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1. Introduction

Let A be a bounded linear operator defined on a complex Banach space X. In this article, we
are concerned with the study of existence of bounded solutions and stability for the semilinear
problem

Δ2xn −Axn = f(n, xn,Δxn), n ∈ Z+, (1.1)

by means of the knowledge of maximal regularity properties for the vector-valued discrete
time evolution equation

Δ2xn −Axn = fn, n ∈ Z+, (1.2)

with initial conditions x0 = 0 and x1 = 0.
The theory of dynamical systems described by the difference equations has attracted

a good deal of interest in the last decade due to the various applications of their qualitative
properties; see [1–5].

In this paper, we prove a very general theorem on the existence of bounded solutions for
the semilinear problem (1.1) on lp(Z+;X) spaces. The general framework for the proof of this
statement uses a new approach based on discrete maximal regularity.
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In the continuous case, it is well known that the study of maximal regularity is very
useful for treating semilinear and quasilinear problems (see, e.g., Amann [6], Denk et al. [7],
Clément et al. [8], the survey by Arendt [9], and the bibliography therein). Maximal regularity
has also been studied in the finite difference setting. Blunck considered in [10, 11] maximal
regularity for linear difference equations of first order; see also Portal [12, 13]. In [14], max-
imal regularity on discrete Hölder spaces for finite difference operators subject to Dirichlet
boundary conditions in one and two dimensions is proved. Furthermore, the authors inves-
tigated maximal regularity in discrete Hölder spaces for the Crank-Nicolson scheme. In [15],
maximal regularity for linear parabolic difference equations is treated, whereas in [16] a char-
acterization in terms of R-boundedness properties of the resolvent operator for linear second-
order difference equations was given; see also the recent paper by Kalton and Portal [17],
where they discussed maximal regularity of power-bounded operators and relate the discrete
to the continuous time problem for analytic semigroups. However, for nonlinear discrete time
evolution equations like (1.1), this new approach appears not to be considered in the litera-
ture.

The paper is organized as follows. Section 2 provides an explanation for the basic nota-
tions and definitions to be used in the article. In Section 3, we prove the existence of bounded
solutions whose second discrete derivative is in lp (1 < p < +∞) for the semilinear problem
(1.1) by using maximal regularity and a contraction principle. We also get some a priori es-
timates for the solutions xn and their discrete derivatives Δxn and Δ2xn. Such estimates will
follow from the discrete Gronwall inequality [1] (see also [18, 19]). In Section 4, we give a cri-
terion for stability of (1.1). Finally, in Section 5 we deal with local perturbations of the system
(1.2).

2. Discrete maximal regularity

LetX be a Banach space. Let Z+ denote the set of nonnegative integer numbers and letΔ be the
forward difference operator of the first order, that is, for each x : Z+ → X and n ∈ Z+, Δxn =
xn+1 − xn. We consider the second-order difference equation

Δ2xn − (I − T)xn = fn, ∀n ∈ Z+,

x0 = x, Δx0 = x1 − x0 = y,
(2.1)

where T ∈ B(X), Δ2xn = Δ(Δxn), and f : Z+ → X.
Denote C(0) = I, the identity operator on X, and define

C(n) =
[n/2]∑

k=0

(
n

2k

)
(I − T)k, for n = 1, 2, . . . , (2.2)

and C(n) = C(−n), for n = −1,−2, . . . . We define also S(0) = 0,

S(n) =
[(n−1)/2]∑

k=0

(
n

2k + 1

)
(I − T)k, (2.3)

for n = 1, 2, . . . , and S(n) = −S(−n), for n = −1,−2, . . . .
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Considering the above notations, it was proved in [16] that the (unique) solution of (2.1)
is given by

xm+1 = C(m)x + S(m)y + (S∗f)m. (2.4)

Moreover,

Δxm+1 = (I − T)S(m)x + C(m)y + (C∗f)m. (2.5)

The following definition is the natural extension of the concept of maximal regularity
from the continuous case (cf., [16]).

Definition 2.1. Let 1 < p < +∞. One says that an operator T ∈ B(X) has discrete maximal
regularity if KTf :=

∑n
k=1(I − T)S(k)fn−k defines a bounded operatorKT ∈ B(lp(Z+, X)).

As a consequence of the definition, if T ∈ B(X) has discrete maximal regularity, then T
has discrete lp-maximal regularity, that is, for each (fn) ∈ lp(Z+;X)we have (Δ2xn) ∈ lp(Z+;X),
where (xn) is the solution of the equation

Δ2xn − (I − T)xn = fn, ∀n ∈ Z+, x0 = 0, x1 = 0. (2.6)

Moreover,

Δ2xn =
n−1∑

k=1

(I − T)S(k)fn−1−k + fn. (2.7)

We introduce the means

∥∥(x1, . . . , xn)
∥∥
R :=

1
2n

∑

εj∈{−1,1}n

∥∥∥∥∥

n∑

j=1

εjxj

∥∥∥∥∥ (2.8)

for x1, . . . , xn ∈ X.

Definition 2.2. LetX and Y be Banach spaces. A subsetT of B(X,Y ) is calledR-bounded if there
exists a constant c ≥ 0 such that

∥∥(T1x1, . . . , Tnxn)
∥∥
R ≤ c

∥∥(x1, . . . , xn)
∥∥
R (2.9)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X, n ∈ N. The least c such that (2.9) is satisfied is called the
R-bound of T and is denoted by R(T).

An equivalent definition using the Rademacher functions can be found in [7]. We note
that R-boundedness clearly implies boundedness. If X = Y , the notion of R-boundedness is
strictly stronger than boundedness unless the underlying space is isomorphic to aHilbert space
[20, Proposition 1.17]. Some useful criteria for R-boundedness are provided in [7, 20, 21].
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Remark 2.3. (a) Let S,T ⊂ B(X,Y ) be R-bounded sets, then S + T := {S + T : S ∈ S, T ∈ T} is
R-bounded.

(b) Let T ⊂ B(X,Y ) and S ⊂ B(Y,Z) be R-bounded sets, then S · T := {S ·T : S ∈ S,
T ∈ T} ⊂ B(X,Z) is R-bounded and

R(S · T) ≤ R(S) · R(T). (2.10)

(c) Also, each subset M ⊂ B(X) of the form M = {λI : λ ∈ Ω} is R-bounded whenever
Ω ⊂ C is bounded. This follows from Kahane’s contraction principle (see [20, 22] or [7]).

A Banach space X is said to be UMD if the Hilbert transform is bounded on Lp(R, X) for
some (and then all) p ∈ (1,∞). Here, the Hilbert transform H of a function f ∈ S(R, X), the
Schwartz space of rapidly decreasing X-valued functions, is defined by

Hf :=
1
π
PV

(
1
t

)
∗f. (2.11)

These spaces are also called HT spaces. It is a well-known theorem that the set of Banach
spaces of class HT coincides with the class of UMD spaces. This has been shown by Bourgain
[23] and Burkholder [24].

Recall that T ∈ B(X) is called analytic if the set
{
n(T − I)Tn : n ∈ N

}
(2.12)

is bounded. For recent and related results on analytic operators we refer the reader to [25].
The characterization of discrete maximal regularity for second-order difference equations by
R-boundedness properties of the resolvent operator T reads as follows (see [16]).

Theorem 2.4. Let X be a UMD space and let T ∈ B(X) be analytic. Then, the following assertions are
equivalent.

(i) T has discrete maximal regularity of order 2.

(ii)
{
(λ − 1)2R((λ − 1)2, I − T) : |λ| = 1, λ /= 1

}
is R-bounded.

Observe that from the point of view of applications, the above-given characteriza-
tion provides a workable criterion; see Section 4 below. We remark that the concept of R-
boundedness plays a fundamental role in recent works by Clément-Da Prato [26], Clément
et al. [22], Weis [27, 28], Arendt-Bu [20, 29], and Keyantuo-Lizama [30–32].

3. Semilinear second-order evolution equations

In this section, our aim is to investigate the existence of bounded solutions, whose second
discrete derivative is in �p for semilinear evolution equations via discrete maximal regularity.

Next, we consider the following second-order evolution equation:

Δ2xn −Axn = f
(
n, xn,Δxn

)
, n ∈ Z+, x0 = 0, x1 = 0, (3.1)

which is equivalent to

xn+2 − 2xn+1 + Txn = f
(
n, xn,Δxn

)
, ∀n ∈ Z+, x0 = 0, x1 = 0, (3.2)

where T := I −A.
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To establish the next result, we need to introduce the following assumption.

Assumption 3.1. Suppose that the following conditions hold.

(i) The function f : Z+ × X × X → X satisfy the Lipschitz condition on X × X, that is
for all z,w ∈ X × X and n ∈ Z+, we get ‖f(n, z) − f(n,w)‖X ≤ αn‖z − w‖X×X, where
α := (αn) ∈ l1(Z+).

(ii) f(·, 0, 0) ∈ l1(Z+, X).

We remark that the condition α ∈ l1(Z) in (i) is satisfied quite often in applications. For
example, it appears when we study asymptotic behavior of discrete Volterra systems which
describe processes whose current state is determined by their entire history. These processes
are encountered in models of materials with memory, in various problems of heredity or epi-
demics, in theory of viscoelasticity, and in solving optimal control problems (see, e.g., [33, 34]).

We began with the following property which will be useful in the proof of our main
result.

Lemma 3.2. Let (αn) be a sequence of positive real numbers. For all n, l ∈ Z+, one has

n−1∑

m=0

αm

(
m−1∑

j=0

αj

)l

≤ 1
l + 1

(
n−1∑

j=0

αj

)l+1

. (3.3)

Proof. Putting Am :=
∑m−1

j=0 αj , we obtain

(l + 1)
(
Am+1 −Am

)
Al

m =
(
Am+1 −Am

)(
Al

m +Al−1
m Am + · · · +AmA

l−1
m +Al

m

)

≤
(
Am+1 −Am)

(
Al

m+1 +Al−1
m+1Am + · · · +Am+1A

l−1
m +Al

m

)

= Al+1
m+1 −Al+1

m .

(3.4)

Hence,

(l + 1)
n−1∑

m=0

(
Am+1 −Am

)
Al

m ≤
n−1∑

m=0

(
Al+1

m+1 −Al+1
m

)
= Al+1

n . (3.5)

Denote by W2,p
0 the Banach space of all sequences V = (Vn) belonging to l∞(Z+, X) such

that V0 = V1 = 0 and Δ2V ∈ lp(Z+, X) equipped with the norm |||V ||| = ‖V ‖∞ + ‖Δ2V ‖p. We
will say that T ∈ B(X) is S-bounded if S ∈ l∞(Z+;X). With the above notations, we have the
following main result.

Theorem 3.3. Assume that Assumption 3.1 holds. In addition, suppose that T is S-bounded and that
it has discrete maximal regularity. Then, there is a unique bounded solution x = (xn) of (3.1) such that
(Δ2xn) ∈ lp(Z+, X). Moreover, one has the following a priori estimates for the solution:

sup
n∈Z+

[∥∥xn

∥∥
X +
∥∥Δxn

∥∥
X

]
≤ 3M

∥∥f(·, 0, 0)
∥∥
1e

3M‖α‖1 ,

∥∥Δ2x
∥∥
p ≤ C

∥∥f(·, 0, 0)
∥∥
1e

6M‖α‖1 , 1 < p < +∞,

(3.6)

whereM := supn∈Z+‖S(n)‖ and C > 0.
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Proof. Let V be a sequence in W2,p
0 . Then, using Assumption 3.1 we obtain that the function

g := f(·, V·,ΔV·) is in lp(Z+, X). In fact, we have

‖g‖pp =
∞∑

n=0

∥∥f
(
n, Vn,ΔVn

)∥∥p
X

≤
∞∑

n=0

(∥∥f
(
n, Vn,ΔVn

)
− f(n, 0, 0)

∥∥
X +
∥∥f(n, 0, 0)

∥∥
X

)p

≤ 2p
∞∑

n=0

∥∥f
(
n, Vn,ΔVn

)
− f(n, 0, 0)

∥∥p
X + 2p

∞∑

n=0

∥∥f(n, 0, 0)
∥∥p
X

≤ 2p
∞∑

n=0

α
p
n

∥∥(Vn,ΔVn

)∥∥p
X×X + 2p

∞∑

n=0

∥∥f(n, 0, 0)
∥∥p
X,

(3.7)

where

∞∑

n=0

∥∥f(n, 0, 0)
∥∥p
X =

∞∑

n=0

∥∥f(n, 0, 0)
∥∥p−1
X

∥∥f(n, 0, 0)
∥∥
X

≤
∥∥f(·, 0, 0)

∥∥p−1
∞

∞∑

n=0

∥∥f(n, 0, 0)
∥∥
X

=
∥∥f(·, 0, 0)

∥∥p−1
∞
∥∥f(·, 0, 0)

∥∥
1.

(3.8)

Analogously, we have

∞∑

n=0

α
p
n ≤
∥∥α
∥∥p−1
∞
∥∥α
∥∥
1. (3.9)

On the other hand,

∥∥(Vn,ΔVn

)∥∥
X×X =

∥∥Vn

∥∥
X +
∥∥Vn+1 − Vn

∥∥
X ≤ 2

∥∥Vn

∥∥
X +
∥∥Vn+1

∥∥
X ≤ 3

∥∥V
∥∥
∞. (3.10)

Hence,

‖g‖pp ≤ 6p
∥∥V
∥∥p
∞

∞∑

n=0

α
p
n + 2p

∥∥f(·, 0, 0)
∥∥p−1
∞
∥∥f(·, 0, 0)

∥∥
1

≤ 6p‖V ‖p∞‖α‖
p−1
∞ ‖α‖1 + 2p

∥∥f(·, 0, 0)
∥∥p−1
∞
∥∥f(·, 0, 0)

∥∥
1,

(3.11)

proving that g ∈ lp(Z+, X).
Since T has discrete maximal regularity, the Cauchy problem

zn+2 − 2zn+1 + Tzn = gn,

z0 = z1 = 0
(3.12)
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has a unique solution (zn) such that (Δ2zn) ∈ lp(Z+, X), which is given by

zn = [KV ]n =

⎧
⎪⎪⎨

⎪⎪⎩

0, ifn = 0, 1,
n−1∑

k=1

S(k)f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
, ifn ≥ 2.

(3.13)

We now show that the operator K : W2,p
0 → W2,p

0 has a unique fixed point. To verify that K is
well defined, we have only to show that KV ∈ l∞(Z+, X). In fact, we use Assumption 3.1 as
above andM := supn∈Z+‖S(n)‖ to obtain
∥∥∥∥∥

n−1∑

k=1

S(k)f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
∥∥∥∥∥
X

≤ M
n−1∑

k=1

∥∥f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
− f(n − 1 − k, 0, 0)

∥∥
X +M

n−1∑

k=1

∥∥f(n − 1 − k, 0, 0)
∥∥
X

≤ M
n−1∑

k=1

αn−1−k
∥∥(Vn−1−k,ΔVn−1−k

)∥∥
X×X +M

n−2∑

j=0

∥∥f(j, 0, 0)
∥∥
X

≤ 3M‖V ‖∞
n−2∑

j=0

αj +M
n−2∑

j=0

∥∥f(j, 0, 0)
∥∥
X

≤ M
[
3‖V ‖∞‖α‖1 + ‖f(·, 0, 0)‖1

]
.

(3.14)

It proves that the space W2,p
0 is invariant underK.

Let V and Ṽ be inW2,p
0 . In view of Assumption 3.1(i) andM < ∞, we have initially as in

(3.14)
∥∥[KV ]n − [KṼ ]n

∥∥
X

=

∥∥∥∥∥

n−1∑

k=1

S(k)
(
f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
− f
(
n − 1 − k, Ṽn−1−k,ΔṼn−1−k

))
∥∥∥∥∥
X

≤ M
n−1∑

k=1

αn−1−k
∥∥((V − Ṽ )n−1−k,Δ(V − Ṽ )n−1−k

)∥∥
X×X

= M
n−2∑

j=0

αj

∥∥((V − Ṽ )j ,Δ(V − Ṽ )j
)∥∥

X×X ≤ 3M‖α‖1‖V − Ṽ ‖∞.

(3.15)

Hence, we obtain

‖KV −KṼ ‖∞ ≤ 3M‖α‖1
∣∣∣∣∣∣V − Ṽ

∣∣∣∣∣∣. (3.16)

On the other hand, using the fact that S(1) = I, we observe first that

Δ[KV ]n = f
(
n − 1, Vn−1,ΔVn−1

)
+

n−1∑

k=1

(
S(k + 1) − S(k)

)
f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
, n ≥ 1.

(3.17)
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Since S(2) = 2I, we get

Δ2[KV ]n = f
(
n, Vn,ΔVn

)
− f
(
n − 1, Vn−1,ΔVn−1

)
+
(
S(2) − I

)
f
(
n − 1, Vn−1,ΔVn−1

)

+
n−1∑

k=1

(
S(k + 2) − 2S(k + 1) + S(k))f

(
n − 1 − k, Vn−1−k,ΔVn−1−k

)

= f
(
n, Vn,ΔVn) +

n−1∑

k=1

(
S(k + 2) − 2S(k + 1) + TS(k)

)
f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)

+
n−1∑

k=1

(I − T)S(k)f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
.

(3.18)

Taking into account that zn+1 = (S∗g)n is solution of (3.12), we get the following identity:

n−1∑

k=1

(
S(k + 2) − 2S(k + 1) + TS(k)

)
f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
= 0. (3.19)

Using (3.19), we obtain for n ≥ 1

Δ2[KV ]n = f
(
n, Vn,ΔVn

)
+

n−1∑

k=1

(I − T)S(k)f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
, (3.20)

whence, for n ≥ 1,

Δ2[KV ]n −Δ2[KṼ ]n

= f
(
n, Vn,ΔVn

)
− f
(
n, Ṽn,ΔṼn

)

+
n−1∑

k=1

(I − T)S(k)
(
f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
− f
(
n − 1 − k, Ṽn−1−k,ΔṼn−1−k

))
.

(3.21)

Furthermore, using the fact that Δ2[KV ]0 = f(0, 0, 0), the above identity, and then
Minkowskii’s inequality, we get

∥∥Δ2KV −Δ2KṼ
∥∥
p

=

(
∥∥f(0, 0, 0) − f(0, 0, 0)

∥∥p
X +

∞∑

n=1

∥∥Δ2[KV ]n −Δ2[KṼ ]n
∥∥p
X

)1/p

≤
[

∞∑

n=1

∥∥f
(
n, Vn,ΔVn) − f(n, Ṽn,ΔṼn

)∥∥p
X

]1/p

+

[
∞∑

n=1

∥∥∥∥∥

n−1∑

k=1

(I − T)S(k)
(
f
(
n−1−k, Vn−1−k,ΔVn−1−k

)
−f
(
n−1−k, Ṽn−1−k,ΔṼn−1−k

))
∥∥∥∥∥

p

X

]1/p
.

(3.22)
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Since KT is bounded on lp(Z+, X), using Assumption 3.1, we obtain

∥∥Δ2KV −Δ2KṼ
∥∥
p ≤
(
1 +
∥∥KT

∥∥)
[

∞∑

n=1

∥∥f(n, Vn,ΔVn) − f(n, Ṽn,ΔṼn)
∥∥p
X

]1/p

≤
(
1 +
∥∥KT

∥∥)
[

∞∑

n=1

α
p
n

∥∥((V − Ṽ )n,Δ(V − Ṽ )n
)∥∥p

X×X

]1/p

≤ 3
(
1 +
∥∥KT

∥∥)‖α‖1
∥∥V − Ṽ

∥∥
∞.

(3.23)

Hence, we obtain from (3.16) and (3.23)
∣∣∣∣∣∣KV −KṼ

∣∣∣∣∣∣ =
∥∥KV −KṼ

∥∥
∞ +
∥∥Δ2KV −Δ2KṼ

∥∥
p

≤ 3M‖α‖1
∣∣∣∣∣∣V − Ṽ

∣∣∣∣∣∣ + 3
(
1 +
∥∥KT

∥∥)‖α‖1
∣∣∣∣∣∣V − Ṽ

∣∣∣∣∣∣

= 3
(
M + 1 +

∥∥KT

∥∥)‖α‖1
∣∣∣∣∣∣V − Ṽ

∣∣∣∣∣∣

= ab
∣∣∣∣∣∣V − Ṽ

∣∣∣∣∣∣,

(3.24)

where a := 3M‖α‖1 and b := 1 + (1 + ‖KT‖)M−1.
Next, we consider the iterates of the operator K. Let V and Ṽ be in W2,p

0 . Taking into
account that S(1) = I, S(0) = 0, and V0 = V1 = Ṽ0 = Ṽ1 = 0, we observe first that for n ≥ 2

Δ[KV ]n −Δ[KṼ ]n

=
n−1∑

k=0

(
S(k + 1) − S(k)

)(
f(n − 1 − k, Vn−1−k,ΔVn−1−k

)
− f
(
n − 1 − k, Ṽn−1−k,ΔṼn−1−k

))

=
n−1∑

k=1

(
S(n − k) − S(n − k − 1)

)(
f
(
k, Vk,ΔVk) − f

(
k, Ṽk,ΔṼk

))
,

(3.25)

whence

∥∥Δ[KV ]n −Δ[KṼ ]n
∥∥
X ≤ 2M

n−1∑

k=1

∥∥f
(
k, Vk,ΔVk

)
− f
(
k, Ṽk,ΔṼk

)∥∥
X

≤ 2M
n−1∑

k=1

αk

∥∥((V − Ṽ )k,Δ(V − Ṽ )k
)∥∥

X×X.

(3.26)

On the other hand, from (3.15)we get

∥∥[KV ]n − [KṼ ]n
∥∥
X ≤ M

n−2∑

k=1

αk

∥∥((V − Ṽ )k,Δ(V − Ṽ )k
)∥∥

X×X. (3.27)

Using estimates (3.26) and (3.27), we obtain for n ≥ 2

∥∥([KV −KṼ ]n,Δ[KV −KṼ ]n
)∥∥

X×X ≤ 3M
n−1∑

k=1

αk

∥∥((V − Ṽ )k,Δ(V − Ṽ )k
)∥∥

X×X. (3.28)
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Next, using [KV ]0 = [KV ]1 = 0 and estimates (3.28) and (3.10), we obtain

∥∥[K2V ]n − [K2Ṽ ]n
∥∥
X ≤ M

n−2∑

j=0

∥∥f
(
j, [KV ]j ,Δ[KV ]j

)
− f
(
j, [KṼ ]j ,Δ[KṼ ]j

)∥∥
X

≤ M
n−2∑

j=1

αj

∥∥([KV −KṼ ]j ,Δ[KV −KṼ ]j
)∥∥

X×X

≤ 3M2
n−1∑

j=1

αj

(
j−1∑

i=1

αi

∥∥((V − Ṽ )i,Δ(V − Ṽ )i
)∥∥

X×X

)

≤ 1
2
(3M)2

(
n−1∑

τ=1

ατ

)2∥∥V − Ṽ
∥∥
∞.

(3.29)

Since [K2V ]0 = [K2V ]1 = 0, we get
∥∥K2V −K2Ṽ

∥∥
∞ ≤ 1

2
(
3M‖α‖1

)2∣∣∣∣∣∣V − Ṽ
∣∣∣∣∣∣. (3.30)

Furthermore, using the identity

Δ2[K2V
]
n −Δ2[K2Ṽ

]
n

= f
(
n, [KV ]n,Δ[KV ]n

)
−f
(
n, [KṼ ]n,Δ[KṼ ]n

)

+
n−1∑

k=1

(I−T)S(k)
(
f
(
n−1−k, [KV ]n−1−k,Δ[KV ]n−1−k

)
−f
(
n−1−k, [KṼ ]n−1−k, Δ[KṼ ]n−1−k

))
,

(3.31)

the fact that Δ2[K2V ]0 = f(0, 0, 0) for all V ∈ W2,p
0 , and Lemma 3.2, we obtain

∥∥Δ2K2V −Δ2K2Ṽ
∥∥
p

=
(∥∥Δ2[K2V

]
0 −Δ2[K2Ṽ

]
0

∥∥p
X +

∞∑

n=1

∥∥Δ2[K2V
]
n −Δ2[K2Ṽ

]
n

∥∥p
X

)1/p

≤
(
1 +
∥∥KT

∥∥)
[

∞∑

n=1

∥∥f
(
n,
[
KV
]
n,Δ
[
KV
]
n

)
− f
(
n,
[
KṼ
]
n,Δ
[
KṼ
]
n

)∥∥p
X

]1/p

≤
(
1 +
∥∥KT

∥∥)
[

∞∑

n=1

α
p
n

∥∥([KV −KṼ
]
n,Δ
[
KV −KṼ

]
n

)∥∥p
X×X

]1/p

≤ 3M
(
1 +
∥∥KT

∥∥)
[

∞∑

n=1

α
p
n

(
n−1∑

k=1

αk

∥∥([V − Ṽ ]k,Δ[V − Ṽ ]k
)∥∥

X×X

)p]1/p

≤ 32M
(
1 +
∥∥KT

∥∥)
[

∞∑

n=0

α
p
n

(
n−1∑

k=0

αk

)p∥∥V − Ṽ
∥∥p
∞

]1/p

≤ 32M
(
1 +
∥∥KT

∥∥)1
2

(
∞∑

j=0

αj

)2∥∥V − Ṽ
∥∥
∞,

(3.32)
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whence

∥∥Δ2K2V −Δ2K2Ṽ
∥∥
p ≤ 1

2
(
3M‖α‖1

)2(1 +
∥∥KT

∥∥)M−1∣∣∣∣∣∣V − Ṽ
∣∣∣∣∣∣. (3.33)

From estimates (3.30) and (3.33), we get

∣∣∣∣∣∣K2V −K2Ṽ
∣∣∣∣∣∣ ≤ b

2
a2∣∣∣∣∣∣V − Ṽ

∣∣∣∣∣∣, (3.34)

with a and b defined as above. Taking into account (3.26), (3.28), (3.29), and (3.10), we can
infer that

∥∥([K2V −K2Ṽ
]
j ,Δ
[
K2V −K2Ṽ

]
j

)∥∥
X×X ≤ 3

2
(3M)2

(
j−1∑

τ=1

ατ

)2∥∥V − Ṽ
∥∥
∞. (3.35)

Next, using estimate (3.35) and Lemma 3.2, we get

∥∥[K3V
]
n −
[
K3Ṽ

]
n

∥∥
X ≤ M

n−2∑

j=1

αj

∥∥([K2V −K2Ṽ
]
j ,Δ
[
K2V −K2Ṽ

]
j

)∥∥
X×X

≤ 1
2
(3M)3

n−1∑

j=0

αj

(
j−1∑

τ=1

ατ

)2∥∥V − Ṽ
∥∥
∞

≤ 1
6
(3M)3

(
n−1∑

j=1

αj

)3∥∥V − Ṽ
∥∥
∞.

(3.36)

Hence,

∥∥K3V −K3Ṽ
∥∥
∞ ≤ 1

6
(
3M‖α‖1

)3∣∣∣∣∣∣V − Ṽ
∣∣∣∣∣∣. (3.37)

Using (3.35), we get

∥∥Δ2K3V −Δ2K3Ṽ
∥∥
p ≤
(
1 +
∥∥KT

∥∥)
[

∞∑

n=1

α
p
n

∥∥([K2V −K2Ṽ
]
n,Δ
[
K2V −K2Ṽ

]
n

)∥∥p
X×X

]1/p

≤ 3(3M)2
(
1 +
∥∥KT

∥∥)1
6

(
∞∑

j=0

αj

)3∥∥V − Ṽ
∥∥
∞,

(3.38)

whence

∥∥Δ2K3V −Δ2K3Ṽ
∥∥
p ≤ 1

6
(
3M‖α‖1

)3(1 +
∥∥KT

∥∥)M−1∣∣∣∣∣∣V − Ṽ
∣∣∣∣∣∣. (3.39)

From estimates (3.37) and (3.39), we get

∣∣∣∣∣∣K3V −K3Ṽ
∣∣∣∣∣∣ ≤ b

3!
a3∣∣∣∣∣∣V − Ṽ

∣∣∣∣∣∣. (3.40)
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An induction argument shows us that

∣∣∣∣∣∣KnV −KnṼ
∣∣∣∣∣∣ ≤ b

n!
an
∣∣∣∣∣∣V − Ṽ

∣∣∣∣∣∣. (3.41)

Since ban/n! < 1 for n sufficiently large, by the fixed point iteration method K has a unique
fixed point V ∈ W2,p

0 . Let V be the unique fixed point ofK, then by Assumption 3.1 we have

∥∥Vn

∥∥
X =

∥∥∥∥∥

n−1∑

k=1

S(k)f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
∥∥∥∥∥
X

≤ M
n−2∑

k=0

∥∥f
(
k, Vk,ΔVk

)
− f(k, 0, 0)

∥∥
X +M

n−2∑

k=0

∥∥f(k, 0, 0)
∥∥
X

≤ M
n−2∑

k=0

αk

∥∥(Vk,ΔVk

)∥∥
X×X +M

∥∥f(·, 0, 0)
∥∥
1,

(3.42)

hence,

∥∥Vn

∥∥
X

≤ M
∥∥f(·, 0, 0)

∥∥
1 +M

n−1∑

k=0

αk

∥∥(Vk,ΔVk

)∥∥
X×X. (3.43)

On the other hand, we have

∥∥ΔVn

∥∥
X =

∥∥∥∥∥

n−1∑

k=1

(
S(k + 1) − S(k)

)
f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
∥∥∥∥∥
X

≤ 2M
n−1∑

k=0

αk

∥∥(Vk,ΔVk

)∥∥
X×X + 2M

n−1∑

k=0

∥∥f(k, 0, 0)
∥∥
X,

(3.44)

hence

∥∥ΔVn

∥∥
X

≤ 2M
∥∥f(·, 0, 0)‖1 + 2M

n−1∑

k=0

αk

∥∥(Vk,ΔVk

)∥∥
X×X. (3.45)

From (3.43) and (3.45), we get

∥∥(Vn,ΔVn

)∥∥
X×X ≤ 3M

∥∥f(·, 0, 0)
∥∥
1 + 3M

n−1∑

k=0

αk

∥∥(Vk,ΔVk

)∥∥
X×X. (3.46)

T hen, by application of the discrete Gronwall inequality [1, Corollary 4.12, page 183], we get

∥∥(Vn,ΔVn

)∥∥
X×X ≤ 3M

∥∥f(·, 0, 0)
∥∥
1

n−1∏

j=0

(
1 + 3Mαj

)

≤ 3M
∥∥f(·, 0, 0)

∥∥
1

n−1∏

j=0

e3Mαj

= 3M
∥∥f(·, 0, 0)

∥∥
1e

3M
∑n−1

j=0 αj

≤ 3M
∥∥f(·, 0, 0)

∥∥
1e

3M‖α‖1 .

(3.47)
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Then,

sup
n∈Z+

[∥∥(Vn,ΔVn

)∥∥
X×X
]
≤ 3M

∥∥f(·, 0, 0)
∥∥
1e

3M‖α‖1 . (3.48)

Finally, by (3.20)we obtain

Δ2Vn = f
(
n, Vn,ΔVn

)
+

n−1∑

k=1

(I − T)S(k)f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
. (3.49)

Hence, using the fact that Δ2V0 = f(0, 0, 0) and proceeding analogously as in (3.23), we get

∥∥Δ2V
∥∥
p =
(∥∥f(0, 0, 0)

∥∥p
X +

∞∑

n=1

∥∥Δ2Vn

∥∥p
X

)1/p

≤
∥∥f(0, 0, 0)

∥∥
X +

(
∞∑

n=1

∥∥Δ2Vn

∥∥p
X

)1/p

≤
∥∥f(0, 0, 0)

∥∥
X +

(
∞∑

n=1

∥∥f(n, Vn,ΔVn

)∥∥p
X

)1/p

+
∥∥KT

∥∥
(

∞∑

n=1

∥∥f(n, Vn,ΔVn)
∥∥p
X

)1/p

≤ 2

(
∞∑

n=0

∥∥f
(
n, Vn,ΔVn

)∥∥p
X

)1/p

+
∥∥KT

∥∥
(

∞∑

n=0

∥∥f
(
n, Vn,ΔVn)

∥∥p
X

)1/p

≤
(
2 +
∥∥KT

∥∥)
∞∑

n=0

∥∥f
(
n, Vn,ΔVn

)∥∥
X,

(3.50)

where, by Assumption 3.1 and (3.48),

∞∑

n=0

∥∥f
(
n, Vn,ΔVn

)∥∥
X ≤

∞∑

k=0

αk

∥∥(Vk,ΔVk

)∥∥
X×X +

∥∥f(·, 0, 0)
∥∥
1

≤ 3M‖α‖1
∥∥f(·, 0, 0)

∥∥
1e

3M‖α‖1 +
∥∥f(·, 0, 0)

∥∥
1

≤
∥∥f(·, 0, 0)

∥∥
1e

6M‖α‖1 .

(3.51)

This ends the proof of the theorem.

In view of Theorem 2.4, we obtain the following result valid on UMD spaces.

Corollary 3.4. Let X be a UMD space. Assume that Assumption 3.1 holds and suppose T ∈ B(X)
is an analytic S-bounded operator such that the set {(λ − 1)2R((λ − 1)2, I − T) : |λ| = 1, λ /= 1} is
R-bounded. Then, there is a unique bounded solution x = (xn) of (3.1) such that (Δ2xn) ∈ lp(Z+, X).
Moreover, the a priori estimates (3.6) hold.

Example 3.5. Consider the semilinear problem

Δ2xn − (I − T)xn = qnf(xn), n ∈ Z+, x0 = x1 = 0, (3.52)
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where f is defined and satisfies a Lipschitz condition with constant L on a Hilbert space H.
In addition, suppose (qn) ∈ l1(Z+). Then, Assumption 3.1 is satisfied. In our case, applying the
preceding result, we obtain that if T ∈ B(H) is an analytic S-bounded operator such that the
set {(λ − 1)2R((λ − 1)2, I − T) : |λ| = 1, λ /= 1} is bounded, then there exists a unique bounded
solution x = (xn) of (3.52) such that (Δ2xn) ∈ lp(Z+,H). Moreover,

max
{
sup
n∈Z+

[ ∥∥xn

∥∥
H +
∥∥Δxn

∥∥
H

]
,
∥∥Δ2x

∥∥
p

}
≤ C‖f(0)‖H‖q‖1e6LM‖q‖1 . (3.53)

In particular, taking T = I the identity operator, we obtain the following scalar result which
complements those in the work of Drozdowicz and Popenda [2].

Corollary 3.6. Suppose f is defined and satisfies a Lipschitz condition with constant L on a Hilbert
spaceH. Let (qn) ∈ l1(Z+,H), then the equation

Δ2xn = qnf(xn) (3.54)

has a unique bounded solution x = (xn) such that (Δ2xn) ∈ lp(Z+,H) and (3.53) holds.

We remark that the above result holds in the finite dimensional case where it is new and
covers a wide range of difference equations.

4. A criterion for stability

The following result provides a new criterion to verify the stability of discrete semilinear sys-
tems. Note that the characterization of maximal regularity is the key to give conditions based
only on the data of a given system.

Theorem 4.1. Let X be a UMD space. Assume that Assumption 3.1 holds and suppose T ∈ B(X) is
analytic and 1 ∈ ρ(T). Then, the system (3.1) is stable, that is the solution (xn) of (3.1) is such that
xn → 0 as n → ∞.

Proof. It is assumed that T is analytic (which implies that the spectrum is contained in the unit
disc and the point 1, see [10]) and that 1 is not in the spectrum, then in view of [27, Proposition
3.6] , the set

{
(λ − 1)2R

(
(λ − 1)2, I − T

)
: |λ| = 1, λ /= 1

}
(4.1)

is R-bounded, because (λ − 1)2R((λ − 1)2, I − T) is an analytic function in a neighborhood of
the circle. The S-boundedness assumption of the operator T follows from maximal regularity
and the fact that I − T is invertible. In fact, we get the following estimate:

sup
n≥0

‖S(n)‖ ≤ ‖(I − T)−1‖
∥∥KT

∥∥. (4.2)
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By Corollary 3.4, there exists a unique bounded solution xn of (3.1) such that (Δ2xn) ∈
lp(Z+, X). Then, Δ2xn → 0 as n → ∞. Next, observe that Assumption 3.1 and estimate (3.10)
imply

∥∥f
(
n, xn,Δxn

)∥∥
X ≤
∥∥f
(
n, xn,Δxn

)
− f(n, 0, 0)

∥∥
X +
∥∥f(n, 0, 0)

∥∥
X

≤ αn

∥∥(xn,Δxn

)∥∥
X×X +

∥∥f(n, 0, 0)
∥∥
X

≤ αnsupn∈Z+

∥∥(xn,Δxn

)∥∥
X×X +

∥∥f(n, 0, 0)
∥∥
X

≤ 3αn

∥∥x
∥∥
∞ +
∥∥f(n, 0, 0)

∥∥
X.

(4.3)

Since (f(·, 0, 0)) ∈ l1(Z+, X) and (αn) ∈ l1(Z+), we obtain that f(n, xn,Δxn) → 0 as n → ∞.
Then, the result follows from the fact that 1 ∈ ρ(T) and (3.1).

From the point of view of applications, we specialize to Hilbert spaces. The following
corollary provides easy-to-check conditions for stability.

Corollary 4.2. Let H be a Hilbert space. Let T ∈ B(H) such that ‖T‖ < 1. Suppose that
Assumption 3.1 holds inH. Then, the system (3.1) is stable.

Proof. First, we note that each Hilbert space is UMD, and then the concept of R-boundedness
and boundedness coincide; see [7]. Since ‖T‖ < 1, we get that T is analytic and 1 ∈ ρ(T).
Furthermore, for |λ| = 1, λ /= 1, the inequality

∥∥(λ − 1)2R
(
(λ − 1)2, I − T

)∥∥ =

∥∥∥∥∥
(λ − 1)2

λ(λ − 2)

∞∑

n=0

(
T

λ(λ − 2)

)n
∥∥∥∥∥ ≤ |λ − 1|2

|λ − 2| − ‖T‖ ≤ 4
1 − ‖T‖ (4.4)

shows that the set (4.1) is bounded .

Of course, the same result holds in the finite dimensional case.

5. Local perturbations

In the process of obtaining our next result, we will require the following assumption.

Assumption 5.1. The following conditions hold.

(i)∗ The function f(n, z) is locally Lipschitz with respect to z ∈ X × X; that is for each
positive number R, for all n ∈ Z+, and z,w ∈ X ×X, ‖z‖X×X ≤ R, ‖w‖X×X ≤ R

‖f(n, z) − f(n,w)‖X ≤ l(n,R)‖z −w‖X×X, (5.1)

where � : Z+ × [0,∞) → [0,∞) is a nondecreasing function with respect to the second
variable.

(ii)∗ There is a positive number a such that
∑∞

n=0�(n, a) < +∞.

(iii)∗ f(·, 0, 0) ∈ �1(Z+, X).
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We need to introduce some basic notations. We denote by W2,p
m the Banach space of all

sequences V = (Vn) belonging to �∞(Z+, X), such that Vn = 0 if 0 ≤ n ≤ m, and Δ2V ∈ �p(Z+, X)
equipped with the norm

∣∣∣∣∣∣ ·
∣∣∣∣∣∣. For λ > 0, denote by W2,p

m [λ] the ball
∣∣∣∣∣∣V
∣∣∣∣∣∣ ≤ λ in W2,p

m . Our
main result in this section is the following local version of Theorem 3.3.

Theorem 5.2. Suppose that the following conditions are satisfied.

(a)∗ Assumption 5.1 holds.

(b)∗ T is an S-bounded operator and it has discrete maximal regularity.

Then, there are a positive constant m ∈ N and a unique bounded solution x = (xn) of (3.1) for
n ≥ m such that xn = 0 if 0 ≤ n ≤ m and the sequence (Δ2xn) belongs to �p(Z+, X). Moreover, one has

‖x‖∞ +
∥∥Δ2x

∥∥
p ≤ a, (5.2)

where a is the constant of condition (ii)∗.

Proof. Let β ∈ (0, 1/3). Using (iii)∗ and (ii)∗, there are n1 and n2 in N such that

(
M + 2 +

∥∥KT

∥∥)
∞∑

j=n1

∥∥f(j, 0, 0)
∥∥
X ≤ βa, (5.3)

T := β +
(
M + 2 +

∥∥KT

∥∥)
∞∑

j=n2

�(j, a) <
1
3
, (5.4)

whereM := supn∈Z+‖S(n)‖.
Let V be a sequence in W2,p

m [a/3], with m = max{n1, n2}. A short argument similar to
(3.7) and involving Assumption 5.1 shows that the sequence

gn :=

⎧
⎨

⎩
0, if 0 ≤ n ≤ m,

f(n, Vn,ΔVn), if n > m,
(5.5)

belongs to �p. By the discrete maximal regularity, the Cauchy problem (3.12) with gn defined
as in (5.5) has a unique solution (zn) such that (Δ2zn) ∈ lp(Z+, X), which is given by

zn = [K̃V )]n =

⎧
⎪⎪⎨

⎪⎪⎩

0, if 0 ≤ n ≤ m,

n−1−m∑

k=0

S(k)f(n − 1 − k, Vn−1−k,ΔVn−1−k), if n ≥ m + 1.
(5.6)

We will prove that K̃V belongs toW2,p
m [a/3]. In fact, since

∥∥(Vj,ΔVj

)∥∥
X×X ≤ 3‖|V |‖∞ ≤ 3‖|V |‖ < a, (5.7)
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we have by Assumption 5.1

∥∥[K̃V ]n
∥∥
X = M

n−2∑

j=m

∥∥f
(
j, Vj ,ΔVj

)∥∥
X

≤ M
n−2∑

j=m

∥∥f
(
j, Vj ,ΔVj

)
− f(j, 0, 0)

∥∥
X +M

n−2∑

j=m

∥∥f(j, 0, 0)
∥∥
X

≤ M
n−2∑

j=m

l(j, a)
∥∥(Vj,ΔVj

)∥∥
X×X +M

n−2∑

j=m

∥∥f(j, 0, 0)
∥∥
X

≤ M
∞∑

j=m

l(j, a)a +M
∞∑

j=m

∥∥f(j, 0, 0)
∥∥
X.

(5.8)

Proceeding in a way similar to (3.20), we get for n ≥ m

Δ2[K̃V ]n = f
(
n, Vn,ΔVn

)
+

n−1−m∑

k=1

(I − T)S(k)f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)
. (5.9)

Hence,

∥∥Δ2K̃V
∥∥
p =
[∥∥f
(
m,Vm,ΔVm

)∥∥p
X +

∞∑

n=m+1

∥∥Δ2[K̃V ]n
∥∥p
X

]1/p
≤
∥∥f
(
m,Vm,ΔVm

)∥∥
X

+

[
∞∑

n=m+1

∥∥f
(
n, Vn,ΔVn

)
+

n−1−m∑

k=1

(I − T)S(k)f
(
n − 1 − k, Vn−1−k,ΔVn−1−k

)∥∥p
X

]1/p

≤
∥∥f
(
m,Vm,ΔVm

)∥∥
X +
(
1 +
∥∥KT

∥∥)
[

∞∑

n=m

∥∥f
(
n, Vn,ΔVn

)∥∥p
X

]1/p

≤
(
2 +
∥∥KT

∥∥)
∞∑

n=m

∥∥f
(
n, Vn,ΔVn

)∥∥
X.

(5.10)

Therefore, using (5.8) we get

∥∥Δ2K̃V
∥∥
p ≤
(
2 +
∥∥KT

∥∥)
[

∞∑

j=m

l(j, a)a +
∞∑

j=m

∥∥f(j, 0, 0)
∥∥
X

]
. (5.11)

Then, inequalities (5.8) and (5.11) together with (5.3) and (5.4) imply

∣∣∣∣∣∣K̃V
∣∣∣∣∣∣ ≤

(
M + 2 +

∥∥KT

∥∥)
∞∑

j=m

�(j, a)a +
(
M + 2 +

∥∥KT

∥∥)
∞∑

j=m

∥∥f(j, 0, 0)
∥∥
X

≤
(
1
3
− β

)
a + βa =

1
3
a,

(5.12)
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proving that K̃V belongs to W2,p
m [a/3]. In an essentially similar way to the proof of

Theorem 3.3, for all V andW inW2,p
m [a/3], we prove that

‖K̃V − K̃W‖∞ ≤ 3M
∞∑

j=m

�(j, a)
∣∣∣∣∣∣V −W

∣∣∣∣∣∣, (5.13)

∥∥Δ2K̃V −Δ2K̃W
∥∥
p ≤ 3

(
1 +
∥∥KT

∥∥)
∞∑

j=m

�(j, a)
∣∣∣∣∣∣V −W

∣∣∣∣∣∣, (5.14)

whence

∣∣∣∣∣∣K̃V − K̃W
∣∣∣∣∣∣ ≤ 3

(
M + 1 +

∥∥KT

∥∥)
∞∑

j=m

�(j, a)
∣∣∣∣∣∣V −W

∣∣∣∣∣∣ = 3(T − β)
∣∣∣∣∣∣V −W

∣∣∣∣∣∣. (5.15)

Since 3(T − β) < 1, K̃ is a 3(T − β)-contraction. This completes the proof of the theorem.

This enables us to prove, as an application, the following corollary.

Corollary 5.3. Let Bi : X × X → X, i = 1, 2, be two bounded bilinear operators, y ∈ �1(Z+, X),
and α, β ∈ �1(Z+,R). In addition, suppose that T is a S-bounded operator and has discrete maximal
regularity. Then, there is a unique bounded solution x such that (Δ2x) ∈ lp(Z+, X) for the equation

xn+2 − 2xn+1 + Txn = yn + αnB1
(
xn, xn

)
+ βnB2

(
Δxn,Δxn

)
. (5.16)

Proof. Take l(n,R) := 2R(|αn| + |βn|)(‖B1‖ + ‖B2‖). Then,
∑∞

n=0�(n, 1) < +∞. Note also that
f(n, 0, 0) = yn belongs to �1(Z+, X). Hence, Assumption 5.1 is satisfied.

Remark 5.4. We observe that under the hypotheses of the above local theorem and corollary,
the same type of conclusions on stability of solutions proved in Section 4 remains true.
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