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A fixed point theorem for condensing maps due to Martelli is used to investigate
the existence of solutions to second-order impulsive initial value problem for
functional differential inclusions in Banach spaces.

1. Introduction

Differential equations arise in many real world problems such as physics, popu-
lation dynamics, ecology, biological systems, biotechnology, industrial robotics,
pharmacokinetics, optimal control, and so forth. Much has been done under the
assumption that the state variables and system parameters change continuously.
However, one may easily visualize situations in nature where abrupt changes
such as shock, harvesting, and disasters may occur. These phenomena are short-
term perturbations whose duration is negligible in comparison with the duration
of the whole evolution process. Consequently, it is natural to assume, in mod-
elling these problems, that these perturbations act instantaneously, that is, in the
form of impulses. For more details on this theory and on its applications we refer
to the monographs of Baı̆nov and Simeonov [2], Lakshmikantham, Baı̆nov, and
Simeonov [19], and Samoilenko and Perestyuk [24]. However, very few results
are available for impulsive differential inclusions; see for instance, the papers
of Benchohra and Boucherif [4, 5], Erbe and Krawcewicz [12], and Frigon and
O’Regan [14].

Very recently an extension to functional differential equations of first order
with impulsive effects has been done by Yujun [10] by using the coincidence
degree theory, and by Benchohra and Ntouyas [7] with the aid of Schaefer’s
theorem. These results have been also generalized to the multivalued case by
the authors in [6] by combining the a priori bounds and the Leray-Schauder
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nonlinear alternative for multivalued maps. For other results concerning func-
tional differential equations, we refer the interested reader to the monographs of
Erbe, Qingai, and Zhang [13], Hale [15], Henderson [16], and the survey paper
of Ntouyas [23].

The fundamental tools used in the existence proofs of all the above-mentioned
works are essentially fixed point arguments, nonlinear alternative, topological
transversality [11], topological degree theory [22], or the monotone method
combined with upper and lower solutions [18].

In this paper, we will be concerned with the existence of solutions of the
second-order initial value problem for the impulsive functional differential
inclusion

y′′ ∈ F
(
t,yt

)
, t ∈ J = [0,T ], t �= tk, k = 1, . . . ,m, (1.1)

�y|t=tk = Ik

(
y
(
t−k

))
, k = 1, . . . ,m, (1.2)

�y′|t=tk = Īk

(
y
(
t−k

))
, k = 1, . . . ,m, (1.3)

y(t) = φ(t), t ∈ [−r,0], y′(0) = y0, (1.4)

where F : J ×C([−r,0],E) → 2E is a given multivalued map with compact
and convex values, (0 < r < ∞), 0 = t0 < t1 < · · · < tm < tm+1 = T , Ik, Īk ∈
C(E,E) (k = 1,2, . . . ,m) are bounded, y0 ∈ E, �y|t=tk = y(t+k ) − y(t−k ),
�y′|t=tk = y′(t+k )− y′(t−k ) and y(t−k ), y(t+k ), y′(t−k ) and y′(t+k ) represent the
left and right limits of y(t) and y′(t), respectively at t = tk , and E a real Banach
space with norm | · |.

For any continuous function y defined on the interval [−r,T ]−{t1, . . . , tm}
and any t ∈ J , we denote by yt the element of C([−r,0],E) defined by

yt (θ) = y(t +θ), θ ∈ [−r,0]. (1.5)

Here yt (·) represents the history of the state from time t − r , up to the present
time t .

In this paper, we will generalize the results of Benchohra and Ntouyas [8]
considered for second-order impulsive functional differential equations to the
multivalued case. Our approach is based on a fixed point theorem for condensing
maps due to Martelli [21].

2. Preliminaries

In this section, we introduce notations, definitions, and results which are used
throughout the paper.

Let [a,b] denote a real compact interval of R. Let C([a,b],E) be the Banach
space of continuous functions from [a,b] into E with norm

‖y‖∞ = sup
{|y(t)| : t ∈ [a,b]} ∀y ∈ C

([a,b],E)
. (2.1)
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Let y : [a,b] → E be a measurable function. By
∫ b

a
y(s)ds, we mean the

Bochner integral of y, assuming it exists. A measurable function y : [a,b] → E

is Bochner integrable if and only if |y| is Lebesgue integrable. For properties of
the Bochner integral, see Yosida [25].

L1([a,b],E) denotes the Banach space of functions Bochner integrable
normed by

‖y‖L1 =
∫ b

a

|y(t)|dt ∀y ∈ L1([a,b],E)
. (2.2)

Let (X, | · |) be a Banach space. A multivalued map G : X → 2X has convex
(closed) values if G(x) is convex (closed) for all x ∈ X. G is bounded on
bounded sets if G(B) is bounded in X for each bounded set B of X (i.e.,
supx∈B{sup{|y| : y ∈ G(x)}} < ∞).

G is called upper semicontinuous (u.s.c.) on X if for each x0 ∈ X the set
G(x0) is a nonempty, closed subset of X, and if for each open set N of X contain-
ing G(x0), there exists an open neighbourhood M of x0 such that G(M) ⊆ N .
G is said to be completely continuous if G(B) is relatively compact for every
bounded subset B ⊆ X.

If the multivalued G is completely continuous with nonempty compact val-
ues, then G is u.s.c. if and only if G has a closed graph (i.e., xn → x∗, yn → y∗,
yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that
x ∈ G(x).

In the following CC(E) denotes the set of all nonempty compact, convex
subsets of E.

A multivalued map G : [a,b] → CC(X) is said to be measurable if for each
x ∈ E the function Y : [a,b] → R defined by

Y (t) = d
(
x,G(t)

) = inf
{|x −z| : z ∈ G(t)

}
(2.3)

is measurable. For more details on multivalued maps see Aubin and Frankowska
[1], Deimling [9], and Hu and Papageorgiou [17].

An upper semi-continuous map G : X → 2X is said to be condensing [3]
if for any subset B ⊆ X with α(B) �= 0, we have α(G(B)) < α(B), where α

denotes the Kuratowski measure of noncompacteness [3].
We remark that a completely continuous multivalued map is the easiest

example of a condensing map.

Definition 2.1. A multivalued map F : J ×C([−r,0],E) → 2E is said to be an
L1-Carathéodory if

(i) t 
→ F(t,u) is measurable for each u ∈ C([−r,0],E);
(ii) u 
→ F(t,u) is upper semicontinuous for a.a. t ∈ J ;

(iii) for each ρ > 0, there exists hρ ∈ L1(J,R+) such that∥∥F(t,u)
∥∥ = sup

{|v| : v ∈ F(t,u)
} ≤ hρ(t) ∀‖u‖ ≤ ρ and for a.a. t ∈ J.

(2.4)
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In order to define the solution of (1.1), (1.2), (1.3), and (1.4) we will consider
the following space � = {y : [−r,T ] → E : yk ∈ C(Jk,E), k = 0, . . . ,m and
there exist y(t−k ), and y(t+k ), k = 1, . . . ,m with y(t−k ) = y(tk), y(t) = φ(t),

for all t ∈ [−r,0]} which is a Banach space with the norm

‖y‖� = max
{∥∥yk

∥∥
Jk

, k = 0, . . . ,m
}
, (2.5)

where yk is the restriction of y to Jk = [tk, tk+1], k = 0, . . . ,m.
We will also consider the set �1 = {y : [−r,T ] → E : yk ∈ W 2,1(Jk,E),

k = 0, . . . ,m and there exist y(t−k ) and y(t+k ), k = 1, . . . ,m with y(t−k )= y(tk),

y(t) = φ(t), for all t ∈ [−r,0]}, where W 2,1(Jk,E) is the Sobolev space of
functions y : Jk → E such that y and y′ are absolutely continuous, and y′′ ∈
L1(Jk,E). The set �1 is a Banach space with the norm

‖y‖�1 = max
{∥∥yk

∥∥
W 2,1(Jk,E)

, k = 0, . . . ,m
}
. (2.6)

Let I be a compact real interval. For any y ∈ C(I,E) we define the set

SF,y = {
v ∈ L1(I,E) : v(t) ∈ F(t,y) for a.e. t ∈ I

}
. (2.7)

Definition 2.2. A function y ∈ �∩�1 is said to be a solution of (1.1), (1.2),
(1.3), and (1.4) if y satisfies the differential inclusion y′′(t) ∈ F(t,yt ) a.e. on
J −{t1, . . . , tm} and the conditions �y|t=tk = Ik(y(t−k )), �y′|t=tk = Īk(y(t−k )),
k = 1, . . . ,m.

The following lemmas are crucial in the proof of our main theorem.

Lemma 2.3 [20]. Let I be a compact real interval and X a Banach space. Let
F be a multivalued map satisfying the Carathéodory conditions with the set of
L1-selections SF is nonempty, and let � be a linear continuous mapping from
L1(I,X) to C(I,X). Then the operator

� ◦SF : C(I,X) −→ CC
(
C(I,X)

)
, y 
−→ (

� ◦SF

)
(y) := �

(
SF,y

)
,

(2.8)
is a closed graph operator in C(I,X)×C(I,X).

Lemma 2.4 [21]. Let G : X → CC(X) be an u.s.c. condensing map. If the set

� := {
y ∈ X : λy ∈ G(y) for some λ > 1

}
(2.9)

is bounded, then G has a fixed point.

We introduce the following hypotheses:

(H1) F : J ×C([−r,0],E)→CC(E); (t,u) 
→F(t,u) is an L1-Carathéodory
multivalued map and for each fixed u ∈ C([−r,0],E) the set

SF,u = {
g ∈ L1(J,E) : g(t) ∈ F(t,u) for a.e. t ∈ J

}
(2.10)

is nonempty;
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(H2) there exist constants ck , dk such that |Ik(y)| ≤ ck , |Īk(y)| ≤ dk , k =
1, . . . ,m for each y ∈ E.

(H3) ‖F(t,u)‖ := sup{|v| : v ∈ F(t,u)} ≤ p(t)ψ(‖u‖) for a.a. t ∈ J and all
u ∈ C(J0,E), where p ∈ L1(J,R+) and ψ : R+ → (0,∞) is continuous
and increasing with

∫ T

0
(T −s)p(s)ds <

∫ ∞

c

dτ

ψ(τ)
; (2.11)

where c = ‖φ‖+T |y0|+∑m
k=1[ck +(T − tk)dk];

(H4) for each bounded B ⊆ C([−r,T ],E), and for each t ∈ J the set{
φ(0)+ ty0 +

∫ t

0
(t −s)g(s)ds

+
∑

0<tk<t

[
Ik

(
y
(
tk

))+(
t − tk

)
Īk

(
y
(
tk

))] : g ∈ SF,B

} (2.12)

is relatively compact in E, where SF,B = ∪{SF,y;y ∈ B}.

Remark 2.5. (i) If dimE < ∞, then for each u ∈ C([−r,0],E), SF,u �= ∅ (see
Lasota and Opial [20]).

(ii) If dimE = ∞ and u ∈ C([−r,0],E) the set SF,u is nonempty if and
only if the function Y : J → R defined by

Y (t) := inf
{|v| : v ∈ F(t,u)

}
(2.13)

belongs to L1(J,R) (see Hu and Papageorgiou [17]).
(iii) If dimE < ∞, then (H4) is satisfied.

We have the following auxiliary result. In what follows we will use the
notation

∑
0<tk<t [y(t+k )−y(tk)] to mean 0, when k = 0 and 0 < t < t1, and to

mean
∑k

i=1[y(t+k )−y(tk)], when k ≥ 1 and tk < t ≤ tk+1.

Lemma 2.6. If y ∈ �∩�1, then

y(t) = y(0)+ ty′(0)+
∫ t

0
(t −s)y′′(s)ds

+
∑

0<tk<t

{[
y
(
t+k

)−y
(
tk

)]+(
t − tk

)[
y′(t+k )−y′(tk)]} for t ∈ J.

(2.14)

Proof. Recall that 0 = t0 < t1 < · · · < tm < tm+1 = T . We first show that

y(t) = y(0)+
∫ t

0
y′(s)ds +

∑
0<tk<t

{[
y
(
t+k

)−y
(
tk

)]}
for t ∈ J. (2.15)
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Suppose tk < t ≤ tk+1. Then

y
(
t1

)−y(0) =
∫ t1

0
y′(s)ds,

y
(
t2

)−y
(
t+1

) =
∫ t2

t1

y′(s)ds,

...

y
(
tk

)−y
(
t+k−1

) =
∫ tk

tk−1

y′(s)ds,

y(t)−y
(
t+k

) =
∫ t

tk

y′(s)ds.

(2.16)

Adding these equalities together, we get

y(t)−y(0)−
k∑

i=1

[
y
(
t+i

)−y
(
ti
)] =

∫ t

0
y′(s)ds. (2.17)

Hence

y(t) = y(0)+
∫ t

0
y′(s)ds +

∑
0<tk<t

[
y
(
t+k

)−y
(
tk

)]
. (2.18)

Similarly, we have

y′(t) = y′(0)+
∫ t

0
y′′(s)ds +

∑
0<tk<t

[
y′(t+k )−y′(tk)]. (2.19)

Substituting (2.19) into (2.15), it is easy to get (2.14). �

3. Main result

Theorem 3.1. Suppose that hypotheses (H1), (H2), (H3), and (H4) are satisfied.
Then the impulsive initial value problem (1.1), (1.2), (1.3), and (1.4) has at least
one solution on [−r,T ].

Proof. Transform the problem into a fixed point problem. Consider the multi-
valued map, G : � → 2� defined by

G(y) =




h ∈ � : h(t) =




φ(t), t ∈ [−r,0]
φ(0)+ ty0 +

∫ t

0
(t −s)g(s)ds

+
∑

0<tk<t

[
Ik

(
y
(
tk

))+(
t − tk

)
Īk

(
y
(
tk

))]
, t ∈ J




,

(3.1)
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where

g ∈ SF,y = {
g ∈ L1(J,E) : g(t) ∈ F

(
t,yt

)
for a.e. t ∈ J

}
. (3.2)

Remark 3.2. Clearly from Lemma 2.6 the fixed points of G are solutions to
(1.1), (1.2), (1.3), and (1.4).

We will show that G satisfies the assumptions of Lemma 2.4. The proof will
be given in several steps.

Step 1. G(y) is convex for each y ∈ �.
Indeed, if h1, h2 belong to G(y), then there exist g1,g2 ∈ SF,y such that for

each t ∈ J we have

hi(t) = φ(0)+ ty0 +
∫ t

0
(t −s)gi(s)ds

+
∑

0<tk<t

[
Ik

(
y
(
tk

))+(
t − tk

)
Īk

(
y
(
tk

))]
, i = 1,2.

(3.3)

Let 0 ≤ d ≤ 1. Then for each t ∈ J we have

(
dh1 +(1−d)h2

)
(t) = φ(0)+ ty0 +

∫ t

0
(t −s)

[
dg1(s)+(1−d)g2(s)

]
ds

+
∑

0<tk<t

[
Ik

(
y
(
tk

))+(
t − tk

)
Īk

(
y
(
tk

))]
.

(3.4)

Since SF,y is convex (because F has convex values) then

dh1 +(1−d)h2 ∈ G(y). (3.5)

Step 2. G maps bounded sets into bounded sets in �.
Indeed, it is enough to show that there exists a positive constant � such that

for each h ∈ G(y) with y ∈ Bq = {y ∈ � : ‖y‖∞ ≤ q} one has ‖h‖∞ ≤ �. If
h ∈ G(y), then there exists g ∈ SF,y such that for each t ∈ J we have

h(t) = φ(0)+ ty0 +
∫ t

0
(t −s)g(s)ds

+
∑

0<tk<t

[
Ik

(
y
(
tk

))+(
t − tk

)
Īk

(
y
(
tk

))]
.

(3.6)

By (H2) and (H3) we have for each t ∈ J
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∣∣h(t)
∣∣ ≤ ‖φ‖+ t

∣∣y0
∣∣+

∫ t

0
(t −s)

∣∣g(s)
∣∣ds

+
∑

0<tk<t

[∣∣Ik

(
y
(
tk

))∣∣+ ∣∣(t − tk
)∣∣∣∣Īk

(
y
(
tk

))∣∣]

≤ ‖φ‖+T
∣∣y0

∣∣+
∫ t

0
(t −s)

∣∣gq(s)
∣∣ds

+
m∑

k=1

[
sup

{∣∣Ik

(|y|)∣∣ : ‖y‖∞ ≤ q
}

+(
T − tk

)
sup

{∣∣Īk

(|y|)∣∣ : ‖y‖∞ ≤ q
}]

.

(3.7)

Thus

‖h‖∞ ≤ ‖φ‖+T
∣∣y0

∣∣+
∫ T

0
(T −s)

∣∣gq(s)
∣∣ds

+
m∑

k=1

[
sup

{∣∣Ik

(|y|)∣∣ : ‖y‖∞ ≤ q
}

+(
T − tk

)
sup

{∣∣Īk

(|y|)∣∣ : ‖y‖∞ ≤ q
}] = �.

(3.8)

Step 3. G maps bounded sets into equicontinuous sets of �.
Let r1, r2 ∈ J , r1 < r2 and Bq = {y ∈ � : ‖y‖∞ ≤ q} a bounded set of �.
For each y ∈ Bq and h ∈ G(y), there exists g ∈ SF,y such that

h(t) = φ(0)+ ty0 +
∫ t

0
(t −s)g(s)ds +

∑
0<tk<t

[
Ik

(
y
(
tk

))+(
t − tk

)
Īk

(
y
(
tk

))]
.

(3.9)
Thus
∣∣h(

r2
)−h

(
r1

)∣∣ ≤ (
r2 −r1

)∣∣y0
∣∣+

∫ r2

r1

(
s −r1

)
gq(s)ds +(

r2 −r1
)∫ r2

0
gq(s)ds

+
∑

0<tk<r2−r1

[
Ik

(
y
(
tk

))+(
r2 −r1

)
Īk

(
y
(
tk

))]
.

(3.10)

As r2 → r1 the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases r1 < r2 ≤ 0 and r1 ≤ 0 ≤ r2 are obvious.

Step 4. G has a closed graph.
Let yn → y∗,hn ∈ G(yn), and hn → h∗. We will prove that h∗ ∈ G(y∗).

hn ∈ G(yn) means that there exists gn ∈ SF,yn such that for each t ∈ J

hn(t)=φ(0)+ty0+
∫ t

0
(t −s)gn(s)ds+

∑
0<tk<t

[
Ik

(
yn

(
tk

))+(
t − tk

)
Īk

(
yn

(
tk

))]
.

(3.11)
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We must prove that there exists g∗ ∈ SF,y∗ such that for each t ∈ J

h∗(t) = φ(0)+ ty0 +
∫ t

0
(t −s)g∗(s)ds

+
∑

0<tk<t

[
Ik

(
y∗

(
tk

))+(
t − tk

)
Īk

(
y∗

(
tk

))]
.

(3.12)

Clearly, since Ik and Īk , k = 1, . . . ,m are continuous we have

∥∥∥∥
(

hn −φ(0)− ty0 −
∑

0<tk<t

[
Ik

(
yn

(
tk

))+(
t − tk

)
Īk

(
yn

(
tk

))])

−
(

h∗ −φ(0)− ty0 −
∑

0<tk<t

[
Ik

(
y∗

(
tk

))+(
t − tk

)
Īk

(
y∗

(
tk

))])∥∥∥∥∞
−→ 0, as n−→∞.

(3.13)

Consider the linear continuous operator

� : L1(J,E) −→ C(J,E),

g 
−→ �(g)(t) =
∫ t

0
(t −s)g(s)ds.

(3.14)

From Lemma 2.3, it follows that � ◦SF is a closed graph operator.
Moreover, we have

(
hn(t)−φ(0)− ty0 −

∑
0<tk<t

[
Ik

(
yn

(
tk

))+(
t − tk

)
Īk

(
yn

(
tk

))]) ∈ �
(
SF,yn

)
.

(3.15)
Since yn → y∗, it follows from Lemma 2.3 that

(
h∗(t)−φ(0)− ty0 −

∑
0<tk<t

[
Ik

(
y∗

(
tk

))+(
t − tk

)
Īk

(
y∗

(
tk

))]) =
∫ t

0
g∗(s)ds

(3.16)
for some g∗ ∈ SF,y∗ .

Step 5. Now it remains to show that the set

� := {
y ∈ C

([−r,T ],E) : λy ∈ G(y), for some λ > 1
}

(3.17)

is bounded.
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Let y ∈ �. Then λy ∈ G(y) for some λ > 1. Thus there exists g ∈ SF,y

such that

y(t) = λ−1φ(0)+λ−1ty0 +λ−1
∫ t

0
(t −s)g(s)ds

+λ−1
∑

0<tk<t

[
Ik

(
y
(
tk

))+(
t − tk

)
Īk

(
y
(
tk

))]
, t ∈ J.

(3.18)

This implies by (H2) and (H3) that for each t ∈ J , we have

∣∣y(t)
∣∣ ≤ ‖φ‖+T

∣∣y0
∣∣+

∫ t

0
(T −s)p(s)ψ

(∥∥ys

∥∥)
ds +

m∑
k=1

[
ck +(

T − tk
)
dk

]
.

(3.19)
We consider the function µ defined by

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ T . (3.20)

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ [0,T ], by the previous
inequality we have for t ∈ [0,T ]

µ(t) ≤ ‖φ‖+T
∣∣y0

∣∣+
∫ t

0
(T −s)p(s)ψ

(
µ(s)

)
ds +

k∑
k=1

[
ck +(

T − tk
)
dk

]
.

(3.21)
If t∗ ∈ J0 then µ(t) = ‖φ‖ and the previous inequality holds.

We take the right-hand side of the above inequality as v(t), then we have

c = v(0) = ‖φ‖+T
∣∣y0

∣∣+
m∑

k=1

[
ck +(

T − tk
)
dk

]
,

µ(t) ≤ v(t), t ∈ [0,T ].
(3.22)

Using the nondecreasing character of ψ we get

v′(t) = (T − t)p(t)ψ
(
µ(t)

) ≤ (T − t)p(t)ψ
(
v(t)

)
, t ∈ [0,T ]. (3.23)

This implies for each t ∈ J that
∫ v(t)

v(0)

du

ψ(u)
≤

∫ T

0
(T −s)p(s)ds <

∫ ∞

v(0)

du

ψ(u)
. (3.24)

This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ J ,
and hence µ(t) ≤ b, t ∈ J . Since for every t ∈ [0,T ],‖yt‖ ≤ µ(t), we have

‖y‖∞ := sup
{∣∣y(t)

∣∣ : −r ≤ t ≤ T
} ≤ b, (3.25)

where b depends only on T and on the functions p and ψ . This shows that �
is bounded.
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Set X := C([−r,T ],E). As a consequence of Lemma 2.4 we deduce that G

has a fixed point y which is a solution of (1.1), (1.2), (1.3), and (1.4). �
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