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1. Introduction

The theory of impulsive differential equation appears as a natural description of several real
processes subject to certain perturbations whose duration is negligible in comparison with the
duration of the process. Recently, equations of this kind are found in almost every domain
of applied science. Many examples are given in [1]. Some impulsive differential equations
have been recently introduced in population dynamics[2–7], pulse vaccination [8–11], and
chemostat dynamics [12–15].

The chemostat is a basic piece of laboratory apparatus. The advantages are that certain
of the biological parameters assumed to influence the outcomes can be controlled by the
experimenters. The chemostat plays an important role in bioprocessing, such as ecology,
microbiology, chemical engineering, and so forth. Smith and Waltman had made discussion
about the chemostat model in [16]. The models contain discrete time delays which account
for time which laps between uptaked of nutrient and the assimilation of nutrient into viable
biomass. Smith, Waltman [17] and Kuang [18] discussed various aspects of models with
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discrete time delay. Freedman, So, and Waltman[19] were the first to incorporate time delay in
chemostat models. Ellermeyer [20], Hsu et al. [21, 22], analyzed a discrete time delay model
with two competitive microorganisms for a single nutrient in a chemostat. Hale, Somolinos
[23],Hsu et al. [24], Wolkowicz, Zhao [25] investigated competition in chemostat. Ellermeyer
et al. [26] did a theoretical and empirical investigation of delayed growth response in the
continuous culture of bacteria. Delays occur naturally in biological system by two obvious
sources of delays: delays due to the cell cycle; and delays due to the possibility the organism
stores the nutrient. Delays appear in a chemostat model in Bush and Cook [27]. They have
investigated a model of growth of one organism in the chemostat with a delay in the intrinsic
growth rate of the microorganism but with no delay in the substrate equation.

In chemostat’s simplest form, the system approximates conditions for plankton
growth in lakes, where the limiting nutrients such as silica and phosphate are supplied
from streams draining the watershed. In the lakes, the plankton population movements
are subject to many factors, such as currents and turbulent lateral diffusion (cf. Levin and
Segel [28], Mimura [29], Okubo [30], Freedman and Ruan [31]). Ruan [32] proposed a
diffusive plankton-nutrient interaction model with delayed nutrient recycling and delayed
growth response and studied Turing instability and the existence of travelling wave solutions.
However, they did not investigate a chemostat model with delayed response in growth
and impulsive diffusion on nutrients. Many researchers indicated that it was important to
consider models with periodic perturbations, since these models may be quite naturally
exposed in many real world phenomena, for instance, food supply, mating habits, cross
flooding in rainstorm season. In fact, the perturbations such as cross flooding in rainstorm
which are not suitable to be considered with continuity. These perturbations bring sudden
changes to the system. Systems with sudden perturbations are involving an impulsive
differential equations which have been studied intensively and systematically in [1, 2]. There
are few papers [8, 12, 33, 34] research the chemostat model with impulsive perturbations on
nutrients. In this paper, a chemostat model with delayed response in growth and impulsive
diffusion on nutrients is investigated, we will obtain a microorganism-extinction periodic
solution. Further, it is globally attractive. The permanent condition of the investigated system
is also obtained.

The organizations of the paper are as following. In Section 2, we introduce a chemostat
model with delayed response in growth and impulsive diffusion on nutrients. In Section 3, we
present some preliminary results about the investigated model. Our main results are stated
and proven in Section 4. Finally, the numerical analysis is inserted to illustrate the results,
and conclude with a brief discussion in Section 5.

2. The Model

We investigate the following chemostat model with delayed response in growth and impul-
sive diffusion on nutrients:

ds1(t)
dt

= D1
(
s0

1 − s1(t)
)
,

ds2(t)
dt

= D2
(
s0

2 − s2(t)
) − P(s2(t))x(t),

dx(t)
dt

= −D2x(t) + e−D2τ1P(s2(t − τ1))x(t − τ1),

t /=nτ, n = 1, 2 . . . ,
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Δs1(t) = d(s2(t) − s1(t)) + μ1,

Δs2(t) = d(s1(t) − s2(t)),

Δx(t) = 0,

t = nτ, n = 1, 2 . . . ,

(
ϕ1(ζ), ϕ2(ζ), ϕ3(ζ)

) ∈ C+ = C
(
[−τ1, 0], R3

+

)
, ϕi(0) > 0, i = 1, 2, 3,

(2.1)

where we suppose that the system is composed of two lakes connected by impulsive
diffusion. si(t) denotes the concentration of the nutrient in ith lake at time t(i = 1, 2). s0

i

denotes the input nutrient concentration in ith lake (i = 1, 2). Di denotes the input rate from
the lakes containing the substrate and the wash-out rate of substrate and microorganism by
products from Lake i(i = 1, 2). 0 < d < 1 is diffusive rate between Lake 1 and Lake 2. It is
assumed here that the net exchange from patch j to Lake i is proportional to the difference
sj−si of concentration of the nutrient. x(t) denotes the concentration of the the microorganism
in the second lake at time t. τ1 stands for the time delay in conversion of nutrient to biomass
for the microorganism. As discussed in [20, 32], e−D2τ1x(t−τ1) represents the biomass of those
microorganisms that consume nutrient τ1 units of time prior to time t and that survive in the
chemostat the τ1 units of time necessary to complete the nutrient conversion process. P(s2(t))
indicates the consumption rate of nutrient by the microorganism. It is assumed that P(0) =
0, P ′(0) > 0 and P ′′(0) ≤ 0. In particular, these hypotheses are satisfied by the Michaelis-
Menten function P(s2(t)) = s2(t)/(k + s2(t)), here k > 0 is the half-saturation constant or
Michaelis-Menten constant. The impulsive diffusion occurs every τ period (τ > 0), the system
evolves from its initial state without being further affected by diffusion until the next pulse
appears. Δx = x(nτ+) − x(nτ), and x(nτ+) represents the concentration of the plankton in
the ith lake immediately after the nth diffusion pulse at time t = nτ , while x(nτ) represents
the concentration of the microorganism in the ith lake before the nth diffusion pulse at time
t = nτ , n ∈ Z+. μ1 ≥ 0 is the amount of the substrate concentration pulse at t = nτ , n ∈ Z+

in first lake. The purpose of this paper is to prove that the system (2.1) has a microorganism-
extinction periodic solution, further, it is globally attractive, and also prove system (2.1) is
permanent.

3. The Lemmas

The solution of (2.1), denoted byX(t) = (s1(t), s2(t), x(t))
T , is a piecewise continuous function

X:R+ → R3
+. X(t) is continuous on (nτ, (n + 1)τ], n ∈ Z+ and X(nτ+) = limt→nτ+X(t)

exists. Obviously the global existence and uniqueness of solutions of (2.1) is guaranteed
by the smoothness properties of f , which denotes the mapping defined by right-side of
system (2.1) [1]. Before having the main results. we need some lemmas which will be used in
the next.

According to the biological meanings, it is assumed that s1(t) ≥ 0, s2(t) ≥ 0 and x(t) ≥
0. Now, we will show that all solutions of (2.1) are uniformly ultimately bounded.

Lemma 3.1. There exists a constantM > 0 such that s1(t) ≤M,s2(t) ≤M,x(t) ≤ e−DτM, for each
solution (s1(t), s2(t), x(t)) of (2.1) with all t large enough.
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Proof. Define V (t) = s1(t) + s2(t) + eD2τx(t + τ1), and D = min{D1, D2}. When t /=nτ , we have

D+V (t) +DV (t) = D1s
0
1 +D2s

0
2 − (D1 −D)s1(t) − (D2 −D)s2(t) − (D2 −D)e−D2τx(t + τ),

< D1s
0
1 +D2s

0
2.

(3.1)

When t = nτ, V (nτ+) = μ1. By [1, lemma 2.2], for t ∈ (nτ, (n + 1)τ], we have

V (t) ≤ V (0) exp(−Dt) +
∫ t

0

(
D1s

0
1 +D2s

0
2

)
exp(−D(t − s))ds +

∑

0<nτ<t

μ1 exp(−D(t − nτ))

= V (0) exp(−Dt) + D1s
0
1 +D2s

0
2

D

(
1 − exp(−Dt))

+ μ1
exp(−D(t − τ)) − exp(−D(t − (n + 1)τ))

1 − exp(Dτ)

< V (0) exp(−Dt) + D1s
0
1 +D2s

0
2

D

(
1 − exp(−Dt)) + μ1 exp(−D(t − τ))

1 − exp(Dτ)
+
μ1 exp(Dτ)
exp(Dτ) − 1

−→ D1s
0
1 +D2s

0
2

D
+
μ1 exp(Dτ)
exp(Dτ) − 1

, as t −→ ∞.

(3.2)

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t), there exists
a constant M > 0 such that s1(t) ≤ M,s2(t) ≤ M,x(t) ≤ e−DτM for all t large enough. The
proof is complete.

If x(t) = 0, the subsystem of (2.1) is written as

ds1(t)
dt

= D1
(
s0

1 − s1(t)
)
,

ds2(t)
dt

= D2
(
s0

2 − s2(t)
)
,

t /=nτ, n = 1, 2 . . . ,

Δs1(t) = d(s2(t) − s1(t)) + μ1,

Δs2(t) = d(s1(t) − s2(t)),
t = nτ, n = 1, 2 . . . .

(3.3)

Integrating and solving the first two equations of system (3.3) between pulses, we
have

si(t) = s0
i −
[
s0
i − si(nτ+)

]
e−Di(t−nτ), nτ < t ≤ (n + 1)τ (i = 1, 2). (3.4)
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Considering the last two equations of system (3.3), we have the stroboscopic map of
system (3.3) as follows:

s1((n + 1)τ+) = (1 − d)e−D1τs1(nτ+) + de−D2τs2(nτ+)

+ (1 − d)
(

1 − e−D1τ
)
s0

1 + d
(

1 − e−D2τ
)
s0

2 + μ1,

s2((n + 1)τ+) = de−D1τs1(nτ+) + (1 − d)e−D2τs2(nτ+)

+ d
(

1 − e−D1τ
)
s0

1 + (1 − d)
(

1 − e−D2τ
)
s0

2.

(3.5)

Equation (3.5) are difference equations. They describe the the concentration of the nutrients
in the two lakes at a pulse in terms of values at the previous pulse. The dynamical behaviors
of system (3.5) with equation (3.4) determine the dynamical behaviors of system (3.3). So we
will devote to investigate system (3.5).

From system (3.5), we can easily have a unique fixed point of system (3.5) as follows

s∗1 =

[
(1 − d)(1 − e−D1τ

) − (1 − 2d)
(
1 − e−D2τ

)
e−D1τ

]
s0

1 − d
(
1 − e−D2τ

)
s0

2

1 − (1 − d)e−D1τ − (1 − d)e−D2τ − (1 − 2d)e−(D1+D2)τ

+
+
(
1 − e−D2τ + de−D2τ

)
μ1

1 − (1 − d)e−D1τ − (1 − d)e−D2τ − (1 − 2d)e−(D1+D2)τ
,

s∗2 =
−d(1 − e−D1τ

)
s0

1 +
[
(1 − d)(1 − e−D2τ

) − (1 − 2d)
(
1 − e−D1τ

)
e−D2τ

]
s0

2

1 − (1 − d)e−D2τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+D1)τ

+
de−D1τμ1

1 − (1 − d)e−D2τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+D1)τ
,

(3.6)

To write system (3.5) as a map, we define the map F : R2
+ → R2

+:

F1(x) = (1 − d)e−D1τx1 + de−D2τx2

+ (1 − d)
(

1 − e−D1τ
)
s0

1 + d
(

1 − e−D2τ
)
s0

2 + μ1,

F2(x) = de−D1τx1 + (1 − d)e−D2τx2

+ d
(

1 − e−D1τ
)
s0

1 + (1 − d)
(

1 − e−D2τ
)
s0

2.

(3.7)

F(x) is the map evaluated at the point x = (x1, x2) ∈ R2
+. Consequently, in system (3.4), Fn

describes the concentration of the nutrients in the time nτ .
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Figure 1: Dynamical behavior of system (3.3) with s1(0) = 1, s2(0) = 1, s0
1 = 0.5, s0

2 = 0.5, D = 0.6, d = 0.1,
τ = 2, μ1 = 0.3. (a) time-series of s1(t), (b) time-series of s2(t), (c) The phase portrait of (3.3).

Doing similarly to [3, Lemma 4.1 and Theorem 4.1], and using iterative method, one
can easily obtain Lemma 3.2 as follows:

Lemma 3.2. For every point (x1, x2) > (0, 0) of system (3.7), then one has

Fn(x) −→ (s∗1, s∗2
)
, as n −→ ∞. (3.8)

Remark 3.3. Lemma 3.2 implies that the fixed point (s∗1, s
∗
2) of F is globally stable. So all

trajectories of (3.3) approach the positive periodic solution (˜s1(t),˜s2(t)) with period τ , where
s̃i(t) = s0

i − (s0
i − s∗i )e−Di(t−nτ), nτ < t ≤ (n + 1)τ , (i = 1, 2). The dynamical behaviors of system

(3.3) also can be shown from Figure 1.
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Lemma 3.4 (see [18]). Consider the following delay equation:

y′(t) = a1y(t − τ) − a2y(t), (3.9)

where a1, a2, τ > 0; y(t) > 0 for −τ ≤ t ≤ 0. If a1 < a2, limt→∞y(t) = 0.

4. Dynamical Behaviors of (2.1)

From the above discussion, we know that there exists a microorganism-extinction boundary
periodic solution (˜s1(t),˜s2(t), 0) of system (2.1). In this section, we will prove that the
microorganism-extinction boundary periodic solution (˜s1(t),˜s2(t), 0) of system (2.1) is
globally attractive.

Theorem 4.1. If

[−d(1 − e−D1τ
)
s0

1 +
[
(1 − d)(1 − e−D2τ

) − (1 − 2d)
(
1 − e−D1τ

)
e−D2τ

]
s0

2

1 − (1 − d)e−D2τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+D1)τ

+
de−D1τμ1

1 − (1 − d)e−D2τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+D1)τ

]

< P−1
(
D2e

D2τ1
)
,

(4.1)

holds, then the microorganism-extinction periodic solution (˜s1(t),˜s2(t), 0) of system (2.1) is globally
attractive.

Proof. Since

[−d(1 − e−D1τ
)
s0

1 +
[
(1 − d)(1 − e−D2τ

) − (1 − 2d)
(
1 − e−D1τ

)
e−D2τ

]
s0

2

1 − (1 − d)e−D2τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+D1)τ

+
de−D1τμ1

1 − (1 − d)e−D2τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+D1)τ

]

,

< P−1
(
D2e

D2τ1
)
,

(4.2)

then we can choose ε0 sufficiently small such that

e−D2τ1P

([−d(1 − e−D1τ
)
s0

1 +
[
(1 − d)(1 − e−D2τ

) − (1 − 2d)
(
1 − e−D1τ

)
e−D2τ

]
s0

2

1 − (1 − d)e−D2τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+D1)τ

+
de−D1τμ1

1 − (1 − d)e−D2τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+D1)τ

]

+ ε0

)

< D2.

(4.3)
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It follows from that the first equation of system (2.1) that ds2(t)/dt ≤ D2(s0
2 − s2(t)). So we

consider the following comparison impulsive differential system:

dx1(t)
dt

= D1
(
s0

1 − x1(t)
)
,

dx2(t)
dt

= D2
(
s0

2 − x2(t)
)
,

t /=nτ,

Δx1(t) = d(x2(t) − x1(t)) + μ1,

Δx2(t) = d(x1(t) − x2(t)),
t = nτ,

x1(0+) = s1(0+),

x2(0+) = s2(0+).

(4.4)

In view of Remark 3.3, we obtain the periodic solution of system (4.4)

x̃i(t) = s0
i −
(
s0
i − x∗

i

)
e−Di(t−nτ), nτ < t ≤ (n + 1)τ (i = 1, 2) (4.5)

which is globally asymptotically stable. Here

x∗
1 =

[
(1 − d)(1 − e−D1τ

) − (1 − 2d)
(
1 − e−D2τ

)
e−D1τ

]
s0

1 − d
(
1 − e−D2τ

)
s0

2

1 − (1 − d)e−D1τ − (1 − d)e−D2τ − (1 − 2d)e−(D1+D2)τ

+
+
(
1 − e−D2τ + de−D2τ

)
μ1

1 − (1 − d)e−D1τ − (1 − d)e−D2τ − (1 − 2d)e−(D1+D2)τ
,

x∗
2 =

−d(1 − e−D1τ
)
s0

1 +
[
(1 − d)(1 − e−D2τ

) − (1 − 2d)
(
1 − e−D1τ

)
e−D2τ

]
s0

2

1 − (1 − d)e−D2τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+D1)τ

+
de−D1τμ1

1 − (1 − d)e−D2τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+D1)τ
.

(4.6)

From Remark 3.3 and comparison theorem of impulsive equation [1], we have si(t) ≤
xi(t) (i = 1, 2), and xi(t) → s̃i(t) (i = 1, 2) as t → ∞. Then there exists an integer k′2 > k1,
t > k′2 such that

si(t) ≤ xi(t) ≤ s̃i(t) + ε0, nτ < t ≤ (n + 1)τ, n > k′2, (i = 1, 2), (4.7)

that is,

s2(t) < ˜s2(t) + ε0 ≤ s∗2 + ε0
Δ= �, nτ < t ≤ (n + 1)τ, n > k′2. (4.8)

From the third equation of system (2.1), we get

dx(t)
dt

≤ e−D2τ1P
(
�
)
x(t − τ1) −D2x(t), t > nτ + τ1, n > k2. (4.9)
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Considering the following comparison differential system:

dy(t)
dt

= e−D2τ1P
(
�
)
y(t − τ1) −D2y(t), t > nτ + τ1, n > k2, (4.10)

we have e−D2τ1P(�) < D2. According to Lemma 3.4, we have limt→∞y(t) = 0.
Let (s1(t), s2(t), x(t)) be the solution of system (2.1) with initial conditions and x(ζ) =

ϕ3(ζ) (ζ ∈ [−τ1, 0]), y(t) is the solution of system (4.10) with initial conditions x(ζ) =
ϕ3(ζ) (ζ ∈ [−τ1, 0]). By the comparison theorem, we have

lim
t→∞

x(t) < lim
t→∞

y(t) = 0. (4.11)

Incorporating into the positivity of x(t), we know that limt→∞x(t) = 0, Therefore, for any
ε1 > 0 (sufficiently small), there exists an integer k3(k3τ > k2τ + τ1) such that x(t) < ε1 for all
t > k3τ .

For system (2.1), we have

D2

(
s0

2 −
(

1 +
ε1P

′(0)
D2

)
s2(t)

]
≤ ds2(t)

dt
≤ D2

(
s0

2 − s2(t)
)
, (4.12)

Then we have z1(t) ≤ s1(t) ≤ z2(t), z′1(t) ≤ s2(t) ≤ z′2(t) and z1(t) → ˜s1(t), z2(t) → ˜s2(t),

z′1(t) → ˜s1(t), z′2(t) → ˜s2(t) as t → ∞. While (z1(t), z2(t)) and (z′1(t), z
′
2(t)) are the solutions

of

dz1(t)
dt

= D1

(
s0

1 − z1(t)
)
, t /=nτ,

dz2(t)
dt

= D2

[
s0

2 −
(

1 +
ε1P

′(0)
D2

)
z2(t)

]
, t /=nτ,

z1(t+) = d(z2(t) − z1(t)) + μ1, t = nτ,

z2(t+) = d(z1(t) − z2(t)), t = nτ,

z1(0+) = s1(0+),

z2(0+) = s2(0+),

dz′1(t)
dt

= D1

(
s0

1 − z′1(t)
)
, t /=nτ,

dz′2(t)
dt

= D2

(
s0

2 − z′2(t)
)
, t /=nτ,

z1(t+) = d(z2(t) − z1(t)) + μ1, t = nτ,

z2(t+) = d(z1(t) − z2(t)), t = nτ,

z1(0+) = s1(0+),

z2(0+) = s2(0+),

(4.13)
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respectively. For nτ < t ≤ (n + 1)τ , ˜z1(t) = s0
1 − (s0

1 − z∗1)e−D1(t−nτ) and ˜z2(t) = D2s
0
2/(D2 +

ε1P
′(0)) − (D2s

0
2/(D2 + ε1P

′(0)) − z∗2)e−(D2+ε1P
′(0))(t−nτ), where

z∗1 =

[
(1 − d)(1 − e−D1τ

) − (1 − 2d)
(

1 − e−(D2+ε1P
′(0))τ
)
e−D1τ

]
s0

1 − d
(

1 − e−(D2+ε1P
′(0))τ
)
P

1 − (1 − d)e−D1τ − (1 − d)e−(D2+ε1P ′(0))τ − (1 − 2d)e−(D1+D2+ε1P ′(0))τ

+
+
(

1 − e−(D2+ε1P
′(0))τ + de−(D2+ε1P

′(0))τ
)
μ1

1 − (1 − d)e−D1τ − (1 − d)e−(D2+ε1P ′(0))τ − (1 − 2d)e−(D1+D2+ε1P ′(0))τ
,

z∗2 =
−d(1 − e−D1τ

)
s0

1 +
[
(1 − d)

(
1 − e−(D2+ε1P

′(0))τ
)
− (1 − 2d)

(
1 − e−D1τ

)
e−(D2+ε1P

′(0))τ
]
P

1 − (1 − d)e−(D2+ε1P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+ε1P ′(0)+D1)τ

+
de−D1τμ1

1 − (1 − d)e−(D2+ε1P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+ε1P ′(0)+D1)τ
,

(4.14)

where P denotes D2s
0
2/(D2 + ε1P

′(0)). Therefore, for any ε2 > 0. there exists a integer k4, n >

k4 such that ˜z1(t)− ε2 < s1(t) < ˜s1(t) + ε2, ˜z2(t)− ε2 < s2(t) < ˜s2(t) + ε2. Let ε1 → 0, so we have
˜s1(t) − ε2 < s1(t) < ˜s1(t) + ε2, ˜s2(t) − ε2 < s2(t) < ˜s2(t) + ε2, for t large enough, which implies
s1(t) → ˜s1(t), s2(t) → ˜s2(t) as t → ∞. This completes the proof.

Definition 4.2. System (2.1) is said to be permanent, if there are constants m,M > 0
(independent of initial value) and a finite time T0 such that for all solutions (s1(t), s2(t), x(t))
with all initial values s1(t) > 0, s2(t) > 0, x(0+) > 0, m ≤ s1(t) < M, m ≤ s2(t) < M,
m ≤ x(t) ≤ e−D2τM, holds for all t ≥ T0. Here T0 may depend on the initial values
(s1(0+), s2(0+), x(0+)).

Theorem 4.3. If

⎡

⎢
⎣
−d(1 − e−D1τ

)
s0

1 +
[
(1 − d)

(
1 − e−(D2+x∗P ′(0))τ

)
− (1 − 2d)

(
1 − e−D1τ

)
e−(D2+x∗P ′(0))τ

]
R

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ

+
de−D1τμ1

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ

⎤

⎥
⎦

> P−1
(
D2e

D2τ1
)
,

(4.15)

whereR denotesD2s
0
2/(D2+x∗P ′(0)), holds, then there is a positive constant q such that each positive

solution (s1(t), s2(t), x(t)) of (2.1) satisfies x(t) ≥ q, for t large enough. Where x∗ is determined by
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the following equation

P

⎡

⎢
⎣
−d(1 − e−D1τ

)
s0

1 +
[
(1 − d)

(
1 − e−(D2+x∗P ′(0))τ

)
− (1 − 2d)

(
1 − e−D1τ

)
e−(D2+x∗P ′(0))τ

]
R

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ

+
de−D1τμ1

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ

]

= D2e
D2τ1 .

(4.16)

Proof. The third equation of system (2.1) can be rewritten as

dx(t)
dt

=
[
e−D2τ1P(s2(t)) −D2

]
x(t) − e−D2τ1

d

dt

∫ t

t−τ1

P(s2(u))x(u)du. (4.17)

Let us consider any positive solution (s1(t), s2(t), x(t)) of system (2.1). According to(4.14),
V (t) is defined as

V (t) = x(t) + e−D2τ1

∫ t

t−τ1

P(s(u))x(u)du. (4.18)

We calculate the derivative of V (t) along the solution of (2.1):

dV (t)
dt

=
[
e−D2τ1P(s2(t)) −D2

]
x(t). (4.19)

Since

⎡

⎢
⎣
−d(1 − e−D1τ

)
s0

1 +
[
(1 − d)

(
1 − e−(D2+x∗P ′(0))τ

)
− (1 − 2d)

(
1 − e−D1τ

)
e−(D2+x∗P ′(0))τ

]
R

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ

+
de−D1τμ1

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ

]

> P−1
(
D2e

D2τ1
)
,

(4.20)
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then we can easily know that there exists sufficiently small ε > 0 such that

P

⎡

⎢
⎣
−d(1 − e−D1τ

)
s0

1 +
[
(1 − d)

(
1 − e−(D2+x∗P ′(0))τ

)
− (1 − 2d)

(
1 − e−D1τ

)
e−(D2+x∗P ′(0))τ

]
R

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ

+
de−D1τμ1

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ
− ε
]

> D2e
D2τ1 .

(4.21)

We claim that for any t0 > 0, it is impossible that x(t) < x∗ for all t > t0. Suppose that the claim
is not valid. Then there is a t0 > 0 such that x(t) < x∗ for all t > t0. It follows from the second
equation of (2.1) that for all t > t0,

ds2(t)
dt

>
(
D2 + x∗P ′(0)

)
[

D2s
0
2

D2 + x∗P ′(0)
− s2(t)

]

. (4.22)

Consider the following comparison impulsive system for all t > t0:

dv1(t)
dt

= D1

(
s0

1 − v1(t)
)
, t /=nτ,

dv2(t)
dt

=
(
D2 + x∗P ′(0)

)
[

D2s
0
2

D2 + x∗P ′(0)
− v2(t)

]

, t /=nτ,

Δv1(t) = d(v2(t) − v1(t)) + μ1, t = nτ,

Δv2(t) = d(v1(t) − v2(t)), t = nτ,

v1(0+) = s1(0+),

v2(0+) = s2(0+).

(4.23)

By Lemma 3.5, we obtain ˜v1(t) = s0
1 − (s0

1 − v∗
1)e

−D1(t−nτ), ˜v2(t) = D2s
0
2/(D2 + x∗P ′(0)) −

(D2s
0
2/(D2 + x∗P ′(0)) − v∗

2)e
−(D2+x∗P ′(0))(t−nτ), nτ < t ≤ (n + 1)τ, is the unique positive periodic

solution of (4.22) which is globally asymptotically stable, where,

v∗
1 =

[
(1 − d)(1 − e−D1τ

) − (1 − 2d)
(

1 − e−(D2+x∗P ′(0))τ
)
e−D1τ

]
s0

1 − d
(

1 − e−(D2+x∗P ′(0))τ
)
R

1 − (1 − d)e−D1τ − (1 − d)e−(D2+x∗P ′(0))τ − (1 − 2d)e−(D1+D2+x∗P ′(0))τ

+
+
(

1 − e−(D2+x∗P ′(0))τ + de−(D2+x∗P ′(0))τ
)
μ1

1 − (1 − d)e−D1τ − (1 − d)e−(D2+x∗P ′(0))τ − (1 − 2d)e−(D1+D2+x∗P ′(0))τ
,
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v∗
2 =

−d(1 − e−D1τ
)
s0

1 +
[
(1 − d)

(
1 − e−(D2+x∗P ′(0))τ

)
− (1 − 2d)

(
1 − e−D1τ

)
e−(D2+x∗P ′(0))τ

]
R

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ

+
de−D1τμ1

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ
.

(4.24)

By the comparison theorem for impulsive differential equation [1], we know that there exists
t1(> t0 + τ1) such that the inequality s2(t) ≥ v∗

2(t) − ε holds for t ≥ t1, thus s2(t) ≥ v∗
2 − ε for all

t ≥ t1. For convenience, we make notation as σ Δ= v∗
2 − ε. So we have

e−D2τ1P(σ) > D2, (4.25)

then we have

V ′(t) > x(t)
[
e−D2τ1P(σ) −D2

]
, (4.26)

for all t > t1. Set xm = mint∈[t1,t1+τ1]x(t), we will show that x(t) ≥ xm for all t ≥ t1. Suppose the
contrary, then there is a T0 > 0 such that x(t) ≥ xm for t1 ≤ t ≤ t1 + τ1 + T0, x(t1 + τ1 + T0) = xm

and x′(t1 + τ1 + T0) < 0. Hence, the first equation of system (1.1) imply that

x′(t1 + τ1 + T0) = e−D2τ1P(s(t1 + τ1 + T0)x(t1 + τ1 + T0) −D2x(t1 + τ1 + T0)),

≥
[
e−D2τ1P(σ) −D2

]
xm > 0.

(4.27)

This is a contradiction. Thus, x(t) ≥ xm for all t > t1. As a consequence, Then V ′(t) >
xm[e−D2τ1P(σ) − D2] > 0 for all t > t1. This implies that as t → ∞, V (t) → ∞. It is a
contradiction to V (t) ≤M(1 + τ1e

−2D2τ1P(M)). Hence, the claim is complete.
By the claim, we are left to consider two case. First, x(t) ≥ x∗ for all t large enough.

Second, x(t) oscillates about x∗ for t large enough.
Define

q = min
{
x∗

2
, q1

}
, (4.28)

where q1 = x∗e−D2τ1 . We hope to show that x(t) ≥ q for all t large enough. The conclusion is
evident in first case. For the second case, let t∗ > 0 and ξ > 0 satisfy x(t∗) = x(t∗ + ξ) = x∗ and
x(t) < x∗ for all t∗ < t < t∗ + ξ where t∗ is sufficiently large such that x(t) > σ for t∗ < t < t∗ + ξ,
x(t) is uniformly continuous. The positive solutions of (2.1) are ultimately bounded and x(t)
is not affected by impulses. Hence, there is a T(0 < t < τ1 and T is dependent of the choice
of t∗) such that x(t∗) > x∗/2 for t∗ < t < t∗ + T . If ξ < T , there is nothing to prove. Let us
consider the case T < ξ < τ1. Since x′(t) > −D2x(t) and x(t∗) = x∗, it is clear that x(t) ≥ q1 for
t ∈ [t∗, t∗+τ1]. Then, proceeding exactly as the proof for the above claim. We see that x(t) ≥ q1

for t ∈ [t∗ + τ1, t
∗ + ξ]. Because the kind of interval t ∈ [t∗, t∗ + ξ] is chosen in an arbitrary way
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Figure 2: Dynamical behavior of system (2.1) on microorganism-extinction periodic solution with s1(0) =
1, s2(0) = 1, x(0) = 1, s0

1 = 0.5, s0
2 = 0.5, D1 = 0.6, D2 = 0.4, k = 2, τ = 1, β = 2.5, τ1 = 1, d = 0.9, μ1 = 0.4. (a)

time-series of s1(t), (b) time-series of s2(t), (c) time-series of x(t).

(we only need t∗ to be large). We conclude x(t) ≥ q for all large t. In the second case. In view
of above discussion, the choice of q is independent of the positive solution, and we proved
that any positive solution of (2.1) satisfies x(t) ≥ q for all sufficiently large t. This completes
the proof of the theorem.

Theorem 4.4. If
⎡

⎢
⎣
−d(1 − e−D1τ

)
s0

1 +
[
(1 − d)

(
1 − e−(D2+x∗P ′(0))τ

)
− (1 − 2d)

(
1 − e−D1τ

)
e−(D2+x∗P ′(0))τ

]
R

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ

+
de−D1τμ1

1 − (1 − d)e−(D2+x∗P ′(0))τ − (1 − d)e−D1τ − (1 − 2d)e−(D2+x∗P ′(0)+D1)τ

]

> P−1(D2e
D2τ1
)
,

(4.29)

then system (2.1) is permanent.
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Figure 3: Dynamical behavior of the permanence of system (2.1) with s1(0) = 1, s2(0) = 1, x(0) = 1,
s0

1 = 0.5, s0
2 = 0.5, D1 = 0.6, D2 = 0.4, k = 2, τ = 1, β = 2.5, τ1 = 1, d = 0.9, μ1 = 0.4.(a) Time-series of s1(t).

(b) Time-series of s2(t). (c) time-series of x(t), (d) The phase portrait of the permanence of (2.1).

We can easily complete the proof of Theorem 4.4 by referring to Lemma 3.1, Theorems
4.1 and 4.3.

5. Discussion

In this paper, we investigate a delayed chemostat model with impulsive diffusion and input
on nutrients. From Theorems 4.1 and 4.4, we analyze that the microorganism-extinction
periodic solution of system (2.1) is globally attractive, and System (2.1) is also proved to
be permanent. If it is assumed that the consumption rate of nutrient by the plankton is
P(s2(t)) = βs2(t)/(k + s2(t)), and s1(0) = 1, s2(0) = 1, x(0) = 1, s0

1 = 0.5, s0
2 = 0.5, D1 = 0.6,

D2 = 0.4, k = 2, τ = 1, β = 2.5, τ1 = 1, d = 0.9, μ1 = 0.4. Then the microorganism-
extinction periodic solution is globally attractive (see Figure 2). If it is also assumed that the
consumption rate of nutrient by the plankton is P(s2(t)) = βs2(t)/(k + s2(t)), and s1(0) = 1,
s2(0) = 1, x(0) = 1, s0

1 = 0.5, s0
2 = 0.5, D1 = 0.6, D2 = 0.4, k = 2, τ = 1, β = 2.5, τ1 = 1,
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d = 0.9, μ1 = 2. then system (2.1) is permanence (see Figure 3). From Theorems 4.1 and 4.4,
and the numerical analysis, we can easily guess that there must exist a threshold μ∗

1. If μ1 < μ
∗
1,

the microorganism-extinction periodic solution (s1(t), s2(t), 0) of (2.1) is globally attractive. If
μ1 > μ

∗
1, system (2.1) is permanent. The sameness can be discussed on parameter d, then, the

impulsive diffusion amount also plays an important role for the permanence of system (2.1).
Our results provide strategy basis for biochemical reaction management.
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