (iii) by using Lemma 4.1. Let R ≥ d be such that there
is no solution u to (4.3), with λ ∈ (0,1) and maxu = R (the other case being
analogous). Let ρ(R) be the bound given in (ii), and define

R1 := η(R)+1. (4.17)

Define also � ⊂ C0[a,b] by

� = {
u ∈ C0[a,b] : −R1 < u(t) < R

}
. (4.18)

For λ ∈ (0,1), suppose u is a solution to (4.3). We claim that u �∈ ∂�. Indeed,
if u ∈ �̄, then −R1 ≤ u(t) ≤ R for all t ∈ [a,b] and thus by our hypotheses,
u(t) < R. Now from the choice of R1 > ρ(R) ≥ R we have that u(t) > −R1,
concluding that −R1 < u(t) < R for all t ∈ [a,b]. Thus u ∈ � and (i) of
Lemma 4.1 is satisfied.

Next we note that � ∩ R = (−R1,R) and ∂� ∩ R = {−R1,R}. Also by
hypothesis (4.6), it follows that

∫ t

a

(
q(τ)−g∗(τ,R,0)

)
dτ <

∫ t

a

q(τ )dτ −qm ≤ 0 ∀t ∈ [a,b], (4.19)

and thus G(R) < 0. Similarly G(−R) > 0. Hence, Lemma 4.1(ii) holds and
also (iii) of that lemma is satisfied with

degB(G,�∩R,0) = −1. (4.20)

We conclude from Lemma 4.1 that there is at least one solution u to (4.1) ∈ �̄

with maxu ≤ R. �
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We continue by reviewing some basic facts concerning time-mappings. Thus
consider the equation (

φ(u′)
)′ +h(u) = 0, (4.21)

where h : R �→ R satisfies lims→+∞ h(s)sgn(s) = +∞. This equation can be
equivalently written as the autonomous system

u′ = φ−1(y), y′ = −h(u). (4.22)

Set

H(s) =
∫ s

0
h(t)dt, �∗(s) =

∫ s

0
φ−1(t)dt, (4.23)

and suppose that (u(t),y(t)) is a solution to (4.22) with (u(0),y(0)) = (0,S),
S > 0. Then, it holds that

H
(
u(t)

)+�∗(y(t)
) = �∗(S) (4.24)

for all t ∈ R. Let d0 > 0 be such that

h(s)s > 0 ∀ |s| ≥ d0 (4.25)

and take d1 ≥ d0 such that

max
{
H(s) : |s| ≤ d0

}
< min

{
H

(−d1
)
,H

(
d1

)}
. (4.26)

Now, if the constant S selected above satisfies

�∗(S) ≥ max
{
H

(−d1
)
,H

(
d1

)}
, (4.27)

then the corresponding solution z is unique, defined in R and periodic. Let T > 0
be the first maximum point of u on (0,+∞). Then umax = u(T ) = R ≥ d1 so
that

H
(
u(t)

)+�∗(y(t)
) = H(R) (4.28)

for all t ∈ R. Hence y(t) > 0 and from (4.22), u′(t) > 0 for all t ∈ (0,T ). Thus
0 < u(t) < R for all t ∈ (0,T ), with y(T ) = 0. Therefore we obtain

y(t) = 
r
(
H(R)−H

(
u(t)

))
, (4.29)

where 
r denotes the right inverse of �∗, that is, the inverse of the restriction
of �∗ to [0,+∞). Then, from the first equation in system (4.22),

u′(t) = φ−1(
r
(
H(R)−H

(
u(t)

)))
, (4.30)

so that

u′(t)
φ−1

(

r

(
H(R)−H

(
u(t)

))) = 1 (4.31)
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for all t ∈ [a,b). Integrating (4.31) on [0,T ) we obtain

Th(R) := T =
∫ R

0

du

φ−1
(

r

(
H(R)−H(u)

)) . (4.32)

We call this function Th so far defined for large positive values of R, the time-
mapping of h with respect to φ, or simply the time-mapping of h. In a similar
form we can define Th for large negative values. Indeed by assuming that umin =
u(−T̃ ) = −R̃, R̃ > 0, we have

T̃ = Th

(− R̃
) :=

∫ 0

−R̃

du∣∣φ−1
(

l

(
H

(− R̃
)−H(u)

))∣∣ , (4.33)

where now 
l denotes the left inverse of �∗. We note that in our case 
l(s) =
−
r(s), since we are assuming φ is odd.

Theorem 4.3. Assume that the odd increasing homeomorphism φ from R onto
R satisfies the lower σ -condition. Let q ∈ L1((a,b),R), with qm, qm defined in
(1.15) satisfy (1.18) and g : [a,b]×R �→ R be a Carathéodory function such
that for a.e. t ∈ [a,b]

(
g(t, s)−qm

) ≥ 0 for s ≥ d > 0,(
g(t, s)−qm

) ≤ 0 for s ≤ −d.
(4.34)

Let h0 : [0,+∞) �→ R be a continuous function such that lims→+∞ h0(s) =
+∞, and

g(t, s) ≤ h0(s) ∀s ≥ d, a.e. t ∈ [a,b], (4.35)

if

lim sup
s→+∞

Th0(s) > b−a, (4.36)

then problem (4.1) has at least one solution.

Proof. The proof is based on Lemma 4.2, to this end define

q̃ = qm +qm

2
, (4.37)

and set

g̃(t, s) = g(t, s)− q̃, q0(t) = q(t)− q̃. (4.38)
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Now define a continuous function e : R �→ R such that e(s)s > 0 for s �= 0. In
addition e satisfies

e(s) ≤ 2
(
qm − q̃

)+1 ∀s ≥ 0,

e(s) >
(
qm − q̃

) ∀s > d,

(4.39)e(s) ≥ −2
(
q̃ −qm

)−1 ∀s ≤ 0,

e(s) < −(
q̃ −qm

) ∀s < −d.

Next define a one-parameter family of functions by

g∗(t, s,λ) := (1−λ)e(s)+λg̃(t, s) for λ ∈ [0,1], (4.40)

so that g∗(t, s,1) = g̃(t, s) for all s ∈ R and a.e. t ∈ [a,b]. Also if

h(s) := h0(s)+|q̃|+2max
{
qm − q̃, q̃ −qm

}+1, (4.41)

and taking into account that g̃(t, s)sign(s) ≥ 0 for all |s| > d , we obtain that

g∗(t, s,λ) ≤ h(s), (4.42)

for all s ≥ d, for a.e. t ∈ [a,b], and all λ ∈ [0,1].
Next we consider the problem(

φ

(
u′

λ

))′
+g∗(t,u,λ) = q0(t),

u′(a) = 0, u(η) = u(b).

(4.43)

We now show that g∗ in (4.43) satisfies hypothesis (4.6) of Lemma 4.2.
Set

(
q0

)m = sup
s∈(a,b]

1

s −a

∫ s

a

q0(t)dt,
(
q0

)
m

= inf
s∈(a,b]

1

s −a

∫ s

a

q0(t)dt.

(4.44)
Then, (

q0
)m = qm − q̃ ≥ 0,

(
q0

)
m

= qm − q̃ ≤ 0. (4.45)

On the other hand, since

g∗(t,u,λ)−(
q0

)m = (1−λ)e(s)+λ
(
g(t, s)−qm

)+(1−λ)
(
q̃ −qm

)
,

g∗(t,u,λ)−(
q0

)
m

= (1−λ)e(s)+λ
(
g(t, s)−qm

)+(1−λ)
(
q̃ −qm

)
,

(4.46)

it follows from (4.34) and the definition of e that hypothesis (4.6) of Lemma 4.2
holds, thus the conclusion of that lemma applies to problem (4.43).

Claim 4.4. There are arbitrarily large levels R where the maximum of any
solution to (4.43), with λ ∈ (0,1), is not achieved.
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To prove this claim we argue by contradiction. Thus assume that

maxu = R > d (4.47)

for some solution u of (4.43), with 0 < λ < 1. By Lemma 4.2, there is a t̃ ∈
[a,b], such that

−d ≤ u
(
t̃
) ≤ d. (4.48)

Thus there exists an interval [t1, t2] ⊂ [a,b] such that either u(t1) = d , u(t2) =
umax = R and d < u(t) < R for all t ∈ (t1, t2), or u(t1) = umax = R, u(t2) = d

and d < u(t) < R for all t ∈ (t1, t2).
We only consider the first case, the other being the same. Set

Q0(t) :=
∫ t

a

q0(s)ds, y = φ

(
u′

λ

)
−Q0(t), (4.49)

and rewrite the equation in (4.43) as

u′ = λφ−1(y +Q0(t)
)
, y′ = −g∗(t,u,λ). (4.50)

We note first that since u(t) ≥ d for all t ∈ [t1, t2], the condition on g∗ gives
that y is strictly decreasing in [t1, t2], that is,

y(t) ≤ y
(
t1

) ∀t ∈ [
t1, t2

]
. (4.51)

Therefore,

u′(t) = λφ−1(y(t)+Q0(t)
) ≤ φ−1(y(

t1
)+ ∣∣Q0

∣∣∞)
, (4.52)

so that

R−d = u
(
t2

)−u
(
t1

) =
∫ t2

t1

u′(s)ds

≤
∫ t2

t1

φ−1(y(
t1

)+ ∣∣Q0
∣∣∞)

ds

≤ (b−a)φ−1(y(
t1

)+ ∣∣Q0
∣∣∞)

.

(4.53)

From here we conclude that if we choose R sufficiently large, namely

R > �+d, (4.54)

where � := (b −a)φ−1(2|Q0|∞), then y(t1) > |Q0|∞ and thus there exists a
unique point t∗ ∈ (t1, t2) such that y(t∗) = |Q0|∞. Furthermore

u′(t) > 0, y′(t) < 0 for a.e. t ∈ [
t1, t

∗], (4.55)

implying that y is strictly decreasing and u is strictly increasing in [t1, t∗].
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Now we do some estimates for u(t2)−u(t), t∗ ≤ t ≤ t2. To this end, we first
estimate u′ in this interval. We have

u′(s) = λφ−1(y(s)+Q0(s)
) ≤ λφ−1(y(

t∗
)+Q0(s)

)
= λφ−1(∣∣Q0

∣∣∞ +Q0(s)
) ≤ φ−1(2

∣∣Q0
∣∣∞)

.
(4.56)

Thus, we obtain ∫ t2

t

u′(s)ds ≤ (
t2 − t

)
φ−1(2

∣∣Q0
∣∣∞) ≤ �, (4.57)

and hence

u(t) ≥ R−� for t ∈ [
t∗, t2

]
. (4.58)

Now, from system (4.50) and the definition of h in (4.41), we obtain

h
(
u(t)

)
u′(t)+φ−1(y(t)− ∣∣Q0

∣∣∞)
y′(t) ≥ 0 a.e. on

[
t1, t

∗], (4.59)

and thus

d

dt

[
H

(
u(t)

)+�∗(y(t)− ∣∣Q0
∣∣∞)] ≥ 0, (4.60)

where H(s) = ∫ s

0 h(t)dt .
Integrating (4.60) from t to t∗ and recalling that y(t∗) = |Q0|∞, we find

�∗(y(t)− ∣∣Q0
∣∣∞) ≤ H(R)−H

(
u(t)

)
, (4.61)

and thus

y(t)+Q0(t) ≤ 2
∣∣Q0

∣∣∞ +

[
H(R)−H

(
u(t)

)]
, (4.62)

where as before 
 denotes the right inverse of �∗. Since u′ = λφ−1(y +Q0),
we obtain

u′(t)
φ−1

(
2
∣∣Q0

∣∣∞ +

[
H(R)−H

(
u(t)

)]) ≤ 1. (4.63)

Hence integrating from t1 to t∗,

∫ t∗

t1

u′(t)dt

φ−1
(
2
∣∣Q0

∣∣∞ +

[
H(R)−H

(
u(t)

)]) ≤ t∗ − t1, (4.64)

and using that u(t∗) ≥ R−�, we find that

∫ R−�

d

du

φ−1
(
2
∣∣Q0

∣∣∞ +

[
H(R)−H(u)

]) ≤ t∗ − t1. (4.65)
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Now since from [6, Lemma 3.1], it holds that

∫ d

0

du

φ−1
(
2
∣∣Q0

∣∣∞ +

[
H(R)−H(u)

]) −→ 0 as R −→ +∞,

∫ R

R−�

du

φ−1
(
2
∣∣Q0

∣∣∞ +

[
H(R)−H(u)

]) −→ 0 as R −→ +∞,

(4.66)

then from [6, Lemma 3.3], with K = 2|Q0|∞, and (4.65), (4.66), we obtain that

lim sup
R→+∞

Th(R) = lim sup
R→+∞

∫ R

0

du

φ−1
(

r

(
H(R)−H(u)

)) ≤ b−a, (4.67)

and hence from [6, Lemma 3.4], and (4.41), we finally find that

lim sup
R→+∞

Th0(R) ≤ b−a. (4.68)

Since this contradicts (4.36), the claim is proved. The remaining part of the
proof is a direct application of Lemma 4.2(iii). �

Remark 4.5. Theorem 4.3 was proved under a one-sided growth condition at
+∞ for the function g. A symmetric result under a growth restriction at −∞ on
g can be obtained by applying Theorem 4.3 to problem (4.1) after the change
of variables u → −u.

As in [6] a variant of Theorem 4.3 in which a two-sided condition on g holds
is the following.

Theorem 4.6. Suppose that the odd increasing homeomorphism φ from R onto
R satisfies the lower σ -condition, q ∈ L1((a,b),R), with qm, qm defined in
(1.15) satisfying (1.18), and g : [a,b] × R �→ R is a Carathéodory function
such that for a.e. t ∈ [a,b](

g(t, s)−qm
) ≥ 0 for s ≥ d > 0,(

g(t, s)−qm

) ≤ 0 for s ≤ −d.
(4.69)

Let h0 : R �→ R be a continuous function such that lims→+∞ h0(s)sign(s) =
+∞, and ∣∣g(t, s)

∣∣ ≤ ∣∣h0(s)
∣∣ ∀ |s| ≥ d, for a.e. t ∈ [a,b]. (4.70)

If either

lim inf
s→−∞ Th0(s)+ lim sup

s→+∞
Th0(s) > b−a (4.71)
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or

lim sup
s→−∞

Th0(s)+ lim inf
s→+∞ Th0(s) > b−a, (4.72)

then problem (4.1) has at least one solution.

We omit the proof of this theorem since it is similar to the proof of Theorem
4.3. See also [5] for related results for the case of the linear differential operator
and periodic boundary conditions and [6] for the Neumann case and a general
operator (φ(u′))′.

We end this section with the proof of Theorem 1.3.

Proof of Theorem 1.3. We check that the conditions of Theorem 4.3 are satis-
fied. Clearly conditions (4.34) hold. Now define

h0(s) = g(s)+εφp(s), (4.73)

with

0 < ε <

(
πp

b−a

)p

− lim inf
s→+∞

pG(s)

|s|p , (4.74)

and where G(s) := ∫ s

0 g(t)dt . Since h0(s)/φp(s) > ε, for all s �= 0, we have that
h0(s) → +∞ as s → +∞. Thus the proof will be concluded if we show that

lim sup
s→+∞

Th0(s) > b−a. (4.75)

Integrating (4.73), and using (4.74), we find that

lim inf
s→+∞

pH0(s)

|s|p <

(
πp

b−a

)p

, (4.76)

where H0(s) = ∫ s

0 h0(t)dt . Hence from (v) of [16, Corollary 2.6], it follows
that (4.75) holds true. �
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