(r, p)-ABSOLUTELY SUMMING OPERATORS ON THE SPACE $C(T, X)$ AND APPLICATIONS

DUMITRU POPA

Received 27 March 2000

We give necessary and sufficient conditions for an operator on the space $C(T, X)$ to be (r, p)-absolutely summing. Also we prove that the injective tensor product of an integral operator and an (r, p)-absolutely summing operator is an (r, p) absolutely summing operator.

For X and Y Banach spaces we denote by $L(X, Y)$ the Banach space of all linear and continuous operators from X to Y equipped with the operator norm, and by $X \otimes_{\varepsilon} Y$ the injective tensor product of X and Y, that is, the completion of the algebraic tensor product $X \otimes Y$ with respect to the injective cross-norm $\varepsilon(u)=\sup \left\{\left\langle x^{*} \otimes y^{*}, u\right\rangle \mid\left\|x^{*}\right\| \leq 1,\left\|y^{*}\right\| \leq 1\right\}, u \in X \otimes Y$. If T is a compact Hausdorff space and X is a Banach space, we denote by $C(T, X)$ the Banach space of all continuous X-valued functions defined on T, equipped with the supremum norm and by $C(T)=C(T, X)$ for $X=\mathbb{R}$ or \mathbb{C}. It is well known that $C(T, X)=C(T) \otimes_{\varepsilon} X$. Also if T is a compact space and X is a Banach space, we denote by Σ the σ-field of Borel subsets of $T, S(\Sigma, X)$ the space of X-valued Σ-simple functions on T, and by $B(\Sigma, X)$ we denote the uniform closure of the space $S(\Sigma, X) ; B(\Sigma)$ for $X=\mathbb{R}$ or \mathbb{C}. We also use that $B(\Sigma, X) \hookrightarrow C(T, X)^{* *}$. For the representing theorems of the linear and continuous operators on the space $C(T, X)$, see $[1,3]$. Recall only that to each $U \in L(C(T, X), Y)$ correspond a representing measure $G: \Sigma \rightarrow L\left(X, Y^{* *}\right)$ and $G(E) x=U^{* *}\left(\chi_{E} x\right)$. Also if $U \in L(X, Y), V \in L\left(X_{1}, Y_{1}\right)$, by $U \otimes_{\varepsilon} V: X \otimes_{\varepsilon} Y \rightarrow X_{1} \otimes_{\varepsilon} Y_{1}$ we denote the injective tensor product of the operators U and V. If $U \in L\left(X \otimes_{\varepsilon} Y, Z\right)$, for each $x \in X$ we consider the operator $U^{\#} x: Y \rightarrow Z$, $\left(U^{\#} x\right)(y)=U(x \otimes y), y \in Y$, and evidently $U^{\#}: X \rightarrow L(Y, Z)$ is linear and continuous. For $1 \leq r<\infty$ and $x_{1}, \ldots, x_{n} \in X$ we write, $l_{r}\left(x_{i} \mid i=1, n\right)=\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{r}\right)^{1 / r}$ and $w_{r}\left(x_{i} \mid i=\right.$ $1, n)=\sup \left\{\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{r}\right)^{1 / r} \mid x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}$. Let $1 \leq p \leq r<\infty$,
$U \in L(X, Y)$ is called (r, p)-absolutely summing if there is some $C>0$ such that if $x_{1}, \ldots, x_{n} \in X$ then $l_{r}\left(U x_{i} \mid i=1, n\right) \leq C w_{p}\left(x_{i} \mid i=1, n\right)$. The (r, p) absolutely summing norm of U is $\|U\|_{r, p}=\inf C$. We observe that, $\|U\|_{r, p}=$ $\sup \left\{l_{r}\left(U x_{i} \mid i=1, n\right) \mid x_{1}, \ldots, x_{n} \in X, w_{p}\left(x_{i} \mid i=1, n\right) \leq 1\right\}$. We denote by $\operatorname{As}_{r, p}(X, Y)$ the Banach space of all (r, p)-absolutely summing operators from X into Y equipped with the (r, p)-absolutely summing norm. The (1, 1)-absolutely summing operators we call absolutely summing and $\operatorname{As}(X, Y)=\operatorname{As}_{1,1}(X, Y)$, $\left\|\left\|_{\text {as }}=\right\|\right\|_{1,1}$. For other notions used and not defined we refer the reader to [3, 6].

The following theorem is an extension of [1, Proposition 2.2(ii)], [8, Theorem 2.1], and [5, Theorem 3.1].

Theorem 1. If $U \in \operatorname{As}_{r, p}\left(X \otimes_{\varepsilon} Y, Z\right)$, then $U^{\#} x \in \operatorname{As}_{r, p}(Y, Z)$ for each $x \in X$ and $U^{\#}: X \rightarrow \operatorname{As}_{r, p}(Y, Z)$ is an (r, p)-absolutely summing operator with respect to the (r, p)-absolutely summing norm on $\operatorname{As}_{r, p}(Y, Z)$. In addition, $\left\|U^{\#}\right\|_{r, p} \leq\|U\|_{r, p}$.

Proof. For $x \in X$, let $V_{x}: Y \rightarrow X \otimes_{\varepsilon} Y, V_{x}(y)=x \otimes y$. Then by the hypothesis and the ideal property of the (r, p)-absolutely summing operators it follows that $U^{\#} x=U V_{x}$ is an (r, p)-absolutely summing operator. Now let $x_{1}, \ldots, x_{n} \in X$ with $\left\|U^{\#} x_{i}\right\|_{r, p}>0$ and $0<\varepsilon<\left\|U^{\#} x_{i}\right\|_{r, p}$, for each $i=1, n$. By the definition of the (r, p)-absolutely summing norm it follows that there is $\left(y_{i j}\right)_{j \in \sigma_{i}}, \sigma_{i}$ finite, $\sigma_{i} \subset N$ such that $\left\|U^{\#} x_{i}\right\|_{r, p}-\varepsilon<l_{r}\left(U^{\#} x_{i}\left(y_{i j}\right) \mid j \in \sigma_{i}\right)$ and $w_{p}\left(y_{i j} \mid j \in \sigma_{i}\right) \leq$ 1 for each $i=1, n$. Hence $l_{r}\left(\left\|U^{\#} x_{i}\right\|_{r, p}-\varepsilon \mid i=1, n\right)<l_{r}\left(U\left(x_{i} \otimes y_{i j}\right) \mid j \in\right.$ $\sigma_{i}, i=1, n$). As U is an (r, p)-absolutely summing operator we obtain

$$
\begin{equation*}
l_{r}\left(U\left(x_{i} \otimes y_{i j}\right) \mid j \in \sigma_{i}, i=1, n\right) \leq\|U\|_{r, p} w_{p}\left(x_{i} \otimes y_{i j} \mid j \in \sigma_{i}, i=1, n\right) \tag{1}
\end{equation*}
$$

But we claim that $w_{p}\left(x_{i} \otimes y_{i j} \mid j \in \sigma_{i}, i=1, n\right) \leq w_{p}\left(x_{i} \mid i=1, n\right)$ and thus we obtain

$$
\begin{equation*}
l_{r}\left(\left\|U^{\#} x_{i}\right\|_{r, p}-\varepsilon \mid i=1, n\right)<\|U\|_{r, p} w_{p}\left(x_{i} \mid i=1, n\right) \tag{2}
\end{equation*}
$$

that is, $l_{r}\left(\left\|U^{\#} x_{i}\right\|_{r, p} \mid i=1, n\right) \leq\|U\|_{r, p} w_{p}\left(x_{i} \mid i=1, n\right)$. Now for $x_{1}, \ldots, x_{n} \in$ X, if we denote by $I=\left\{i=\overline{1, n} \mid\left\|U^{\#} x_{i}\right\|_{r, p}>0\right\}$, then from (2) we have

$$
\begin{align*}
l_{r}\left(\left\|U^{\#} x_{i}\right\|_{r, p} \mid i=1, n\right) & =l_{r}\left(\left\|U^{\#} x_{i}\right\|_{r, p} \mid i \in I\right) \\
& \leq\|U\|_{r, p} w_{p}\left(x_{i} \mid i \in I\right) \tag{3}\\
& \leq\|U\|_{r, p} w_{p}\left(x_{i} \mid i=1, n\right)
\end{align*}
$$

and the proof of the theorem will be finished. Now let $\psi \in\left(X \otimes_{\varepsilon} Y\right)^{*},\|\psi\| \leq 1$. Then, as it is well known, there is a regular Borel measure μ on $U_{X^{*}} \times U_{Y^{*}}=T$
such that for $x \in X$ and $y \in Y, \psi(x, y)=\int_{T} x^{*}(x) y^{*}(y) d \mu\left(x^{*}, y^{*}\right),\|\psi\|=$ $|\mu|(T) \leq 1$ (see [2] or [3]). Then using the Hölder inequality and the fact that $\|\psi\|=|\mu|(T) \leq 1$ we have

$$
\begin{equation*}
|\langle x \otimes y, \psi\rangle| \leq\left(\int_{T}\left|x^{*}(x)\right|^{p}\left|y^{*}(y)\right|^{p} d|\mu|\left(x^{*}, y^{*}\right)\right)^{1 / p}, \quad \text { for } x \in X, y \in Y \tag{4}
\end{equation*}
$$

Thus

$$
\begin{align*}
\sum_{i=1}^{n} \sum_{j \in \sigma_{i}}\left|\left\langle x_{i} \otimes y_{i j}, \psi\right\rangle\right|^{p} & \leq \int_{T} \sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{p} \sum_{j \in \sigma_{i}}\left|y^{*}\left(y_{i j}\right)\right|^{p} d|\mu|\left(x^{*}, y^{*}\right) \\
& \leq \int_{T} \sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{p} d|\mu|\left(x^{*}, y^{*}\right) \tag{5}\\
& \leq\left[w_{p}\left(x_{i} \mid i=1, n\right)\right]^{p}|\mu|(T)
\end{align*}
$$

since $w_{p}\left(y_{i j} \mid j \in \sigma_{i}\right) \leq 1$, for each $i=1, n$. Hence $w_{p}\left(x_{i} \otimes y_{i j} \mid j \in \sigma_{i}, i=\right.$ $1, n) \leq w_{p}\left(x_{i} \mid i=1, n\right)$ and the claim is proved.

In [5, 7], examples of operators are given which show that the converse of Theorem 1 is not true.

The next theorem is an extension of [1, Theorem 2.5] and the result of Swartz [8, Theorem 2].

Theorem 2. Let $U: C(T, X) \rightarrow Y$ be a linear and continuous operator, G its representing measure. If U is an (r, p)-absolutely summing operator, then $G(E) \in \operatorname{As}_{r, p}(X, Y)$, for each $E \in \Sigma$ and $G: \Sigma \rightarrow \operatorname{As}_{r, p}(X, Y)$ has the property that $\|G\|_{r, p}(T)=\sup \left\{\left(\sum_{i=1}^{n}\left\|G\left(E_{i}\right)\right\|_{r, p}^{r}\right)^{1 / r} \mid\left\{E_{1}, \ldots, E_{n}\right\} \subset \Sigma\right.$ a finite partition of $T\} \leq\|U\|_{r, p}$.

Proof. As it is well known, if V is an (r, p)-absolutely summing operator then its bidual $V^{* *}$ is also (r, p)-absolutely summing (see [6]). As U is an (r, p)-absolutely summing operator we obtain, using Theorem 1, that $V=U^{\#}$: $C(T) \rightarrow \mathrm{As}_{r, p}(X, Y)$ is (r, p)-absolutely summing and hence $V^{* *}$ is also (r, p) absolutely summing. But on $C(T),(r, p)$-absolutely summing operators are weakly compact. This follows easily using [3 , Theorem 15, page 159]. Hence the representing measure G of U which coincides with that of $V=U^{\#}$ takes its values in $\operatorname{As}_{r, p}(X, Y)$. Because $V^{* *}: B\left(\sum\right) \rightarrow \operatorname{As}_{r, p}(X, Y)$ is an (r, p) absolutely summing we have

$$
\begin{equation*}
l_{r}\left(V\left(\chi_{E_{i}}\right) \mid i=1, n\right) \leq\left\|V^{* *}\right\|_{r, p} w_{p}\left(\chi_{E_{i}} \mid i=1, n\right)=\left\|V^{* *}\right\|_{r, p}=\left\|U^{\#}\right\|_{r, p} \tag{6}
\end{equation*}
$$

for each partition $\left\{E_{1}, \ldots, E_{n}\right\} \subset \sum$ of T. Using Theorem 1, we have

$$
\begin{equation*}
\left\|U^{\#}\right\|_{r, p} \leq\|U\|_{r, p} \tag{7}
\end{equation*}
$$

As $G(E)=V^{* *}\left(\chi_{E}\right)$, from (6) and (7) we obtain the theorem.

The following lemmas show that in the inequality from Theorem 2, we can have both equality and strict inequality.

Lemma 3. For $1 \leq p \leq r<\infty, X$ and Y Banach spaces, there is $U: C([0,1], X)$ $\rightarrow Y$ an (r, p)-absolutely summing operator whose representing measure has the properties $\|G\|_{r, p}([0,1])=\left(2^{r}+1\right)^{1 / r},\|U\|_{r, p}=3$ and hence if $r \neq 1$, $\|G\|_{r, p}([0,1])<\|U\|_{r, p}$.

Proof. Let $x^{*} \in X^{*}$ with $\left\|x^{*}\right\|=1, y \in Y,\|y\|=1$. For $t \in[0,1], t$ fixed, we denote $v=2 \delta_{t}-\mu$, where δ_{t} is the Dirac measure and μ is the Lebesgue measure. Let $U: C([0,1], X) \rightarrow Y, U(f)=\left(\int_{0}^{1} x^{*} f d \nu\right) y$. Evidently $G(E)=$ $\left(x^{*} \otimes y\right) \nu(E)$ is the representing measure of U and $\|G(E)\|_{r, p}=|\nu(E)|$, from where

$$
\begin{align*}
& \|G\|_{r, p}([0,1]) \\
& \quad=\sup \left\{\left(\sum_{i=1}^{n}\left\|G\left(E_{i}\right)\right\|_{r, p}^{r}\right)^{1 / r} \mid\left\{E_{1}, \ldots, E_{n}\right\} \subset \Sigma \text { a finite partition of } T\right\} \\
& \quad=\sup \left\{\left(\sum_{i=1}^{n}\left\|v\left(E_{i}\right)\right\|^{r}\right)^{1 / r} \mid\left\{E_{1}, \ldots, E_{n}\right\} \subset \Sigma \text { a finite partition of } T\right\} \\
& \quad=\left(2^{r}+1\right)^{1 / r} . \tag{8}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
l_{r}\left(U f_{i} \mid i=1, n\right) & =\left(\sum_{i=1}^{n}\left|\int_{0}^{1} x^{*} f_{i} d \nu\right|^{r}\right)^{1 / r} \\
& \leq w_{p}\left(f_{i} \mid i=1, n\right)|\nu|([0,1]) \tag{9}\\
& =3 w_{p}\left(f_{i} \mid i=1, n\right)
\end{align*}
$$

hence, $\|U\|_{r, p} \leq 3$. Also, $3=|\nu|([0,1]) \leq\|U\|_{r, p}$ and the lemma is proved.
Lemma 4. For $1 \leq r<\infty, X$ and Y Banach spaces, T a compact Hausdorff space, μ a regular positive finite Borel measure on T, there is $U: C(T, X) \rightarrow$ $L_{r}(\mu, Y)$, an r-absolutely summing operator, whose representing measure G has the property $\|G\|_{r, r}(T)=\|U\|_{r, r}$.

Proof. Let $J: C(T) \rightarrow L_{r}(\mu)$ be the canonical inclusion. As it is well known and easy to prove (cf. [2, 6]), J is an r-absolutely summing operator with $\|J\|_{r}=[\mu(T)]^{1 / r}$. Also, $F(E)=\chi_{E}$ is the representing measure of J and
$\|F(E)\|_{r, r}=[\mu(E)]^{1 / r}$, thus $\|F\|_{r, r}(T)=[\mu(T)]^{1 / r}$. Now let $x^{*} \in X^{*}$ with $\left\|x^{*}\right\|=1, y \in Y,\|y\|=1$ and $U: C(T, X) \rightarrow L_{r}(\mu, Y), U(f)=J\left(x^{*} f\right) y$. Then $G(E)=\left(x^{*} \otimes y\right) F(E)$ is the representing measure of U and it is clear that $l_{r}\left(U f_{i} \mid i=1, n\right) \leq\|J\|_{r} w_{p}\left(x^{*} f_{i} \mid i=1, n\right) \leq[\mu(T)]^{1 / r} w_{p}\left(f_{i} \mid i=1, n\right)$, that is, U is an r-absolutely summing operator with $\|G\|_{r, r}(T)=\|U\|_{r, r}=$ $[\mu(T)]^{1 / r}$.

The following theorem is an extension of a result from [1, Proposition 3].
Theorem 5. Let $U: C(T, X) \rightarrow Y$ be a linear and continuous operator, G its representing measure. If $G(E) \in \mathrm{As}_{r, p}(X, Y)$ for each $E \in \sum$ and $G: \sum \rightarrow$ $\mathrm{As}_{r, p}(X, Y)$ has finite variation with respect to the (r, p)-absolutely summing norm on $\mathrm{As}_{r, p}(X, Y)$, then U is an (r, p)-absolutely summing operator.

Proof. We consider $\hat{U}: B\left(\sum, X\right) \rightarrow Y, \hat{U}(f)=\int_{T} f d G, f \in B\left(\sum, X\right)$. Since \hat{U} is an extension of U to $B\left(\sum, X\right)$ and $S\left(\sum, X\right)$ is dense in $B\left(\sum, X\right)$ it suffices to prove that \hat{U} is (r, p)-absolutely summing on $S\left(\sum, X\right)$. Let $f_{1}, \ldots, f_{n} \in$ $S\left(\sum, X\right)$. Then there is $\left\{E_{1}, \ldots, E_{k}\right\} \subset \sum$, a finite partition of T and $x_{i j} \in X$ such that $f_{i}=\sum_{j=1}^{k} \chi_{E_{j}} x_{i j}$, for each $i=1, \ldots, n$. Then

$$
\begin{align*}
l_{r}\left(\hat{U} f_{i} \mid i=1, n\right) & =l_{r}\left(\sum_{j=1}^{k} G\left(E_{j}\right) x_{i j} \mid i=1, n\right) \\
& \leq \sum_{j=1}^{k} l_{r}\left(G\left(E_{j}\right) x_{i j} \mid i=1, n\right) \tag{10}\\
& \leq \sum_{j=1}^{k}\left\|G\left(E_{j}\right)\right\|_{r, p} w_{p}\left(x_{i j} \mid i=1, n\right)
\end{align*}
$$

since G takes its values in $\operatorname{As}_{r, p}(X, Y)$. But $w_{p}\left(f_{i} \mid i=1, n\right) \geq \max _{j=1, k} w_{p}$ $\times\left(x_{i j} \mid i=1, n\right)$ (because if $\left\|x^{*}\right\| \leq 1, t \in E_{j}, j=1, k$ then $w_{p}\left(f_{i} \mid i=1, n\right) \geq$ $\left.\left(\sum_{i=1}^{n}\left|\left\langle f_{i}, x^{*} \otimes \delta_{t}\right\rangle\right|^{p}\right)^{1 / p}=\left(\sum_{i=1}^{n}\left|x^{*} f_{i}(t)\right|^{p}\right)^{1 / p}=\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i j}\right)\right|^{p}\right)^{1 / p}\right)$ thus,

$$
\begin{align*}
l_{r}\left(\hat{U} f_{i} \mid i=1, n\right) & \leq\left(\sum_{j=1}^{k}\left\|G\left(E_{j}\right)\right\|_{r, p}\right) w_{p}\left(f_{i} \mid i=1, n\right) \tag{11}\\
& \leq|G|_{r, p}(T) w_{p}\left(f_{i} \mid i=1, n\right)
\end{align*}
$$

since G has finite variation with respect to the (r, p)-absolutely summing norm on $\mathrm{As}_{r, p}(X, Y)$ (here, $|G|_{r, p}(T)$ is the variation of G with respect to the (r, p) absolutely summing norm on $\mathrm{As}_{r, p}(X, Y)$). This shows that U is (r, p)-absolutely summing and $\|U\|_{r, p} \leq|G|_{r, p}(T)$ and the proof is finished.

In the next theorems we give two applications of the results of Theorem 5.
Theorem 6. Let $U: C(T) \rightarrow Y$ be an absolutely summing operator, $V \in$ $\operatorname{As}_{r, p}(X, Z)$. Then the injective tensor product $U \bigotimes_{\varepsilon} V$ is an element of $\operatorname{As}_{r, p}\left(C(T, X), Y \bigotimes_{\epsilon} Z\right)$.

Proof. Let $F \in \operatorname{rcabv}\left(\sum, Y\right)$ be the representing measure of U, (see [3]). Then $G(E) x=F(E) \otimes V(x), x \in X, E \in \sum$ is the representing measure of $U \bigotimes_{\epsilon} V$. In addition, $G(E) \in \mathrm{As}_{r, p}\left(X, Y \bigotimes_{\epsilon} Z\right)$ and $\|G(E)\|_{r, p} \leq\|F(E)\|\|V\|_{r, p}$ for $E \in \sum$. Indeed, for $E \in \sum$, let $S_{E}: Z \rightarrow Y \bigotimes_{\epsilon} Z, S_{E}(z)=F(E) \otimes z$. Then $G(E)=S_{E} V$, hence, because ($\mathrm{As}_{r, p},\| \|_{r, p}$) is a normed ideal of operators and $V \in \operatorname{As}_{r, p}(X, Z)$, we obtain that $G(E) \in \operatorname{As}_{r, p}\left(X, Y \bigotimes_{\epsilon} Z\right)$ and $\|G(E)\|_{r, p} \leq$ $\left\|S_{E}\right\|\|V\|_{r, p}$. But $\left\|S_{E}\right\| \leq\|F(E)\|$ and hence $\|G(E)\|_{r, p} \leq\|F(E)\|\|V\|_{r, p}$. Now F has bounded variation and hence G satisfies the properties from Theorem 6. Thus, $U \bigotimes_{\epsilon} V \in \mathrm{As}_{r, p}\left(C(T, X), Y \bigotimes_{\epsilon} Z\right)$.

In [2, Chapter 34], various results concerning tensor stability and tensor instability of some operator ideals are given. In the next theorem, we prove a result of the same type.

Theorem 7. Let $U: X \rightarrow X_{1}$ be an integral operator, $V \in \operatorname{As}_{r, p}\left(Y, Y_{1}\right)$. Then $U \bigotimes_{\epsilon} V \in \operatorname{As}_{r, p}\left(X \bigotimes_{\epsilon} Y, X_{1} \bigotimes_{\epsilon} Y_{1}\right)$ and $\left\|U \bigotimes_{\epsilon} V\right\|_{r, p} \leq\|U\|_{\text {int }}\|V\|_{r, p}$.

Proof. As U is an integral operator, we have the factorization

where S is an absolutely summing operator (T being a compact Hausdorff space), (see [2, 3]).

Hence we have the following factorization of $U \bigotimes_{\epsilon} V$

(For the inclusion $X_{1}^{* *} \bigotimes_{\epsilon} Y_{1} \hookrightarrow\left(X_{1} \bigotimes_{\epsilon} Y_{1}\right)^{* *}$, see [4, Lemma 1].) Using Theorem 6 it follows that $S \bigotimes_{\epsilon} V \in \operatorname{As}_{r, p}\left(C(T, Y), X_{1}^{* *} \bigotimes_{\epsilon} Y_{1}\right)$, hence by the ideal property of $\mathrm{As}_{r, p}$ we obtain that $J\left(U \bigotimes_{\epsilon} V\right) \in \mathrm{As}_{r, p}\left(X \bigotimes_{\epsilon} Y\right.$,
$\left.X_{1} \bigotimes_{\epsilon} Y_{1}\right)^{* *}$, where J is the canonical embedding into the bidual, and hence $U \bigotimes_{\epsilon} V \in \operatorname{As}_{r, p}\left(X \bigotimes_{\epsilon} Y, X_{1} \bigotimes_{\epsilon} Y_{1}\right)$.

The inequality $\left\|U \bigotimes_{\epsilon} V\right\|_{r, p} \leq\|U\|_{\text {int }}\|V\|_{r, p}$ is also clear.

Acknowledgement

We thank the referee for his useful suggestions and remarks.

References

[1] R. Bilyeu and P. Lewis, Some mapping properties of representing measures, Ann. Mat. Pura Appl. (4) 109 (1976), 273-287. MR 54\#13563. Zbl 336.46048.
[2] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, vol. 176, North-Holland, Amsterdam, 1993. MR 94e:46130. Zbl 774.46018.
[3] J. Diestel and J. J. Uhl, Vector Measures, Mathematical Surveys, no. 15, American Mathematical Society, Rhode Island, 1977. MR 56\#12216. Zbl 369.46039.
[4] G. Emmanuele, Remarks on weak compactness of operators defined on certain injective tensor products, Proc. Amer. Math. Soc. 116 (1992), no. 2, 473-476. MR 92m:46109. Zbl 776.46030.
[5] S. Montgomery-Smith and P. Saab, p-summing operators on injective tensor products of spaces, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 3-4, 283-296. MR 93e:47026. Zbl 793.47017.
[6] A. Pietsch, Operator Ideals, Mathematical Monographs, vol. 16, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 81a:47002. Zbl 399.47039.
[7] D. Popa, 2-absolutely summing operators on the space $C(T, X)$, J. Math. Anal. Appl. 239 (1999), no. 1, 1-6. MR 2000j:47038. Zbl 942.47013.
[8] C. Swartz, Absolutely summing and dominated operators on spaces of vectorvalued continuous functions, Trans. Amer. Math. Soc. 179 (1973), 123-131. MR 47\#9330. Zbl 226.46038.

Dumitru Popa: Department of Mathematics, Ovidius University of Constanta, Constanta 8700, Romania

E-mail address: dpopa@univ-ovidius.ro

