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In this paper we study the boundedness, the persistence, the attractivity and the stability of the
positive solutions of the nonlinear difference equation xn+1 = α + (xp

n−1/x
q
n), n = 0, 1, . . . , where

α, p, q ∈ (0,∞) and x−1, x0 ∈ (0,∞). Moreover we investigate the existence of a prime two periodic
solution of the above equation and we find solutions which converge to this periodic solution.
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1. Introduction

Difference equations have been applied in several mathematical models in biology,
economics, genetics, population dynamics, and so forth. For this reason, there exists an
increasing interest in studying difference equations (see [1–28] and the references cited
therein).

The investigation of positive solutions of the following equation

xn = A +
x
p

n−k
x
q
n−m

, n = 0, 1, . . . , (1.1)

whereA, p, q ∈ [0,∞) and k,m ∈ N, k /=m, was proposed by Stević at numerous conferences.
For some results in the area see, for example, [3–5, 8, 11, 12, 19, 22, 24, 25, 28].

In [22] the author studied the boundedness, the global attractivity, the oscillatory
behavior, and the periodicity of the positive solutions of the equation

xn+1 = a +
x
p

n−1
x
p
n

, n = 0, 1, . . . , (1.2)
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where a, p are positive constants, and the initial conditions x−1, x0 are positive numbers (see
also [5] for more results on this equation).

In [11] the authors obtained boundedness, persistence, global attractivity, and
periodicity results for the positive solutions of the difference equation

xn+1 = a +
xn−1
x
p
n

, n = 0, 1, . . . , (1.3)

where a, p are positive constants and the initial conditions x−1, x0 are positive numbers.
Motivating by the above papers, we study now the boundedness, the persistence, the

existence of unbounded solutions, the attractivity, the stability of the positive solutions, and
the two-period solutions of the difference equation

xn+1 = A +
x
p

n−1
x
q
n

, n = 0, 1, . . . , (1.4)

where A, p, and q are positive constants and the initial values x−1, x0 are positive real
numbers.

Finally equations, closely related to (1.4), are considered in [1–11, 14, 16–23, 26, 27],
and the references cited therein.

2. Boundedness and Persistence

The following result is essentially proved in [22]. Hence, we omit its proof.

Proposition 2.1. If

0 < p < 1, (2.1)

then every positive solution of (1.4) is bounded and persists.

In the next proposition we obtain sufficient conditions for the existence of unbounded
solutions of (1.4).

Proposition 2.2. If

p > 1 (2.2)

then there exist unbounded solutions of (1.4).

Proof. Let xn be a solution of (1.4) with initial values x−1, x0 such that

x−1 > max
{
(A + 1)p/q, (A + 1)q/(p−1)

}
, x0 < A + 1. (2.3)
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Then from (1.4), (2.2), and (2.3) we have

x1 = A +
x
p

−1
x
q

0

> A +
x
p

−1
(A + 1)q

− x−1 + x−1

= A + x−1

⎛
⎝ x

p−1
−1

(A + 1)q
− 1

⎞
⎠ + x−1 > A + x−1,

x2 = A +
x
p

0

x
q

1

< A +
(A + 1)p

x
q

−1
< A + 1.

(2.4)

Moreover from (1.4), and (2.3) we have

x1 = A +
x
p

−1
x
q

0

> A +
(A + 1)qp/(p−1)

(A + 1)q
= A + (A + 1)q/(p−1) > (A + 1)q/(p−1). (2.5)

Then using (1.4), and (2.3)–(2.5) and arguing as above we get

x3 = A +
x
p

1

x
q

2

> A +
x
p

1

(A + 1)q
− x1 + x1 > A + x1,

x4 = A +
x
p

2

x
q

3

< A +
(A + 1)p

x
q

−1
< A + 1.

(2.6)

Therefore working inductively we can prove that for n = 0, 1, . . .

x2n+1 > A + x2n−1, x2n < A + 1 (2.7)

which implies that

lim
n→∞

x2n+1 = ∞. (2.8)

So xn is unbounded. This completes the proof of the proposition.

3. Attractivity and Stability

In the following proposition we prove the existence of a positive equilibrium.

Proposition 3.1. If either

0 < q < p < 1 (3.1)
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or

0 < p < q (3.2)

holds, then (1.4) has a unique positive equilibrium x.

Proof. A point x ∈ R will be an equilibrium of (1.4) if and only if it satisfies the following
equation

F(x) = xp−q − x +A = 0. (3.3)

Suppose that (3.1) is satisfied. Since (3.1) holds and

F ′(x) =
(
p − q

)
xp−q−1 − 1, (3.4)

we have that F is increasing in [0, (p − q)1/(−p+q+1)] and F is decreasing in [(p − q)1/(−p+q+1),∞).
Moreover F(0) = A > 0 and

lim
x→∞

F(x) = −∞. (3.5)

So if (3.1) holds, we get that (1.4) has a unique equilibrium x in (0,∞).
Suppose now that (3.2) holds. We observe that F(1) = A > 0 and since from (3.2) and

(3.4) F ′(x) < 0, we have that F is decreasing in (0,∞). Thus from (3.5) we obtain that (1.4)
has a unique equilibrium x in (0,∞). The proof is complete.

In the sequel, we study the global asymptotic stability of the positive solutions of (1.4).

Proposition 3.2. Consider (1.4). Suppose that either

0 < p < 1 < q, A >
(
p + q − 1

)1/(q−p+1) (3.6)

or (3.1) and

0 < p + q ≤ 1. (3.7)

hold. Then the unique positive equilibrium of (1.4) is globally asymptotically stable.

Proof. First we prove that every positive solution of (1.4) tends to the unique positive
equilibrium x of (1.4).

Assume first that (3.6) is satisfied. Let xn be a positive solution of (1.4). From (3.6) and
Proposition 2.1 we have

0 < l = lim inf
n→∞

xn, L = lim sup
n→∞

xn < ∞. (3.8)
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Then from (1.4) and (3.8)we get,

L ≤ A +
Lp

lq
, l ≥ A +

lp

Lq
, (3.9)

and so

Llq ≤ Alq + Lp, lLq ≥ ALq + lp. (3.10)

Thus,

ALqlq−1 + lplq−1 ≤ AlqLq−1 + LpLq−1. (3.11)

This implies that

ALq−1lq−1(L − l) ≤ Lp+q−1 − lp+q−1. (3.12)

Suppose for a while that p + q − 2 ≥ 0. We shall prove that l = L. Suppose on the contrary that
l < L. If we consider the function xp+q−1, then there exists a c ∈ (l, L) such that

Lp+q−1 − lp+q−1

L − l
=
(
p + q − 1

)
cp+q−2 ≤ (

p + q − 1
)
Lp+q−2. (3.13)

Then from (3.12) and (3.13)we obtain

ALq−1lq−1 ≤ (
p + q − 1

)
Lp+q−2 (3.14)

or

AL1−plq−1 ≤ p + q − 1. (3.15)

Moreover, since from (1.4),

L ≥ A, l ≥ A, (3.16)

from (3.6) and (3.15) we get

AA1−pAq−1 = Aq−p+1 ≤ p + q − 1 (3.17)

which contradicts to (3.6). So l = L which implies that xn tends to the unique positive
equilibrium x.
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Suppose that p + q − 2 < 0. Then from (3.12) and arguing as above we get

ALq−1lq−1 ≤ (
p + q − 1

)
lp+q−2. (3.18)

Then arguing as above we can prove that xn tends to the unique positive equilibrium x.
Assume now that (3.7) holds. From (3.7) and (3.12) we obtain

ALq−1lq−1(L − l) ≤ 1
L1−p−q − 1

l1−p−q
=

l1−p−q − L1−p−q

L1−p−ql1−p−q
≤ 0, (3.19)

which implies that L = l. So every positive solution xn of (1.4) tends to the unique positive
equilibrium x of (1.4).

It remains to prove now that the unique positive equilibrium of (1.4) is locally
asymptotically stable. The linearized equation about the positive equilibrium x is the
following:

yn+2 + qxp−q−1yn+1 − pxp−q−1yn = 0. (3.20)

Using [13, Theorem 1.3.4] the linear (3.20) is asymptotically stable if and only if

qxp−q−1 < −pxp−q−1 + 1 < 2. (3.21)

First assume that (3.6) holds. Since (3.6) holds, then we obtain that

A >
(
p + q

)(p−q)/(q+1−p)(
q + p − 1

)
. (3.22)

From (3.6) and (3.22)we can easily prove that

F(c) > 0, where c =
(
p + q

)1/(q+1−p)
. (3.23)

Therefore

x >
(
p + q

)1/(q+1−p)
, (3.24)

which implies that (3.21) is true. So in this case the unique positive equilibrium x of (1.4) is
locally asymptotically stable.

Finally suppose that (3.1) and (3.7) are satisfied. Then we can prove that (3.23) is
satisfied, and so the unique positive equilibrium x of (1.4) satisfies (3.24). Therefore (3.21)
hold. This implies that the unique positive equilibrium x of (1.4) is locally asymptotically
stable. This completes the proof of the proposition.
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4. Study of 2-Periodic Solutions

Motivated by [5, Lemma 1], in this section we show that there is a prime two periodic
solution. Moreover we find solutions of (1.4) which converge to a prime two periodic
solution.

Proposition 4.1. Consider (1.4) where

0 < p < 1 < q. (4.1)

Assume that there exists a sufficient small positive real number ε1, such that

1
(A + ε1)q−p

> ε1, (4.2)

(A + ε1)p/qε
−1/q
1 < A + ε

−p/q
1 (A + ε1)

(p2−q2)/q. (4.3)

Then (1.4) has a periodic solution of prime period two.

Proof. Let xn be a positive solution of (1.4). It is obvious that if

x−1 = A +
x
p

−1
x
q

0

, x0 = A +
x
p

0

x
q

−1
, (4.4)

then xn is periodic of period two. Consider the system

x = A +
xp

yq
, y = A +

yp

xq
, (4.5)

Then system (4.5) is equivalent to

y −A − yp

xq
= 0, y =

xp/q

(x −A)1/q
, (4.6)

and so we get the equation

G(x) =
xp/q

(x −A)1/q
−A − x(p2−q2)/q

(x −A)p/q
= 0. (4.7)

We obtain

G(x) =
1

(x −A)1/q
(
xp/q − x(p

2−q2)/q(x −A)(1−p)/q
)
−A, (4.8)
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and so from (4.1)

lim
x→A+

G(x) = ∞. (4.9)

Moreover from (4.3)we can show that

G(A + ε1) < 0. (4.10)

Therefore the equation G(x) = 0 has a solution x = A + ε0, where 0 < ε0 < ε1, in the interval
(A,A + ε1). We have

y =
xp/q

(x −A)1/q
. (4.11)

We consider the function

H(ε) = (A + ε)p−q − ε. (4.12)

Since from (4.1)H ′(ε) = (p − q)(A + ε)p−q−1 − 1 < 0 and we have

H(ε0) > H(ε1). (4.13)

From (4.2)we have H(ε1) > 0, so from (4.13)

H(ε0) = (A + ε0)p−q − ε0 > 0, (4.14)

which implies that

x = A + ε0 <
(A + ε0)p/q

ε
1/q
0

= y. (4.15)

Hence, if x−1 = x, x0 = y, then the solution xn with initial values x−1, x0 is a prime 2-periodic
solution.

In the sequel, we shall need the following lemmas.

Lemma 4.2. Let {xn} be a solution of (1.4). Then the sequences {x2n} and {x2n+1} are eventually
monotone.

Proof. We define the sequence {un} and the function h(x) as follows:

un = xn −A, h(x) = x +A. (4.16)
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Then from (1.4) for n ≥ 3 we get

un

un−2
=

(un−2 +A)p

(un−4 +A)p
(un−3 +A)q

(un−1 +A)q
=

(h(un−2))
p

(h(un−4))
p

(h(un−3))
q

(h(un−1))
q . (4.17)

Then using (4.17) and arguing as in [5, Lemma 2] (see also in [20, Theorem 2])we can easily
prove the lemma.

Lemma 4.3. Consider (1.4) where (4.1) and (4.3) hold. Let xn be a solution of (1.4) such that either

A < x−1 < A + ε1, x0 > (A + ε1)p/qε
−1/q
1

(4.18)

or

A < x0 < A + ε1, x−1 > (A + ε1)p/qε
−1/q
1 . (4.19)

Then if (4.18) holds, one has

A < x2n−1 < A + ε1, x2n > (A + ε1)p/qε
−1/q
1 , n = 0, 1, . . . , (4.20)

and if (4.19) is satisfied, one has

A < x2n < A + ε1, x2n−1 > (A + ε1)p/qε
−1/q
1 , n = 0, 1, . . . . (4.21)

Proof. Suppose that (4.18) is satisfied. Then from (1.4) and (4.3)we have

A < x1 = A +
x
p

−1
x
q

0

< A + ε1
(A + ε1)p

(A + ε1)p
= A + ε1,

x2 = A +
x
p

0

x
q

1

> A + (A + ε1)(p
2−q2)/qε−p/q1 > (A + ε1)p/qε

−1/q
1 .

(4.22)

Working inductively we can easily prove relations (4.20). Similarly if (4.19) is satisfied, we
can prove that (4.21) holds.

Proposition 4.4. Consider (1.4) where (4.1), (4.2), and (4.3) hold. Suppose also that

A + ε1 < 1. (4.23)

Then every solution xn of (1.4) with initial values x−1, x0 which satisfy either (4.18) or (4.19),
converges to a prime two periodic solution.
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Proof. Let xn be a solution with initial values x−1, x0 which satisfy either (4.18) or (4.19). Using
Proposition 2.1 and Lemma 4.2 we have that there exist

lim
n→∞

x2n+1 = L, lim
n→∞

x2n = l. (4.24)

In addition from Lemma 4.3 we have that either L or l belongs to the interval (A,A + ε1).
Furthermore from Proposition 3.1 we have that (1.4) has a unique equilibrium x such that
1 < x < ∞. Therefore from (4.23) we have that L/= l. So xn converges to a prime two-period
solution. This completes the proof of the proposition.
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[13] V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with
Applications, vol. 256 ofMathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1993.

[14] M. R. S. Kulenović, G. Ladas, and C. B. Overdeep, “On the dynamics of xn+1 = pn + (xn−1/xn) with
a period-two coefficient,” Journal of Difference Equations and Applications, vol. 10, no. 10, pp. 905–914,
2004.
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