
ON PROJECTION CONSTANT PROBLEMS AND THE
EXISTENCE OF METRIC PROJECTIONS
IN NORMED SPACES

E. M. EL-SHOBAKY, SAHAR MOHAMMED ALI,
AND WATARU TAKAHASHI

Received 3 September 2001

We give the sufficient conditions for the existence of a metric projection onto
convex closed subsets of normed linear spaces which are reduced conditions than
that in the case of reflexive Banach spaces and we find a general formula for the
projections onto the maximal proper subspaces of the classical Banach spaces
lp, 1 ≤ p < ∞ and c0. We also give the sufficient and necessary conditions for
an infinite matrix to represent a projection operator from lp, 1 ≤ p < ∞ or c0

onto anyone of their maximal proper subspaces.

1. Introduction

A subset C of a normed linear space X is called an existence subset of X if and
only if for every element x ∈ X there is an element y ∈ C, where y is called the
best approximation of x denoted by b(x,C) [2, 3] such that

‖x −y‖ = dist(x,C) := inf
{‖x −y‖ : y ∈ C

}
. (1.1)

Needless to say, best approximations play a major role in many applications,
including approximation theory, optimization and applications in mathematical
economics and engineering. Thus, the mathematical analysis of the properties
of the best approximation elements has drawn much attention in research.

In [11, 13], the authors there used the terms Čebyšev subsets and proximal
subsets instead of the existence subsets and studied the characterizations of the
existence subsets of Banach spaces.

It is shown that if X is a reflexive Banach space and C is a closed convex
subset, then for every x ∈ X the best approximation element b(x,C) exists and
is unique.
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402 Projection constant problems and metric projections

In this paper, reduced assumptions on a normed linear space for a closed
convex subset to exist are given, instead of the reflexivity and the completeness
assumptions of the given normed space.

On the other hand, it is known that the existence of a projection P from a
Banach space X onto its closed subspace Y is equivalent to the existence of an
extension T̂ of any operator T from Y into W to an operator from X into W

such that ‖T̂ ‖ ≤ ‖P ‖‖T ‖. The two equivalent problems, that is

(1) how small can the norm of the extended operator be made? and
(2) what is the projection of smallest norm?,

are challenging to the study of the relative projection constant λ(Y,X) of Y in
X, where

λ(Y,X) := inf
{‖P ‖, P is a projection from X onto Y

}
(1.2)

and the absolute projection constant of Y , λ(Y ), where

λ(Y ) := sup
{
λ(Y,X), X contains Y as a closed subspace

}
. (1.3)

In [10], the upper estimate for the absolute projection constant λ(Y ) of a finite-
dimensional space Y with dimY = n is found in the form

λ(Y ) ≤


√

n− 1√
n

+O
(
n−3/4

)
, in the real field,

√
n− 1

2
√

n
+O

(
n−3/4

)
, in the complex field.

(1.4)

The precise values for ln1 , ln2 , and l
p
n ,p �= 1, p �= 2, have been calculated by

Grünbaum [8], Gordon [7], Garling and Gordon [6], Rutovitz [12], and König
et al. [9].

In [5], interesting results have been given for the injective and projective
tensor products.

For a finite codimensional subspaces, Garling and Gordon [6] showed that if
Y is a finite codimensional subspace of the space X with co-dimension n, then
for every ε > 0 there exists a projection P from X onto Y with norm

‖P ‖ ≤ 1+(1+ε)
√

n. (1.5)

And so, λ(Y,X) ≤ 1+√
n. In particular, if the co-dimension of Y is 1, that is,

Y is a hyperplane in the space X, then λ(Y,X) ≤ 2.

2. Notation and basic definitions

We will use the same notation that is given in [1, 4, 14].
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Let C be a nonempty closed convex subset of a normed space X. If for every
x ∈ X there is a unique b(x,C) in C, then the mapping b(x,C) is said to be a
metric projection onto C, in this case we have∥∥x −b(x,C)

∥∥ = dist(x,C) ∀x ∈ X. (2.1)

Clearly, if X is a Hilbert space and C is a nonempty closed convex subset of X,
then there is a metric projection from X onto C, see [14].

As a direct consequence of the separation theorem, if X is a locally convex
linear topological space, then a nonempty convex subset C of X is closed in
the strong topology of X if and only if C is closed in the weak topology of X,
see [4].

A relative projection constant of the closed subspace Y in the space X is said
to be exact if and only if there is a projection P from X onto Y at which the
infimum of (1.2) is attained.

A subspace Y of the space X is said to be a hyperplane (maximal proper sub-
space) of the space X if and only if X contains Y as a subspace of deficiency 1.

It is known that a subspace Y is a hyperplane of the space X if and only if
there is a functional f ∈ X∗ such that Y = f −1({0}); see [1].

Let P be an operator on the space X. Then the point x ∈ X is said to be a
maximal point of the operator P if and only if ‖P ‖ = ‖P(x)‖.

If X is either the Banach space l∞, the Banach space of all bounded scalar-
valued functions {xn}∞n=1 on a countably infinite set N , or lp the Banach space
of all scalar-valued functions x = {xn}∞n=1 on a countably infinite set N , such
that

∑∞
n=1 |xn|p < ∞ or c0 the closed subspace of the Banach space l∞, then

the norms on X are defined as follows:

‖x‖X :=


sup∞

n=1

∣∣xn

∣∣ if X = l∞,( ∞∑
n=1

∣∣xn

∣∣p)1/p

if X = lp.
(2.2)

Our first result is the following theorem.

Theorem 2.1. Let X be a normed space in which every Cauchy sequence has
a weakly convergent subsequence and the parallelogram law holds. Let C be a
nonempty closed convex subset of X. Then the metric projection b(·,C) from X

onto C exists.

Proof. Let x ∈ X and consider the distance function dist(x,C), there exists a
sequence {yn}∞n=1 of elements in C such that

dist(x,C) ≤ ∥∥x −yn

∥∥ ≤ dist(x,C)+ 1

n
, n = 1,2, . . . . (2.3)
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Taking the limit as n → ∞, we get limn→∞ ‖x−yn‖ = dist(x,C). The sequence
{yn}∞n=1 is a Cauchy sequence in X. In fact, using the convexity of C, we have
(1/2)(yi +yj ) ∈ C, also using the parallelogram law, we have∥∥(yi −x

)−(
yj −x

)∥∥2 +∥∥(yi −x
)+(

yj −x
)∥∥2 = 2

∥∥yi −x
∥∥2 +2

∥∥yj −x
∥∥2

.

(2.4)
Therefore,

∥∥yi −yj

∥∥2 = 2
∥∥yi −x

∥∥2 +2
∥∥yj −x

∥∥2 −4

∥∥∥∥x − 1

2

(
yi +yj

)∥∥∥∥2

≤ 2

[
dist(x,C)+ 1

i

]2

+2

[
dist(x,C)+ 1

j

]2

−4dist(x,C)2 i,j→∞−−−−→ 0,

(2.5)

using the assumption, every Cauchy sequence has a weakly convergent subse-
quence, the sequence {yn}∞n=1 has a subsequence {yni

}∞i=1 converging weakly

to some point y0 in X, yni

i → ∞−−−→
weakly

y0. Since C is convex and is closed in the

strong topology, C is closed in the weak topology, then C contains as well all
its weak limits y0 ∈ C. Now, consider the proper convex lower semi-continuous
real-valued function g on C defined by

g(z) = ‖x −z‖ ∀z ∈ C, (2.6)

we have

lim
n→∞g

(
yn

) = lim
n→∞

∥∥x −yn

∥∥ = dist(x,C), (2.7)

and the mapping g attains its minimum at y0. In fact, let ε > 0. Then the set

Gg(y0)−ε = {
z ∈ C : g(z) ≤ g

(
y0

)−ε
}

(2.8)

is a convex closed subset of X. Using the convexity of Gg(y0)−ε , for every ε > 0
the set Gg(y0)−ε is a weakly closed subset of C and hence for every ε > 0 the
set

G
c(C)
g(y0)−ε = {

z ∈ C : g(z) > g
(
y0

)−ε
}

(2.9)

is a weakly open subset of C, since y0 ∈ G
c(C)
g(y0)−ε , there is a neighborhood V

of y0 (w.r.t. the weak topology) such that V ⊂ G
c(C)
g(y0)−ε . Using the weak limit

point definition of the sequence {yni
}∞i=1, there is i0 ∈ N such that yni

∈ V for

all i ≥ i0, then yni
∈ G

c(C)
g(y0)−ε for all i ≥ i0. Therefore g(yni

) > g(y0)− ε for
every i ≥ i0. Finally we have
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inf
{
g(z) : z ∈ C

} ≤ g
(
y0

) ≤ inf
i≥i0

g
(
yni

)+ε ≤ lim inf
i

g
(
yni

)+ε

= lim
i→∞g

(
yni

)+ε = lim
n→∞g

(
yn

)+ε

= inf
{
g(z) : z ∈ C

}+ε.

(2.10)

Since ε > 0 is arbitrary and y0 ∈ C, we have

g
(
y0

) = min
{
g(z) : z ∈ C

}
. (2.11)

Thus for every x ∈ X there is y0 ∈ C such that∥∥x −y0
∥∥ = min

{‖x −z‖ : z ∈ C
} = dist(x,C). (2.12)

To show that such a point y0 is unique, let g(y0) = 0. Since ‖x − y0‖ = 0,
x = y0, y0 is unique. Let g(y0) > 0 and let z0 be an element in C with

g
(
z0

) = ∥∥x −z0
∥∥ = min

{‖x −z‖ : z ∈ C
} = g

(
y0

) = ∥∥x −y0
∥∥ (2.13)

and z0 �= y0(‖z0 −y0‖ > 0), since C is convex, (1/2)(y0 + z0) ∈ C, using the
parallelogram law, we have

g
(
y0

) ≤ g

(
1

2

(
y0 +z0

)) =
∥∥∥∥x − 1

2

(
y0 +z0

)∥∥∥∥
= 1

2

∥∥(x −y0
)+(

x −z0
)∥∥ = 1

2

(∥∥(x −y0
)+(

x −z0
)∥∥2

)1/2

= 1

2

(
2
∥∥(x −y0

)∥∥2 +2
∥∥(x −z0

)∥∥2 −∥∥z0 −y0
∥∥2

)1/2

<
1

2

(
2
∥∥(x −y0

)∥∥2 +2
∥∥(x −z0

)∥∥2
)1/2

= 1

2

(
2g

(
y0

)2 +2g
(
z0

)2
)1/2 = g

(
y0

)
.

(2.14)

This is a contradiction. Therefore no such z0 exists, and y0 is unique. Now, define
the mapping b(x,C) from X onto C by b(x,C) = y0, the mapping b(x,C) is
the required metric projection. �

Our result concerning the maximal proper subspaces of the classical Banach
spaces c0 or lp for 1 ≤ p < ∞ is the following result.

Theorem 2.2. Let X denote one of the spaces c0 or lp for 1 ≤ p < ∞, f ∈ X∗
and Y the closed linear subspace Y = f −1({0}) = {y = {bi}∞i=1 : f (y) =∑∞

i=1 bifi = 0} of the space X. Then the general formula of any projection
from X onto Y is given by

P = Ilp −f ⊗z for some z ∈ X with f (z) = 1. (2.15)
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Proof. Since every element x = {xi}∞i=1 ∈ X is uniquely written as x =∑∞
i=1 xiei , any operator P on X is completely determined by P(ei), suppose

that P(ei) = {eik}∞k=1, we have

P(x) =
∑
i≥1

xiP
(
ei

) =
{∑

i≥1

xieik

}∞

k=1

. (2.16)

Define the element z = {αk}∞k=1 ∈ X as follows

fiαk = δik −eik, k ≥ 1. (2.17)

Since f is a nonzero element of the space l1 or lq , where 1/p+1/q = 1, f �= 0,
there is at least one index i for which fi �= 0, for this index multiplying (2.17)
by fk and summing with respect to k, we get

fi

∑
k≥1

fkαk =
∑
k≥1

fk

(
δik −eik

) = fi −
∑
k≥1

fkeik. (2.18)

Since P(ei) ∈ Y and f (P (ei)) = 0, that is,
∑

k≥1 fkeik = 0. Therefore,
fi

∑
k≥1 fkαk = fi , this proves that

∑
k≥1 fkαk = 1, that is, f (z) = 1. On

the other hand, we have eik = δik − αkfi . Thus the representation of P is as
follows:

P(x) =
∑

i≥1

xi

(
δik −αkfi

)
∞

k=1

=
xk −αk

∑
i≥

xifi


∞

k=1

= {
xk −αkf (x)

}∞
k=1 = x −f (x)

{
αk

}∞
k=1 = x −f (x)z.

(2.19)

The converse direction is clearly true. To calculate the norm of the given projec-
tion P , we have two distinct cases, the first is when X = c0 in which the norm
is as follows:

‖P ‖ = sup
‖x‖=1

∥∥∥∥∥∥


∞∑
i=1

δikxi −αk

∑
i≥1

xifi


n

k=1

∥∥∥∥∥∥
l∞

= sup
k≥1

(∣∣1−αkfk

∣∣+ ∣∣αk

∣∣[‖f ‖l1 − ∣∣fk

∣∣]).
(2.20)
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The second case is when X = lp in which the norm of P is as follows:

‖P ‖ = sup
‖x‖=1

∥∥∥∥∥∥
∑

i≥1

δikai −αk

∑
i≥1

xifi


∞

k=1

∥∥∥∥∥∥
lp

= sup
‖x‖=1

∥∥∥∥∥∥
∑

i≥1

(
δik −αkfi

)
xi


∞

k=1

∥∥∥∥∥∥
lp

= sup
‖x‖=1

∥∥{{δik −αkfi

}∞
i=1

({
xi

}∞
i=1

)}∞
k=1

∥∥
lp

= sup
‖x‖=1

∑
k≥1

∣∣{δik −αkfi

}∞
i=1

({
xi

}∞
i=1

)∣∣p1/p

=
∑

k≥1

sup
‖x‖=1

∣∣{δik −αkfi

}∞
i=1

({
xi

}∞
i=1

)∣∣p1/p

=
∑

k≥1

(∥∥{δik−αkfi

}∞
i=1

∥∥
lq

)p

1/p

=
∑

k≥1

( ∞∑
i=1

∣∣δik−αkfi

∣∣q)p/q
1/p

.

(2.21)

�

Corollary 2.3. If f = {fi}∞i=1 is an element of the space (l1)
∗ = l∞ and Y

is a subspace of the space l1, Y = f −1({0}), then some of the maximal points
of any projection P from l1 onto Y lie in the set {ei}∞i=1, where {ei}∞i=1 is the
canonical basis of l1.

Proof. According to Theorem 2.2, the norm of any projection in this case is
given by

‖P ‖ = sup
‖x‖=1

∥∥p(x)
∥∥ = sup

‖x‖=1

∥∥x −f (x)z0
∥∥

= sup
‖x‖=1

∥∥∥∥∥∥
∑

i≥1

δikxi −αk

∑
i≥1

xifi


∞

k=1

∥∥∥∥∥∥
l1

≤
∑
k≥1

sup
‖x‖=1

∣∣{δik −αkfi

}∞
i=1

({
xi

}∞
i=1

)∣∣
=

∑
k≥1

∥∥{δik −αkfi

}∞
i=1

∥∥
l∞ =

∑
k≥1

sup
i≥1

∣∣δik −αkfi

∣∣
= sup

i≥1

∑
k≥1

∣∣δik −αkfi

∣∣ = sup
i≥1

∥∥P
(
ei

)∥∥.

(2.22)
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Therefore the norm of any such projection is attained at some points in the set
{ei}∞i=1. �

Remark 2.4. If one of the coordinates of f , say fi = 0, then ei ∈ Y (for f (ei) =
fi = 0). And to get a norm one projection the effect of this projection on the
basis elements must not exceed one.

Corollary 2.5. Let X denote one of the spaces c0 or lp, 1 < p < ∞, and
let f ∈ X∗. Then an infinite matrix P = {pin}i,n∈N represents a projection
operator from X onto its hyperplane f −1({0}) if and only if the matrix α =
{δin −pin}i,n∈N satisfies the following conditions:

(1) trace α = 1,
(2) each row of the matrix α is a scalar multiple of f .

Proof. Let P = {pin}i,n∈N be an infinite matrix satisfying conditions (1) and
(2). Then P = I −α, since each row of the matrix α is a scalar multiple of f ,
α(y) = 0 for all y ∈ f −1({0}). And so, P(y) = y for all y ∈ f −1({0}). If f n

denotes the nth row of the matrix α, using condition (2) we obtain for each n ∈ N

a scalar αn such that f n = αnf , using condition (1) we have f (z) = 1, where
z = {αn}∞n=1. To show that the range of P is f −1({0}) it is sufficient to show
that f (P (x)) = 0 for all x = {xi}∞i=1 ∈ X, so suppose that x = {xi}∞i=1 ∈ X,
we have

f
(
P(x)

) = f (I −α)(x) = f (x)−f
(
α(x)

) = f (x)−f
({

αnfi

}
i,n∈N

(x)
)

= f (x)−f

{ ∞∑
i=1

αnfixi

}
n∈N

 = f (x)−
∞∑

n=1

fn

∞∑
i=1

αnfixi

= f (x)−
∞∑

n=1

fnαn ×
∞∑
i=1

fixi = f (x)−f (z)f (x) = 0.

(2.23)

Conversely, if P is a projection from X onto f −1({0}), using Theorem 2.2, we
obtain an element z = {αn}∞n=1 ∈ X such that f (z) = 1 and P = IX −f ⊗z. So

P
({

xi

}∞
i=1

) = IX(x)−f
({

xi

}∞
i=1

)×z = IX(x)−
∞∑
i=1

fixi ×z

= IX(x)−
{

zn

∞∑
i=1

fixi

}∞

n=1

= {
δin −αin

}
i,n∈N

({
xi

}∞
i=1

)
,

(2.24)

where αin = zifn. This proves that the operator P has the matrix representation
P = {δin −αin}i,n∈N . Clearly the matrix α = {αin}i,n∈N satisfies conditions (1)
and (2). �
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Corollary 2.6. Let f = δ{εk}nk=1, n > 2, be a sequence of the space l1
n, where

δ is a nonzero scalar and εi = ±1. Then the relative projection constant of the
(n−1)-dimensional subspace f −1({0}) in the space l∞n is given by

λ
(
f −1({0}), l∞n ) = 2− 2

n
. (2.25)

Moreover, the minimal norm projection is given by

P0(x) = x − f (x)

‖f ‖2
l2n

×f. (2.26)

Proof. As given in Theorem 2.2 the norm of any projection corresponding to
the element z = {αk}nk=1 is given by

‖P ‖ = n
sup
k=1

(∣∣1−αkfk

∣∣+ ∣∣αk

∣∣[‖f ‖l1n
− ∣∣fk

∣∣])
= n

sup
k=1

(∣∣1−δαkεk

∣∣+ ∣∣αk

∣∣[n−1]|δ|). (2.27)

Assume that the minimal projection is a norm one projection. Then there is
z ∈ l1

n and ∣∣1−δαkεk

∣∣+[n−1]∣∣αk

∣∣|δ| ≤ 1, (2.28)

for every k = 1,2, . . . ,n. In this case, we have 1−|δαk|+[n−1]|αk||δ| ≤ 1 for
every k = 1,2, . . . ,n. Therefore [n−2]|δ|αk| ≤ 0 for every k = 1,2, . . . ,n. For
n > 2, this is true only if αk = 0 for every k = 1,2, . . . ,n. This is an obvious
contradiction, thus there is no norm one projection from l1

n onto f −1({0}).
Now, let x = {xk}nk=1 ∈ l∞n be an arbitrary point. To project this point to the

point x0 = {x0
k }nk=1 in the space f −1({0}) with a minimal available distance

between the points x = {xk}nk=1 and x0 = {x0
k }nk=1, the sequence x0 − x =

{x0
k − xk}nk=1 must be parallel to the line passing through f = {fk}nk=1 and

perpendicular to the plane f −1({0}). Thus there is a scalar λ such that x0 −x =
λf . On the other hand, since x0 ∈ f −1({0}), f (x0) = 0, thus 0 = f (x0) =
f (x)+λ‖f ‖2

l2n
and so λ = −f (x)/‖f ‖2

l2n
, it follows that x0 = x−f (x)/‖f ‖2

l2n
×

f . The required projection P0 from l∞n onto f −1({0}) is defined by the formula

P0
(
x = {

xk

}n

k=1

) = x0 = x − f (x)

‖f ‖2
l2n

×f. (2.29)

(Note that the element z0 corresponding to P0 is z0 = f/‖f ‖2
l2n

and also ‖P0‖ =
(2−2/n).)

Now we are going to show that this projection is a minimal norm projection.
Assume the contrary, that is, there exists an element z ∈ l1

n such that f (z) = 1
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and the corresponding projection P satisfies ‖P ‖ < (2 − 2/n), according to
(2.27), we have (∣∣1−δαkεk

∣∣+ ∣∣αk

∣∣[n−1]|δ|) <

(
2− 2

n

)
(2.30)

for every k ∈ {1,2, . . . ,n}, from which we get

[n−2]∣∣αk

∣∣|δ| <

(
1− 2

n

)
(2.31)

and so for such z we have∣∣αk

∣∣ <
1

n|δ| ∀k = 1,2, . . . ,n, (2.32)

multiplying by |fk| = |δ|, summing with respect to k, we get
∑n

k=1 |fk||αk| < 1.
On the other hand, the inequality

1 =
n∑

k=1

fkαk ≤
n∑

k=1

∣∣fk

∣∣∣∣αk

∣∣ < 1 (2.33)

gives a contradiction, hence no such z exists, from which we concluded the proof.
�

Corollary 2.7. If f = {fn}∞n=1 is a sequence of the space l1, and f −1({0}).
Then λ(f −1({0}),c0) = 1 if and only if there is n ∈ N for which |fn| ≥
(1/2)‖f ‖l1 .

Proof. As given in Theorem 2.2, the norm of any projection corresponding to
the element z is given by

‖P ‖ = sup
k≥1

(∣∣1−αkfk

∣∣+ ∣∣αk

∣∣[‖f ‖l1 − ∣∣fk

∣∣]). (2.34)

To have a norm one projection, we must have |1−αkfk|+|αk|(‖f ‖l1 −|fk|) ≤ 1
for every k ∈ N . In this case we have 1 −|αkfk|+ |αk|(‖f ‖l1 −|fk|) ≤ 1 for
every k ∈ N . Therefore∣∣αk

∣∣(‖f ‖l1 −2
∣∣fk

∣∣) ≤ 0 ∀k ∈ N. (2.35)

If k ∈ N and (‖f ‖l1 −2|fk|) > 0, then |αk| = 0, but f (z0) = 1 implies that at
least one k ∈ N for which |αk| �= 0 and so at least one k ∈ N for which (‖f ‖l1 −
2|fk|) ≤ 0. Therefore there is at least k ∈ N for which |fk| ≥ (1/2)‖f ‖l1 . �

Example 2.8. The minimal norm projection of the subspace Y = {x = {bi}3
i=1 |∑3

i=1 bi = 0} in the space l∞3 is the projection given by

P0

({
xi

}3
i=1

)
= 1

3

{
2x1 −x2 −x3, 2x2 −x1 −x3, 2x3 −x1 −x2

}
. (2.36)

with norm ‖P0‖ = 4/3.
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