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For stationary Schrödinger equation in R
n with the finite potential the singular

pseudopotential is constructed in the form allowing us to find wave functions.
The method does not require the knowledge of the explicit form of a poten-
tial and assumes only knowledge of the scattering amplitude for fixed level
of energy.

1. Introduction

The stationary Schrödinger equation( �∇ · �∇ +λ2
0

)
�

(�r)−q
(�r,�, �∇�

) = 0 in R
n (1.1)

with the finite potential q and nonlocal boundary condition (some spectral char-
acteristics can be considered, scattering amplitude, for example) appears in cer-
tain problems of theoretical, nuclear, and quantum physics, using semiclassical
Hartry-Fock-Slatter model (cf. [1]), in inverse problem of scattering theory (see
[4, 5]), and so forth. The method of pseudopotential, often used for study of
these problems, is contained in replacement of potential q by pseudopotential q̂

(which does not depend explicitly on �, �∇�), of such form that the solution �̂ of
the reduced problem coincides with � in exterior to effective area of the poten-
tial q. In contrast to methods of pseudopotential used up to now (cf. [1, 4, 5]),
the new method, proposed in this article, does not require the knowledge of the
explicit form of the potential q.

2. Basic notation and preliminary results

Let R
n be the Euclidean space of vectors x = {x1, . . . ,xn} and let r = |x| be

the Euclidean length of the vector x ∈ R
n. Let θ = x/r be a point of the unit
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sphere ω = {|x| = 1} and let |ω| be the area of ω. Let D = {D1, . . . ,Dn}, where
Dj = ∂/∂xj ; � = D ·D is the Laplace operator in R

n.
As usual (cf. [6]) we denote by �k(R

n), k = 0,1, . . . , the space of degree k ho-
mogeneous harmonic polynomials Yk(x) and by �k(ω) the space of their restric-
tions, Yk(θ) = r−kYk(x), to the unit sphere ω. These polynomials Yk(x),Yk(θ)

are called spherical harmonics of order k. Let �k(x,y) be a zonal harmonic of
order k:

�k(x,y) = (
Cν

k (1)
)−1|x|k|y|kCν

k

(|x|−1|y|−1(x ·y)
)
, (2.1)

where Cν
k (z) is the Gegenbauer polynomial (see [3]), ν = (n−2)/2.

The following equalities hold:

�k(x,y) = �k(y,x); �k(λx,y) = �k(x,λy) = λk�k(x,y); (2.2)

�(x)�k(x,y) = �(y)�k(x,y) = 0; (2.3)∫
ω

Ym

(
θ ′)�k

(
θ,θ ′)dω

(
θ ′) =

{
0; m �= k,

Yk(θ), m = k.
(2.4)

As usual (cf. [6]) S(Rn) is the Schwartz space of test rapidly decreasing func-
tions ϕ(x) and Z(Rn) is the space of Fourier images (�ϕ)(x) of functions
ϕ(x) ∈ C∞

0 (Rn) ⊂ S(Rn). Let S′(Rn) be the Schwartz space of tempered dis-
tributions dual to S(Rn) and Z′(Rn) the space of analytic functionals dual to
Z(Rn) and E′(Rn) ⊂ S′(Rn) the space of compactly supported distributions
dual to C∞

0 (Rn).

Lemma 2.1. For each distribution T ∈ E′(Rn) and for each radial function
f (x) ≡ f0(x) ∈ C∞

0 (Rn), it holds that〈
T (y);�k(x,y)f0

(|y|)〉 ∈ �k

(
R

n
)
. (2.5)

Proof. The proof follows immediately from relations (2.3) and (2.4). �

In S′(Rn) consider the following problem:(
�+λ2

0

)
u(x) = f (x), x ∈ R

n;(
∂

∂r
+ iλ0

)
u(x) = o

(
r(1−n)/2), r = |x| −→ +∞,

(2.6)

where λ0 = const > 0, i = √−1, u ∈ S′(Rn), f ∈ E′(Rn), moreover,

supp(f ) ⊂ V0 = {|x| ≤ R0
}
, R0 > 0. (2.7)

Problem (2.6) and (2.7) is well posed in S′(Rn) (as well as in Z′(Rn)), its
solution u(x) has the form

u(x) = 〈
f (y),T0

(|x −y|)〉, (2.8)
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where the radial distribution

T0
(|x|) = −i4−1

(
λ0

2πr

)ν

H (1)
ν

(
λ0r

)
, r = |x|, ν = n−2

2
, (2.9)

is the fundamental solution of the Helmholtz equation(
�+λ2

0

)
T0

(|x|) = δ(x). (2.10)

Here H
(1)
ν (z) = Jν(z)+ iNν(z) is the Hankel function (cf. [3]) and δ(·) is the

Dirac δ-measure.
In the capacity of preliminary results we formulate the problem of construc-

tion of the singular multipolar pseudosource for problems (2.6) and (2.7). By
the given source f (x), construct a singular pseudosource q̂(x) with support
concentrated at the point {x = 0}, such that the problem(

�+λ2
0

)
ŵ(x) = q̂(x), x ∈ R

n,(
∂

∂r
+ iλ0

)
ŵ(x) = o

(
r(1−n)/2), r = |x| −→ +∞,

(2.11)

is well posed simultaneously with problems (2.6) and (2.7) in some space of
distributions, and, in addition, satisfies the identity

ŵ(x) ≡ u(x), |x| > R0. (2.12)

The following assertion is valid.

Lemma 2.2. The singular pseudosource q̂(x) and the corresponding solution
ŵ(x) of problems (2.11) and (2.12) can be represented in the form

q̂(x) =
∑

k

q̂k(x) =
∑

k

(−1)kAkYk(D)δ(x), (2.13)

ŵ(x) =
∑

k

ŵk(x) =
∑

k

(−1)kAkYk(D)T0
(|x|) (2.14)

≡
∑

k

(−i)CkYk(x)

(
λ0

r

)ν+k

H
(1)
ν+k

(
λ0r

)
, r = |x|; (2.15)

Yk(x) = 〈
f (y);�k(x,y)jν+k

(
λ0|y|)〉; (2.16)

Ak = πν+1

2k−1�(ν +k+1)
, Ck = Ak

2ν+2πν
, ν = n−1

2
, (2.17)

where jν(z) = (2/z)ν�(ν + 1)Jν(z) is the normalized Bessel function and
T0(|x|) is the fundamental solution of Helmholtz equation (2.10), defined by
equality (2.9).
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Remark 2.3. In the special case of f (x) ∈ L2(Rn) Lemma 2.2 is proved in [7].

Remark 2.4. From [7, 8], it follows that series (2.13) and (2.15) converge in the
weak topology of Z′(Rn), but do not converge in the weak topology of S′(Rn);
nevertheless their N th partial sums q̂N (x), ŵN(x) are distributions of S′(Rn);
moreover, the following equality is valid:

〈
ŵN ;ϕ〉 = v.p.

∫
Rn

ŵN(x)ϕ(x)dx, ∀ϕ ∈ S′(
R

n
)
, (2.18)

where v.p. is the Cauchy principal value

v.p.

∫
Rn

h(x)dx

=

∫ +∞

0
rn−1 dr

∫
ω

h(rθ)dω(θ). (2.19)

Proof of Lemma 2.2. First, note that (see [3]) jν+k(λ0r) ∈ C∞(Rn), r = |x|,
therefore (see Lemma 2.1) the right part of equality (2.16) is well defined.

Second, we prove the well-posedness of the right part of equality (2.15).
Using the following property of Hankel functions (see [3]):

(
d

zdz

)k(
z−νH (1)

ν (z)
) = (−1)kz−ν−kH

(1)
ν+k(z), (2.20)

and the fact (see [7]) that for each radial distribution (or function) T0(|x|) and
for each polynomial Yk(x) ∈ �k(R

n) the following equality is valid:

Yk(x)

(
∂

r ∂r

)k

T0(r) = Yk(D)T0
(|x|), r = |x|, (2.21)

we obtain

− iCkYk(x)

(
λ0

r

)ν+k

H
(1)
ν+k

(
λ0r

)

= (−1)k+1iCkYk(x)

(
∂

r ∂r

)k[(
λ0

r

)ν

H (1)
ν

(
λ0r

)]

= (−1)k+1iCkYk(D)
[(

λ0r
)ν

H (1)
ν

(
λ0r

)]
= (−1)kAkYk(D)T0

(|x|) = ŵk(x),

(2.22)

where the radial distribution T0 and coefficients Ck,Ak are defined by equalities
(2.9) and (2.17), respectively. The well-posedness of formula (2.15) is proved.

Third, on the basis of equalities (2.10) and (2.15) we immediately obtain that
the series (2.15) solves problem (2.11) with the singular pseudosource q̂(x),
defined by equality (2.13).
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Finally, we prove the identity (2.12). From equality (2.9) it follows that
singsupp(T0) = {x = 0}, hence, on the basis of equalities (2.7) and (2.8) we
have that the distribution u(x) is some real holomorphic function H(x) at
R

n\V0. Next, using the properties of Hankel function (see [3, formulas (7.15.28),
(7.15.29), (10.9.3), (10.9.5), (11.2.8)]) and formulas (2.1) and (2.9), we obtain

T0
(|x −y|) =

∑
k

(−i)Ck

(
λ0

r

)ν+k

�k(x;y)jν+k

(
λ0|y|)H(1)

ν+k

(
λ0|x|),

|y| < |x|, ν = n−1

2
,

(2.23)

where �k(·; ·) is a zonal harmonic, defined by equality (2.1) and coefficients Ck

are defined by formula (2.17). From here and from formulas (2.7) and (2.8), it
follows that

u(x) =
∑

k

(−i)CkYk(x)

(
λ0

r

)ν+k

H
(1)
ν+k

(
λ0r

)
, r = |x| > R0, (2.24)

where harmonics Yk(x) are defined by equality (2.16).
Comparing equalities (2.15) and (2.24), we can see that these series are

convergent simultaneously and uniformly to real holomorphic function H(x) in
R

n \V0. Thus, identity (2.12) holds. �

3. Classical and quantum cases: pseudosource and pseudopotential

At first, consider the classical (nonquantum) case when the wave function u(x)

does not create bound states, that is, the potential q does not depend on u, Du

and actually is a source. But then we have a problem (2.6), (2.7), however the
explicit form of the source f (x) is unknown a priori (see [4, 5]). Assume that
only the scattering amplitude for the fixed level of energy λ2

0 is known:〈
f (x);exp

[
iλ0(x ·θ)

]〉 = F(θ), θ ∈ ω, (3.1)

or that the same

Resz=λ0

〈
u(x);exp

[
iz(x ·θ)

]〉 = −(
2λ0

)−1
F(θ), θ ∈ ω, (3.2)

where F(θ) is a real holomorphic function on ω.

Remark 3.1. Conditions (3.1) and (3.2) are equivalent, that is immediately
proved by Fourier transform of (2.6).

Remark 3.2. On the other hand, condition (3.1) is insufficient in order to restore
the distribution f (x) (that can be easily verified in case of n = 1). Moreover,
for each F(θ) there are indefinite number of sources f (x) and solutions u(x)
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of problems (2.6) and (2.7), satisfying conditions (3.1) and (3.2), respectively.
Nevertheless, construct the pseudosource q̂ for problems (2.6) and (2.7), and
(3.1) (or (2.6), (2.7), and (3.2)) satisfying the condition〈

q̂(x);exp
[
iλ0(x ·θ)

]〉 = F(θ), θ ∈ ω. (3.3)

Remark 3.3. It is necessary to note that the statement of the problem for the
construction of the pseudosource q̂(x) is well posed by itself if condition (3.1)
(or (3.2)) provides uniqueness of the restriction of all solutions u(x) for problems
(2.6), (2.7), and (3.1) (or (2.6), (2.7), and (3.2)) to the domain R

n\V0. Later we
will prove that this hypothesis is valid.

Construct the pseudosource q̂(x) in the form (2.13). On the basis of equality
(3.1) we have ∑

k

AkYk

(
iλ0θ

) = F(θ). (3.4)

Represent the function F(θ) as a series

F(θ) =
∑

k

Ŷk(θ), Ŷk ∈ �k(ω). (3.5)

Comparing formulas (3.4) and (3.5), we obtain

Yk(θ) = (
iλ0

)−k
A−1

k Ŷk(θ) = A−1
k Ŷk

(− iλ−1
0 θ

)
, (3.6)

or that the same

Yk(x) = A−1
k Ŷk

(− iλ−1
0 x

)
. (3.7)

Consequently,

q̂(x) =
∑

k

Ŷk

(− iλ−1
0 D

)
δ(x), (3.8)

and, on the basis of equality (2.15) we have

ŵ(x) =
∑

k

(4i)−1Ŷk(−iθ)

(
λ0

2πr

)ν

H
(1)
ν+k

(
λ0r

)
, x = rθ, ν = n−2

2
. (3.9)

We establish the relationship between the distribution ŵ(x) (defined by equality
(3.9)) and the solution u(x) of problems (2.6), (2.7), and (3.1) (or (2.6), (2.7),
and (3.2)), satisfying conditions (2.7), (3.1) and using the equality (see [7, 8])

exp
[
iλ0(x ·θ)

] =
∑

k

(
iλ0

)k
Ak�k(x,θ)jν+k

(
λ0|x|), (3.10)

where the coefficients Ak are defined by equality (2.17), we have

F(θ) =
∑

k

(
iλ0

)k
Ak

〈
f (x);�k(x,θ)jν+k

(
λ0|x|)〉. (3.11)
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From here and from equalities (3.5) and (2.16) it follows that

Ŷk(θ) = (
iλ0

)k
Ak

〈
f (x);�k(x,θ)jν+k

(
λ0|x|)〉, (3.12)

or, denoting x by y and θ by x:

Ŷk(x) = (
iλ0

)k
Ak

〈
f (y);�k(x,y)jν+k

(
λ0|y|)〉. (3.13)

Comparing this equality with equalities (2.16) and (2.17) we obtain

u(x) =
∑

k

(4i)−1Ŷk(−iθ)

(
λ0

2πr

)ν

H
(1)
ν+k

(
λ0r

)
, r = |x| > R0. (3.14)

From (3.9), (3.14) it follows that all solutions u(x) of problems (2.6), (2.7), and
(3.1) (or (2.6), (2.7), and (3.2)) coincide in the domain R

n\V0 among themselves
and with the distributions ŵ(x). Thus, the following assertion holds.

Lemma 3.4. The pseudosource q̂(x) for problems (2.6), (2.7), and (3.1) (or (2.6),
(2.7), and (3.2)) and the corresponding solution ŵ(x) of problems (2.11), (2.12),
and (3.3) can be represented by equalities (3.8), (3.9), and (3.5), respectively.
Besides, in the domain R

n \V0 each solution of problems (2.6), (2.7), and (3.1)
(or (2.6), (2.7), and (3.2)) can be represented by equality (3.14).

Now consider the quantum case. The corresponding semiclassical Hartry-
Fock-Slatter model can be represented (see [1, 5]) by the following problem:(

�+λ2
0

)
u(x)−q(x,u,Du) = 0, x ∈ R

n; (3.15)(
∂

∂r
+ iλ0

)
u(x) = o

(
r(1−n)/2), r = |x| −→ +∞, (3.16)

with condition (3.2).
Assume that the explicit form of the potential q(·, ·, ·) is unknown. Suppose

that

supp
(
q
(
x,u(x),Du(x)

)) ⊂ V0 = {|x| ≤ R0
}
, R0 > 0, (3.17)

and, in addition

q(·, ·, ·) ∈ C∞
0

(
R

n ×R×R
n
)
, q

(
x,u(x), �v(x)

) ∈ L1
loc

(
R

n
x

)
(3.18)

for all u, �v = {v1, . . . ,vn} ∈ L1
loc(R

n).

Remark 3.5. Further, we will intentionally ignore questions connected with the
existence and uniqueness of solutions of problems (3.16), (3.17), (3.18), and
(3.2), because they are completely investigated in [2, 4]. However, it is necessary
to explain in what sense equation (3.16) in S′(Rn) or Z′(Rn) is being understood.
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Note that on the basis of the restrictions (3.17) it follows (see [2, 4]) that
any solution u(x) of problems (3.16), (3.17), (3.18) and Du(x) are summable
functions (i.e., regular distributions). But then we have that q(x,u(x),Du(x)) ∈
L1

loc(R
n) and it generates the regular distribution f (x) = q(x,u(x),Du(x)) ∈

S′(Rn) or Z′(Rn).
Therefore, we will understand (3.16) in S′(Rn) or Z′(Rn) as the following

equality:

〈
u,

(
�+λ2

0

)
ϕ
〉−〈q;ϕ〉 = 0 (3.19)

for all test functions ϕ(x).
Assuming that problems (3.16), (3.17), (3.18), and (3.2) are solvable, we fix

any solution u0(x) and denote

f0(x)

= q

(
x,u0(x),Du0(x)

)
. (3.20)

But then problems (3.16), (3.17), (3.18), and (3.2) are reduced to problems
(2.6), (2.7), and (3.2) or (see Remark 3.1)—to problem (2.6), (2.7), and (3.1).
Therefore, the following assertion is valid.

Lemma 3.6. If problems (3.16), (3.17), (3.18), and (3.2) are solvable, then
the pseudopotential q̂(x) and the corresponding solution ŵ(x) of problems
(2.11), (2.12), and (3.3) can be represented by equalities (3.8), (3.9), and (3.5),
respectively. Any solution u(x) of problems (3.16), (3.17), (3.18), and (3.2) can
be represented in the domain R

n \V0 by equality (3.14).

4. Final result: classes of well-posedness of (2.11) and (3.3)

We derive some simple but important estimates. Using equality (2.4) and other
well-known properties of zonal harmonics (see [6]) we have

∣∣Ŷk(θ)
∣∣ ≤ |ω|−1ak‖F‖2,ω, ak = n+2k−2

2

(
cn+k−1

k−1

)
, (4.1)

where ‖·‖2,ω denotes the L2(ω)-norm.
On the other hand, using relations (2.7), (3.1) we have (see [7])

∣∣Ŷk(θ)
∣∣ ≤ Mλ2N

0 RN+k
0 Ak, (4.2)

for some constants M,N ≥ 0; coefficients Ak are defined by equality (2.17).
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Also we have (see [3])

∣∣H(1)
ν (z)

∣∣ ≤ 4π−1[2ν�(ν +1)z−ν +z−1/2]. (4.3)

Combining estimates (4.1), (4.2), and (4.3) with equality (3.9), we obtain

∣∣ŵk(x)
∣∣ ≤ bk(r) ≡ 2|ω|−1akR

k
0

[
r1−n−k + λ

ν+k−1/2
0

2ν+k�(ν +k+1)r1/2

]
·‖F‖2,ω.

(4.4)
Estimate (4.4) directly leads to the following assertion.

Lemma 4.1. The series (3.9) constructed the solution ŵ(x) of problems (2.11)
and (3.3) is uniformly convergent on each sphere ωr = {|x| = r}, r > R0, and
is majorized by a numerical series

∑
k bk(r), where the coefficients bk(r) are

defined by the relation (4.4).

Finally, the following assertion is valid.

Theorem 4.2. (1) The N th partial sums q̂N , ŵN of series (3.8) and (3.9) are
distributions of S′(Rn), moreover, equalities (2.18) and (2.19) are valid.

(2) The series (3.8), (3.5), and (3.9) constructed the pseudopotential (pseudo-
source) q̂(x) and corresponding to it solution ŵ(x) of problems (2.11) and (3.3)
are convergent in weak topology of Z′(Rn).

(3) The problems (2.11) and (3.3) are well posed in Z′(Rn).

Proof. The assertion (1) of Theorem 4.2 follows directly from Remark 3.2.
Finally, it follows from [8, Theorem 3 and Proposition 12], it is sufficient to

prove that the series (3.8) is the multiplicator in Z′(Rn).
Let (�q̂)(y) be a Fourier image of q̂(x)

(
�q̂

)
(y) =

∑
k

λ−k
0 Ŷk(y). (4.5)

On the basis of relations (4.2) and (2.17) it follows that series (4.5) converges
in R

n to a certain function �q̂ ∈ C∞(Rn). If ϕ ∈ Z′(Rn), then �ϕ ∈ C∞
0 (Rn)

and �q̂ ·�ϕ ∈ C∞
0 (Rn), hence, (q̂ ∗ϕ) ∈ Z(Rn). �

Combining Lemmas 3.4, 3.6, 4.1, and Theorem 4.2, we can make the main
conclusion:

In the domain R
n\V0, the structure of the wave function u(x) does not depend

on the choice of the potential q and is completely defined by the scattering
amplitude F(θ).
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