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We propose two models for the description of the dynamics of an AIDS epidemic and
of the effect of a combined-drugs AIDS treatment based on difference equations. We
show that our interacting population model, despite its extreme simplicity, describes ad-
equately the evolution of an AIDS epidemic. A cellular-automaton analogue of the dis-
crete system of equations is presented as well. In the case of drug treatment, we identify
two different regimes corresponding to efficient and inefficient medication. The effect of
the discreteness of the equations is also studied.

1. Introduction

The modelling of biological systems goes back in time to an era when the very word
“modelling,” in the present acceptation, was unknown. The use of mathematical mod-
elling, which has met with such a great success in physics, was extended to the descrip-
tion of the behavior of living organisms under various conditions. The advantage of this
“paperware,” rather than “wetware,” laboratory approach is clear. Mathematical models
allow us to explore the effect of changes of various parameters in biological systems in an
easy, fast, and inexpensive way, while the real experiment may be sometimes unfeasible
(to say nothing of the ethical issues). Moreover, the explicit construction of the mathe-
matical model constrains the modeller to a detailed analysis of the mechanisms involved,
which leads to a better understanding of the whole process.

The mathematical models [8] of biological processes can be classified into two broad
categories: stochastic and deterministic models. In the first, one is interested in the be-
havior of small samples, where fluctuations can play an important role and probabilistic
answers are usually sought. In the second, one deals with larger samples and the model is
usually expressed in terms of differential equations [13]. In what follows, we will present
models based on difference rather than differential equations. While we will eschew the
discussion of the true nature of time, we must point out that discrete systems are more
fundamental than continuous ones. They contain the latter as special limits and, more-
over, possess other limits besides the continuous one. From a practical point of view, and
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in particular for biological systems, bookkeeping constraints, like population counting,
introduce a discreteness in the data gathering which must, in principle, be reflected in
the model’s equations. Moreover, the various processes involved have characteristic times
which enhance the necessity for a discrete-time treatment. The only delicate point is the
choice of an optimal time step. Another advantage of discrete systems is that they are
“natural” integrators of the corresponding differential systems. Their use is preferable
over that of numerical schemes which can be unstable or cumbersome and, in any case,
black-box-like and do not offer any insight into the process. The main question is how to
obtain an adequate discretization of a continuous system. The fact that infinitely many
discrete systems may have the same continuous limit only complicates the matter further.
Our approach consists in preserving as many of the properties of the continuous system
as possible.

In the preceding paragraph, we alluded to special limits of discrete systems different
from the continuous ones. A most interesting such limit is the one known under the
name of ultradiscrete limit. Introduced by the Tokyo-Kyoto group, this limit allows one,
given a discrete system, to obtain a generalized cellular automaton [12]. The importance
of such systems in modelling is capital: it suffices to point out that all numerical simula-
tions with finite-precision arithmetic are, in fact, based on generalized cellular automata.
The advantage of the ultradiscretization procedure is that it is a systematic, algorithmic
approach which, moreover, generates systems that encapsulate the essential, albeit in a
bare-bones version, dynamical behavior of the initial system.

In what follows, we will present two models which are related to AIDS. The first is
an extremely simple model for the description of the onset and evolution of an AIDS
epidemic. The second studies the effect of a combined treatment on the population of T-
cells, the latter being an indicator of the appearance of AIDS in seropositive individuals.

2. A discrete SIR-like model for AIDS epidemics

In this section, we will present a simple model for the description of the dynamics of
an AIDS epidemic. Our aim is to make the model as simple as possible and still be able
to describe correctly the dynamics [1]. Our starting point is the so-called SIR model.
Introduced several decades ago by Kermack and McKendrick [3, 4, 5], this model is based
on the splitting of the population into three interacting classes: the susceptible, a priori
healthy individuals, the infected ones who are also infective, and the removed who, having
contracted the infection, are now cured and immune (or dead).

The variant of this model that we will use below is the following SIA model. We also
consider a population consisting of three classes. The first class is again that of healthy,
susceptible individuals (S). The second class (I) is that of HIV-positive individuals who,
interacting with the susceptible ones, can infect them. The third class (A) is that of the
AIDS patients (who we assume not to be infective). It is clear that more sophisticated
models can be and have been proposed, which correspond to a finer splitting of the pop-
ulation into interacting classes. More simplifying assumptions will be introduced in order
to build up the model. They are not essential and could be very easily relaxed. Still, we
feel that it is interesting to simplify the model as much as we can and still have it de-
scribe correctly the process of an AIDS epidemic. Thus, we make the assumption that the
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population of susceptible individuals is initially fixed and can only decrease. Next, we ne-
glect the effect of natural death on all three populations: individuals get removed only at
the AIDS stage. We start by writing the differential equations which describe this model:

dS

dt
=−SI , dI

dt
= SI −µI ,

dA

dt
= µI − λA, (2.1)

where we have normalized the strength of the interaction term SI to 1 through a proper
redefinition of time. Moreover, λ > µ(> 0) since the evolution towards the final demise is
faster than that of seropositivity towards AIDS. We remark readily that the model is such
that (S+ I)′ = −µI (where the prime denotes the time derivative) and (S+ I +A)′ = −λA,
that is, the population of the non-AIDS individuals decreases at a rate proportional to the
infectives, while the total population decrease rate is proportional to the number of AIDS
patients.

In [11, 13], we have presented discrete versions of SIR models. The same basic ap-
proach will be used here. Starting with the equation S′ = −SI , we propose the discrete
analogue xn+1 = xn/(1 + yn). It is easy to show that if we put xn = εS, yn = εI and take
t = εn at the limit ε→ 0, the difference equation goes over to the differential one. For the
discretization of the remaining equations, the main guides are the two population con-
straints: (S+ I)′ = −µI , (S+ I +A)′ = −λA. It is indeed straightforward to show that the
system

xn+1 = xn
1 + yn

, yn+1 = αyn +
xnyn

1 + yn
, zn+1 = (1−α)yn +βzn (2.2)

has (2.1) as the continuous limit, with zn = εA. Moreover, at a difference equation level,
it does indeed satisfy the two population constraints (xn+1 + yn+1)− (xn + yn)∝ yn and
(xn+1 + yn+1 + zn+1)− (xn + yn + zn) ∝ zn. For the two parameters, we have β < α < 1,
which corresponds to the fact that λ > µ > 0 at the continuous limit. A characteristic of
this model is that it predicts an unavoidable AIDS epidemic. Indeed, from (2.1), and mu-
tatis mutandis also from (2.2), if we start, as is reasonable, with A= 0, we have A′ > 0, and
thus A grows as long as A < µI/λ. The only fixed point of (2.1) is A = I = 0, that is, the
process stops when all the infected are removed, but S is free and can only be determined
through a detailed evolution. Exactly the same conclusions apply to the discrete system
(2.2).

One remark is in order at this point concerning the discrete system. While the con-
tinuous equations (2.1) can be evolved either forward or backward in time, this does not
look possible for the discrete system because of the equation for yn+1. Indeed, if we try to
compute yn in terms of yn+1, we obtain the quadratic equation αy2

n + (xn +α− yn+1)yn−
yn+1 = 0. Thus, at each step, we have two solutions for yn and, a priori, a proliferating
number of possible paths. However, this is not the case here. A close look at the solutions
of the quadratic equation shows that they are of opposite signs. Thus, it suffices, at each
step, to discard the negative solution and keep only the physical one, yn > 0.

Figures 2.1 and 2.2 show a typical evolution of the discrete model (2.2). The onset and
evolution of AIDS epidemic are clearly depicted. Moreover, while the total population
of susceptibles is affected, the situation does not evolve towards a pandemic where the
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Figure 2.1. Population of susceptible (healthy) individuals as a function of time.
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Figure 2.2. Population of AIDS patients as a function of time.

quasi-total population perishes. This last statement depends of course on the parameters
involved: one can imagine situations where a pandemic erupts through an appropriate
fine-tuning of the parameters.

Having established the pertinence of the discrete model, we proceed now to the deriva-
tion of the cellular-automaton analogue through ultradiscretization. The procedure we
will follow is a well-established one [12]. In order to obtain the ultradiscrete limit, we
start with an equation for x, introduce X through x = eX/ε, and then appropriately take
the limit ε→ 0. Clearly, the substitution x = eX/ε requires x to be positive. The key relation
is the following limit:

lim
ε−→0+

ε log
(
1 + ex/ε

)=max(0,x)= x+ |x|
2

. (2.3)
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It is easy to show that limε→0+ ε log(ex/ε + ey/ε)=max(x, y), and the extension to n terms
in the argument of the logarithm is straightforward.

In order to apply this procedure to our equations, we put x = eX/ε, y = eY/ε, z = eZ/ε,
α= e−A/ε, β = e−B/ε, and 1−α= e−Ã/ε, so that A,B,Ã > 0, and finally obtain

Xn+1 = Xn−max
(
0,Yn

)
,

Yn+1 =max
(
Yn−A,Xn +Yn−max

(
0,Yn

))
,

Zn+1 =max
(
Yn− Ã,Zn−B

)
.

(2.4)

Thus, equation (2.4) indeed represents a generalized cellular automaton: if the parameters
A, B, Ã and the initial conditions X0, Y0, Z0 are integers, the evolution of (2.4) will pro-
duce only integer results. Of course, the variables X , Y , Z are no more positive-definite,
since they are related to the logarithms of the initial variables x, y, z.

Since the evolution defined by the equations of system (2.4) involves piecewise lin-
ear equations and the max function, one can describe the dynamics of the ultradiscrete
system in a precise, exact way by introducing the appropriate domains. By this we mean
that the first equation of the system can be written as Xn+1 = Xn −Yn when Yn > 0, and
Xn+1 = Xn when Yn < 0, and so on. Instead of going through this analysis, which, although
interesting from a rigorous point of view, does not add much to the understanding of the
AIDS-epidemic model, we prefer to present an explicit simulation using (2.4). We choose
A= 10, Ã= 3, B = 2 and start from initial conditions X0 = 10, Y0 = 5, Z0 =−1. We find
the following evolution:

(10,5,−1),(5,10,2),(−5,5,7),(−10,−5,5),

(−10,−15,2),(−10,−25,0),(−10,−35,−2), . . . .
(2.5)

We remark that X decreases and reaches its asymptotic value in a finite number of time
steps, while Y , Z, after an initial increase (onset of the epidemic), start decreasing and
continue towards −∞.

3. A discrete model for combined-drugs AIDS therapy

In this section, we will present a model which deals with AIDS at a more “microscopic”
level [9]. Namely, we will consider populations of viruses and of lymphocytes known as
CD4 T-cells (which are the main targets of the HIV) under the influence of drugs.

The dynamics of the HIV infection have been well established by now [2]. Upon infec-
tion, the number of HIV in the blood increases sharply but then declines (over a period
of a few months) to much lower levels at which it can stay with very small variations for
several years till the appearance of full-blown AIDS, which is accompanied again by an
increase. The T-cell count after an initial fast decrease stabilizes at levels which are lower
than those of healthy individuals but not alarmingly so. Finally, a fast drop of the T-cell
count can be used as a criterion to diagnose the actual onset of AIDS. During the long
“dormant” period of the virus, the immune response of the organism leads to a constant
production of antibodies, the detection of which (seropositivity) is an indicator of the
existence of the HIV infection.
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Various treatments have been tried with various levels of success against the HIV infec-
tion, aiming at eradicating the virus or at least postponing indefinitely the onset of AIDS.
Prominent among them is the treatment based on protease inhibitors, which blocks the
production of infectious virions. Unfortunately, the efficiency of the drugs is thwarted
by the ability of HIV to mutate rapidly. This leads to the idea of combined treatments
involving more than one drug (usually protease inhibitors are combined with reverse
transcription inhibitors). The idea behind this strategy is that it should take much longer
for the virus to evolve to a form resistant simultaneously to more than one toxic factor.
This rationale is validated by the experimental results, and the treated infected patients
do indeed have extended life spans.

In what follows, we will present a simple, discrete-time model of the dynamics of T-
cells and viruses under the influence of a combined treatment. Our model is inspired by
a continuous-time model of Murray, which it contains at the continuous limit [8]. We
start by presenting the model and then explain the physical meaning of the quantities
involved:

xn+1 = a+ bxn
1 +dyn

, yn+1 = f yn + gzn, zn+1 = hzn + kxnyn+1, (3.1)

where x, y, and z are related to the concentrations of (uninfected) T-cells (T), infectious
viruses (V), and infected T-cells (I), respectively. In order to make clear the meaning
of the coefficients, we prefer to proceed to the continuous limit of (3.1) and analyze in
detail the differential equations obtained. We start by putting x = εT , y = εV , and z = εI ,
where ε is a parameter which goes to 0 at the continuous limit and is related to the time
step through t = εn. Furthermore, we take a= ε2σ , b= (1 + ελ)−1, d = κ, f = (1 + εµ)−1,
g = εηNν, h= (1 + εν)−1, and k = θκ, whereupon, at the limit ε→ 0, (3.1) become

dT

dt
= σ − λT − κVT ,

dI

dt
= θκVT − νI ,

dV

dt
= ηNνI −µV. (3.2)

We can now comment on the significance of the various terms. In the first equation, σ
is the source of T-cells, λ their natural death rate, and κ the infection rate due to the
presence of viruses. In the second equation, the first term describes the production of
infected cells and the efficiency κ is modulated by the action of drug therapy (reverse
transcription inhibitors), where θ = 0 corresponds to a (theoretically) perfect drug and
θ = 1 to no therapy at all. The second term describes the death of infected cells, with rate
ν. In the third equation, we have the production of viruses,N viruses per bursting infected
cell, modulated by the protease therapy. Again, for η = 0, we have a perfect drug and for
η = 1 no protease inhibitor at all. The death rate of the viruses is µ. This is essentially
the continuous model proposed by Murray [8]. The only difference is that in Murray’s
model, a logistic growth of the uninfected T-cells appears. Anyway, the effect of this term
is not so important, the coupling coefficient being very small. Moreover, Murray’s model
contains also a linear equation for noninfectious viruses. This equation is there only for
bookkeeping and thus not important for our analysis. In the discussion of the stability
of fixed points as well as the numerical simulations that we will present, we will use the
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Figure 3.1. Evolution of the number of uninfected and infected T-cells in a nontherapy scenario,
approximating continuous dynamics.

following set of values for the parameters entering equation (3.2). We have σ = 16, λ =
0.02, κ= 3.10−5, ν= 0.5, N = 480, and µ= 3 in the appropriate units (data adapted from
references [2, 6, 7, 8, 9, 10]).

Having explained the meaning of the parameters, we now move to the study of the
equations themselves. System (3.1) possesses two fixed points. The first one, y0 = z0 = 0,
x0 = a/(1− b), corresponds to a total absence of infection (an efficient cure). The second
fixed point has x1 = (1− f )(1−h)k−1g−1. When we now try to compute y0, we find that
its value is positive only if x1 ≤ a/(1− b). Otherwise an unphysical (negative) value for
y0 is obtained. Thus, we have a constraint on the parameters of the mapping for the
existence of this second fixed point, which, since y0z0 �= 0, corresponds to a persistent
infection.

The stability of these two fixed points can be easily studied. The first fixed point is in-
deed stable provided (1− f )(1− h)k−1g−1 ≥ a/(1− b), which is exactly the same condi-
tion we obtained for the nonexistence of a meaningful (y ≥ 0) second fixed point. Thus, if
the quantity (1− f )(1−h)(1− b)k−1g−1a−1 is larger than 1, the no-infection fixed point
is stable, otherwise a fixed point corresponding to a finite infection appears. The stability
of the latter can also be easily studied. We will omit here the details of this calculation
which is straightforward albeit cumbersome. For the stability of the fixed point, one re-
quires that the characteristic polynomial have one real root smaller than one and two
roots which are complex conjugate of product less than 1. Since the parameters of the
system are more or less fixed by the experimental data, it is interesting to study the be-
havior of the stability of the fixed point y0z0 �= 0 as a function of just ηθ and ε. It turns out
that the stability condition can be expressed as a polynomial of degree 2 in the product ηθ
and degree 9 in ε. For ηθ = 1 (no therapy whatsoever), the only real positive root of the
degree 9 polynomial (using the values of the parameters given previously in this section)
is ε ≈ 3.64. When the value of ηθ decreases, the value of this root also decreases towards
a shallow minimum ε ≈ 3.4365 attained for ηθ = 0.1584. Beyond this value, the critical
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Figure 3.2. Evolution of the number of uninfected and infected T-cells in an efficient therapy scenario,
approximating continuous dynamics.

700

600

500

400

300

200

100

0
0 200 400 600 800

In
fe

ct
ed

T
-c

el
ls

Uninfected T-cells

Figure 3.3. Evolution of the number of uninfected and infected T-cells in a nontherapy scenario with
markedly discrete dynamics.

value of ε increases again. For ε smaller than the critical value, the fixed point is attractive.
Beyond the critical value, the fixed point becomes repulsive and we have appearance of a
limit cycle: the populations vary periodically with an asymptotically constant amplitude.

We have carried out numerical simulations (which are essentially the evolution of (3.1)
with various initial data) for different values of the therapy-related parameters η, θ and
also of the discretization parameter ε. In the figures given below, we present three typical
cases. Figures 3.1 and 3.2, obtained with a very small value of ε (ε = 0.01) simulate the
continuous system. Two choices of ηθ were made so as to have an ineffective treatment
(in fact, no treatment at all, ηθ = 1), and an effective one (ηθ = 1/4). The last two figures
illustrate the role of ε in the absence of treatment, ηθ = 1. Figure 3.3 is obtained for ε =
0.2, large enough for the behavior to be visibly discretized, but still well below the critical
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Figure 3.4. Evolution of the number of uninfected and infected T-cells in a nontherapy scenario for
discrete dynamics with very large ε.

value for limit cycle behavior. Figure 3.4 is obtained for ε = 4 beyond the critical value
and displays the limit cycle behavior we predicted based on the stability analysis.

4. Conclusion

In this paper, we have used difference equations in order to model two problems related
with AIDS. From our analysis, it is clear that the difference systems can reproduce the be-
havior of their continuous counterparts (an almost tautology since the difference equa-
tions contain the differential ones as continuous limits). However, the discrete systems
may have surprises in store, like the existence of a limit cycle behavior for system (3.1) at
large ε.

A point we wish to stress once more in this conclusion is the interest of tailor-made
discrete systems as simulators of their continuous counterparts. One can of course use, for
this simulation, standard numerical algorithms, either part of some package, like Matlab
or Mathematica, or directly programmed (which results in faster executions). However,
we find this black-box approach somewhat unsatisfactory. Clearly, if the integration step
is very small, the results of the standard numerical algorithms and of the iteration of
specifically constructed discrete systems are identical. However, the latter work fine with
significantly larger time steps (and thus result in much faster executions), a fact which
can be of utmost importance when one simulates systems more complicated than the
ones treated here. A more important point is that the discrete systems are constructed
so as to preserve all the characteristics of the continuous model exactly. For instance,
conserved quantities, if present, are exactly conserved and not up to some approximation
related to the time step.

At a deeper level, one can ask the question of the pertinence of the discrete systems in
modelling dynamical systems and, in particular, biological ones. A possible answer can
be sought in the formal analogy which exists between difference and delay systems. Since
the mechanisms involved have characteristic times, a description in terms of difference
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equations is most adequate (but the proper choice of the time step remains always deli-
cate).

Concerning the epidemic insights we can draw from our model, one thing can be seen
with certainty: if we have a small nucleus of seropositive individuals who may interact
with healthy ones, an AIDS epidemic will invariably break out. On a predictive level, this
means that only perfect screening of the total population may prevent this occurrence
(a fact which is of course well known to hygiene specialists). Concerning the combined-
drugs therapy of AIDS, there exist possible improvements of the model we presented here.
We intend to address them in some future publication.
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