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1. Introduction and Preliminaries

Many evolution processes are characterized by the fact that at certain moments of time
they experience a change of state abruptly. Consequently, it is natural to assume that
these perturbations act instantaneously, that is, in the form of impulses. It is known that
many biological phenomena involving threshold, bursting rhythm models in medicine and
biology, optimal control models in economics, pharmacokinetics, and frequency modulated
systems do exhibit impulse effects. The branch of modern applied analysis known as
“impulsive” differential equations provides a natural framework to mathematically describe
the aforementioned jumping processes. The reader is referred to monographs [1-4] and
references therein for some nice examples and applications to the above areas.

The study of dynamic equations on time scales goes back to Stefan Hilger [5]. Now it
is still a new area of fairly theoretical exploration in mathematics. In the recent years, there
has been much progress on the qualitative properties of dynamic systems on time scales,
see [6, 7]. However, there is not so much work on antiperiodic boundary value problems
for differential equations on time scales except that in [8] by Cabada In [9-12], the authors
studied antiperiodic boundary value problem for ordinary differential equations without
impulses, while in [13-18] the authors considered antiperiodic boundary value problem for
impulsive differential equations. In this paper, we study two types of second-order impulsive
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differential equations with antiperiodic boundary value conditions on time scales. Firstly, we
use Schauder’s fixed point theorem to study the existence results of the following boundary
value problem:

—x8 (1) = f(bx(), x4 (1), te[0,TINQ = (kb b,
x(t) = x(te) + L(x(t),  x* (1) = 24 (0) + Jx (x(0), x4 (1), k=1,2,...,m, (1D

x(0) = —x(a(T)),  x%(0) = —x*(o(T)).

Secondly, we employ Schaefer’s fixed point to investigate the following antiperiodic
boundary value problem on time scales:

208 = f(L7(0), x4 1), tEOTI\ (bbb,
x(t]) = x(te) + Ie(x(t)),  x*(t]) = x® (k) + T <x(tk),xA(tk)>, k=1,2,...,m, (12

x(0) = ~x(a(T),  x%(0) = ~x*(a(T)).

We assume throughout this paper that f : [0,T] x R” x R" — R" is continuous and I : R" —
R", Jk : R" x R" — R" are also continuous (k =1,2,...,m).

We should mention that (1.1), (1.2) are more general than equations considered in
[13, 18] since f,] both contain x and its derivative. So our result is still new even when
(1.1), (1.2) reduce to equations studied in [13, 18]. The paper is organized as follows. In
Section 2 we present the expression of Green’s functions of related linear operator in the space
of piecewise continuous functions. Section 3 contains the main results of the paper and is
devoted to the existence of solutions to (1.1) and (1.2).

To understand the concept of time scales and the above notation, some definitions are
useful.

A time scale is an arbitrary nonempty closed subset of the real numbers. Throughout
this paper, we will denote a time scale by the symbol T. And the forward and backward jump
operators o, p : T — T are defined by

o(t) =inf{se€T:s>t}, p(t) =sup{seT:s<t}, (1.3)

respectively. The point t € T is called left dense, left scattered, right dense, or right-scattered
if p(t) =t, p(t) <t, o(t) =t or o(t) > t, respectively. Points that are right dense and left dense
at the same time are called dense. We denote o(c(t)) by o2 (t).

If T has a left scattered maximum 1, define T* := T — {m}; otherwise, set T = T. The
symbols [a, b], [a,b), and so on, denote time scales intervals, for example,

[a,b] = (teT:a<t<b), (1.4)

where a,b € T with a < p(b).
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Definition 1.1. A vector function f : T — R" is rd-continuous provided that it is continuous
at each right dense point in T and has a left-sided limit at each left dense point in T. The set
of rd-continuous functions f : T — R” will be denoted in this paper by C4(T) = Ca (T, R").

Definition 1.2. Assume f : T — R is a function and let t € T*. Then we define f(t) to
be the number (provided it exists) with the property that given any ¢ > 0 there exists a
neighborhood U of t (i.e., U = (t = 6,t + 6) N'T for some 6 > 0) such that

|Fo®) - £5) - FA Do) - s]| < elo(t) =s|, Vsell. (1)

We call f2(t) the delta (or Higher) derivative of f at t.

Definition 1.3. A function F : T — R is called an antiderivative of f : T — R provided

FA(t) = f(t) holds VteT. (1.6)

Theorem 1.4 (existence of antiderivatives). Every rd-continuous function has an antiderivative.
In particular if tg € T, then F defined by

F(t) := tf(t)At forteT (1.7)
fo

is an antiderivative of f.

We assume that for f(t;,x,y) = limtét;f(t,x,y) and f(t,, x,y) := limtﬁt;f(t,x,y)
both exist with f(t,,x,y) = f(tx,x,y), k = 1,2,...,m. In order to define a solution of (1.1)
and (1.2), we introduce and denote the Banach space PC([0, T],R") by

PC([0, T;R") := {u: [0,T] — R", ue C([0,T] \ Q,R"),
(1.8)
u is left continuous at ¢ = t;, the right-hand limit u(t;) exists}

with the norm |[u|p¢ := supc (o ) llu(t)|| where |- || is the usual Euclidean norm and (-, ) will
be the Euclidean inner product.
In a similar fashion to the above, define and denote the Banach space PC 1[0, T],R™)

by

PCY ([0, T];R") = {u € PC([0, TI; R™) : u®(t) € C([0,T] \ Q,R"),
(1.9)
the limits u® (), u®(t;) exist with u* () = uA(tk)}

with the norm [[ul|pc1 1= supye o py {1u()llpe, 11 ()] e }-
The following fixed point theorem is our main tool to prove the existence of at least
one solution to (1.2).
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Theorem 1.5 (Schaefer’s fixed point theorem [19]). Let X be a Banach space and let A : X — X
be a completely continuous operator. Then either:

(i) the operator equation x = MAx has a solution for A = 1. or
(ii) the set S := {x € X, x = LAx, A €]0,1[} is unbounded.

2. Expression of Green’s Function

In this part, we present the expression of Green’s functions for second-order impulsive
equations with antiperiodic conditions.

Lemma 2.1. For any h(t) € PC([0,T],R"), x(t) solves
—x2% =h(t), tel0,T]\KQ,
x(£) = x(t) + Ie(x(t), X2 () = x™(t) + Ji <x(tk),xA(tk)>, k=1,2,...,m, (2.1)

x(0) = —x(a(T)),  x%(0) = -x*(o(T)),

if and only if x(t) is the solution of integral equation

o(T) m
x(t) = fo G(t,o(s))h(s)As + ZH(t, ti) I (x(tx))

k=t (2.2)
= Y6 T (2t x (1), Ve [o,0%(T)],
k=1
where
%[%0(T)—t+s] 0<s<t<o(T),
Glts) =1 G)
E[EO(T)H_S] 0<t<s<o(T),

%, 0<s<t<oXT),
H(t,s) = (H)
—5 0<t<s<o(T).

Proof. Assume x(t) is a solution of (2.1). Then by integrating —x2% = Rh(b), t#t, (k =
1,2,...,m) step by step from 0 to ¢ we have

XA (1) =xA(0)—Ith(s)As+ S [xA(t;)-xA(tk)], Vt € [0,0(T)]. (2.3)
0

O<tr<t
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Similarly, we Integrate (2.3) from 0 to ¢ step by step to get

x(t) = x(0) +J x2(s)As + Z [x(t) —x(te)], Vte [0, oz(T)]. (2.4)

O<tr<t

Substituting (2.3) into (2.4), we obtain

x(t) = x(0) + x*(0)t — It (t—o(s))h(s)As

(2.5)
w3 () —x] + X [0 () - x| -k, Ve [0,6%(D)].
O<ty<t O<tr<t
By x%(0) = —x*(o(T)) and x*(t]) = x® (t) + Ji(x(tx), x* (t)), we have from (2.3) that
x4 (0) = ljamh(s)As - li] (x(t ), x(t )) (2.6)
=3), 22 K x(te), x (t) ). .

Note that x(0) = —x(o(T)), x(t;) = x(tx) + Ix(x(tx)) and (2.6) . It then follows from (2.4) that

o(T) m
x(0) = O'(T) I:J‘O h(S)AS_Z]k<x(tk),xA(tk)>]
k=1

(2.7)
o(T)
o GG RE OIS S WA TR ) [ R R »AC T
k=1
Then we substitute (2.6), (2.7) into (2.5) to obtain

o1 1 1 !

x(t) = J-o [ZO'(T) - Ea(s) + Et h(s)As — fo(t —0o(s))h(s)As
- 1 1 1
Te(x(te), x2 (t) ) |[-=0(T) + =t — =t )
DUk (0, 0)) |3 + 51 o 8)

+ > (=t Je(x(t), x4 (1) ——Zrk<x<tk>>+ > I(x(t).

O<ti<t O<tr<t

If we choose G(t,s), H(t,s) as (G)H, then (2.2) is true.
Now assume x(t) is a solution of (2.2). Then for t#t;, k = 1,2,...,m. we have by [6,
Theorem 1.117, page 46] that

xt(h) = f G2 (1,0(s)h(s)As + STHA(L ) (x (1) - S.GA(, B Ji(x(t0), x (1), (29)

k=1 k=1
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where G2, f2 denotes the derivatives of G, H with respect to the first variable. That is

t o(T) m
XA (t) = —%foh(s)As + %f h(s)hs+ > J <x(tk),xA(tk)>. (2.10)

t k=1
Compute straightforwardly to get
x22(t) = -h(t). (2.11)

Since

iH(trtk)Ik(x(tk) = __ZIk(x(tk)) + D I(x(tr)), (2.12)
k=1

O<tr<t

we have

STH(E, b Iu(x(60) 3 H b b I (x(80)
k=1 k=1

(2.13)
[ZI (x(t)) - Z Ii(x(t:)) ] [ZI x(t)) —ZI (x(t:)) ] = I (x(tx))-
i=k+1
Similarly,
Zc(t+rtk)]k<x(tk) x® tk)) ZG(tk,tk)]k<x(tk) XA(tk)> =
= (2.14)
.G (b te) Ji <x(tk), xA(fk)> - > G*(te, ti) J <x(tk)/ xA(tk)> =—Jk (x(tk),xA(tk)>.
k=1 k=1
Thus, the proof is completed. O
By Lemma 2.1, we have for every ¢ € [0,0(T)]
" S)E[On;m] 0T]|G(t ,0(s))] < o(T) (2.15)
If t = 0*(T) > o(T), then
|G<02(T),o(s)>| < }L[G(T) + 202(T)]. (2.16)
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Therefore we have the upper bounds

1
max IG(t,0(s))] < —[G(T) +202(T)] := G,
(t,5)€[0,02(T)]x[0,6(T)] 4

1
max H(t,s)| = =, o
(t'S)E[OrGZ(T)]X[O,o(T)]I t8)1=3 (2.17)

1
max |GA(t,s)' =—.
(t,5)€[0,02(T)]x[0,0(T)] 2

Recall that a mapping between Banach spaces is compact if it is continuous and carries
bounded sets into relatively compact sets.

Lemma 2.2. Suppose that f : [0,T] xR" xR" — R", I} : R" — R", and Ji : R" xR" — R" are
continuous. Define an operator A : PC*([0,0%(T)],R") — PCY([0,0%(T)],R") as

o(T) m
Ax(t) = fo G(t,0(5))f (5,%(5), x*() ) As + Y H(t, b T (x (1)
k=1
(2.18)

_ ic(t, ti) Jx (x(tk),xA(tk)>,
k=1

where G(t,s) and H(t, s) are as given in Lemma 2.1. Then A is a compact map.

Proof. From (2.10) we know

a(T)

(Ax)2(F) = —%Jt)f(s,x(S),xA(sDAs + %L f(s,x(s),xA(s)>As + g]k <x(tk),xﬁ(tk)>.

(2.19)

Then the continuality of f, Ir, Jx implies A is a continuous map from PC[],R"] to PC[], R"].
On the other hand, for any bounded subset S ¢ PC[],R"]. (2.19) implies {(Ax)2(t) | x(t) € S}
is also a bounded subset of PC[],R"]. Deducing in a similar way as proving [20, Lemma 2.4],
we have A is a compact map. O

Lemma 2.3. x € PC![],R"] N PC?[],R"] is a solution of (1.1) if and only if x(t) € PC'[J,R"] is
a fixed point of A.

Proof. It can be easily obtain from Lemma 2.1, and we omit the proof here. O

3. Main Results

In this section, we prove the existence results for (1.1), (1.2) in presence of Schauder’s fixed
point theorem and Schaefer’s fixed point theorem, respectively.
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We first set

- 4. t/ 7
ae T <mM>
lxl+[|y]| = o \ 0TI [lx| + [|¥]|

P = lim <M> (k=1,2,...,m), (3.1)

lxll—o \ ||l

Y = lim <M> (k=1,2,...,m).

R EANETE

Theorem 3.1. Suppose that f : [0,T] xR" xR" — R", I : R" — R"and Ji : R" xR" — R" are
continuous (k =1,2,...,m). If

n=max{m,n} <1, (3.2)

where

m= %[aG(T) + iy,(] |o(T) +20%(T)| + %ipk,
k=1 k=1 (3.3)

M2 = ao(T) + D yk.
P

then (1.1) has at least one solution in PC'[],R"] n PC?[],R"].

Proof. By Lemma 2.2 it is sufficient to show that A has at least one solution in PC![],R"].
First, we can choose by (3.2) &' > &, B > Pk, v, > vk, (k=1,2,...,m) such that

k=1 k=1

(3.4)
m
my=a'c(T) + Zy,'( <1
k=1
By (3.1) we can choose a positive number N such that
£t x, )| <& (llxll +|[yl]), Ytelo,a(D)], llx|l+|ly|| = N. (3.5)

Then

lf(tx )| <o (xll+|ly|) + M, Vte[0,0(T)], x,y eRY, (3.6)
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where

M= If (£ y)|| < oo

fEIO,U(T 1 \IXI\+\|y\I<N

Similarly, there exist positive constants My, My, (k=1,2,...,m) such that

I ) IBillxll + My, Vx € R",

kGl < villlxl + llyll) + My, ¥,y € R™

It then follows by (2.17),(2.18),(3.6)—(3.9) that
I(Ax) ()| < o(:r) o) +202(D)] [ (Ix )11+ || ®)]) + M]

1 n m
5 <Zﬂ§<||x|| + ZMk>
k=1 k=1

+ }LO'(T) |o(T) +20%(1)) [iyﬁ(llx(t)ll + <o) + iﬁk]
k=1 k=1

<Al + MO, Vi€ [0,0%D)],

where

MO = }lo(T) |o(T) + 20%(T) <M + im> i %(iM">

is a constant.
Similarly, we can prove that

(A0 ®) < thllxllper + M, Ve [0,6%(T)],

where M® = (1/2)(M + X, My) is a constant.
Consequently, by (3.10) and (3.12) we have

lAx|per < 7llxllper + M/, Vx € PC! [[o 02(T)],Rn],

where

7' =max{n, 1} <1, M = max{M(l),M(Z) }

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Thus we can choose r > 0 such that

A(B,) C B, (3.15)

where B, = {x € PC[[0,0%(T)], R"]| ||x|pc: < r}.On the other hand, from Lemma 2.3 Ais a
complete continuous operator. Hence by Schauder’s fixed point theorem A has fixed point in
B,. This completes the proof. O

Remark 3.2. Assumption (3.2) is true if there hold
tl 7 4

el Wyl

el + [l I Iell + [l

[ ()l
[l

— 0, as ||p|[ +|q]| — oo,
(3.16)

— 0, as|x|| — o (k=1,2,...,m).
We now go on to study the existence results for (1.2). We should mention that the idea
used in the following theorem is initiated by Tisdell [21, 22].

Theorem 3.3. Suppose that f : [0,T] xR"xR" — R", I} : R" — R"and Ji : R"xR" — R"are
continuous (k =1,2,...,m). If there exist nonnegative constants y, 6k, ¢k, Lx, Nx and M such that

If )l <y[(x fEx )+ yIP] + M, ¥(Exy) € (0,0 QxR xR, (317)

1Tk ()| < kllxll + L, [Tk () || < Se(llxll + [[y]]) + Nk,  Vx,y €R",

1 m m (318)
max{ EZ(SI + ZG()ZQ, Zé,} < 1,
k=1

i=1 i=1

where (-) is the Euclidean inner product. Then (1.2) has at least one solution.

Proof. Consider the mapping

A PC1<[0, oZ(T)],]R"> — PC! ([o GZ(T)],R"> (3.19)

o(T) mn
Ax(t) = f G(t,0(5)f (5,x7(5),x%(5) ) As + DT H(E ti) I (x (1))
0 k=1 (3.20)
+ D Gt 1) Jk <x(tk),xA(tk)>,
k=1

where

—%[%G(T)—t+s 0<s<t<oX(T),
G(t,s) = (G")

_E[%G(T)th—s] 0<t<s<o(T),
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%, 0<s<t<oXT),
H(t,s) = G*(t,s) (H")
—5 0<t<s<o(T).

In a similar way as we prove Lemmas 2.1, 2.2 and 2.3 we obtain

(i) x € PC'[J,R"] n PC?[],R"] is a solution of (1.2) if and only if x(t) € PC'[J,R"] isa
fixed point of A;

(ii) A is a compact operator.

Consider the equation
x = Ax. (3.21)

To show A has at least one fixed point, we apply Schaefer’s theorem by showing that all
potential solutions to

x=1Ax, Le(0,1) (3.22)

are bounded a priori, with the bound being independent of A. With this in mind, let x(¢) be a
solution of (3.22). Note that x(f) is also a solution to

X201 = Af (6 x7(0), x4 (1), tFt, k=1,2,...,m,
x(8) = x(t) + Me(x(t), x®(£) = x2 (k) + Ak <x(tk),xA(tk)>, k=12,...,m, (323)

x(0) = -x(o(T)),  x%(0) = —x*(a(T)).

On one hand, we see that for A € (0,1)

A|£ (82w, x4 ®)|| < /\{y[<x‘7(t),f<t, (0,5 (1) )+ [« 0|

2

—y [<x‘7(t),)uf<t, (0, x40 ) + A2 0| + am

= Y[<x0(t),xM(t)> + )u(xA(t),xA(t)>] LM (3.24)
<y[(x 0,22 0) + (0,2 0)] + M

- Y<x(t),xA(t)>A + M.

On the other hand, by the antiperiodic boundary condition we have

o(T) A
fo [<x(t),xA(t)> ]At - <x(0'(T)),xA(c7(T))> - <x(0),xA(0)> = 0. (3.25)
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It therefore follows that
o(T)
fo AH f(t, x"(t),xA(t)> n At < Mo (T). (3.26)

Consequently,

e @1 = M Ax(@)]]

o(T)
f G(t,a(s))/\f<s,x"(s),xA(s)>As
0

b STHE O (x(t) + 3Gl i (x(t0, x (1)

k=1 k=1

< GaMo(T) + £ 1L+ Gy YN+ 2 Sl + Go Y[l e+ || (= 0) ]
k=1 k=1 k=1 i=1

1 m m 1 m m
< GoMo(T) + EZL,( +Go ) N + [526,- + ZGOZQ] Nl pci -
k=1 k=1 k=1 i=1

(3.27)
Differentiating both sides of (3.11), we can easily have
A 1 1 m m
|x* )] < 3Mo(T) + 5 3 Nic+ S éilxllnc. (3.28)
k=1 i=1
Choose
N = max{ GyMo(T) + 15]@ + GoiNk, 1Mo(T) ,
25 k=1 2
(3.29)
1 m m m
@ _ ) . .
N'¥ = max{ 5;6, + zc;o;gl,;g,}.
Thus we have by (3.18) that
N®
Ixllpe: < 7@ (3.30)

Then the proof is completed. O
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Example 3.4. Consider antiperiodic value problem on T = ;2 ([3k + 1,3k + 2] U{3k +2})
wbA () =u(o(t)) +ud (> +cost, te[0,1], t#£1,
qu)=uU)+%ua)+4, uAuf)zuAu)—%ua)+1a (3.31)
u(0) =-u(3),  u®0)=-u*@3).

We claim (4.2) has at least one solution.

Proof. Let T =3 and f(t, x,y) = x + xy? + cost in Theorem 3.3. Choosing M = 4, we have for
(t,x,y) € [0,1]U{(2,3} x R? that

lf(t,x,y)| = x|+ x|y +1,

(3.32)
(x, f(t,x,y)) +y* = x>+ X*yY* + y* + xcost > x* + x*y* + y* — |x].

Since minyso{v? - 2v} > -1, we have x*y* + y* — [x|y* = y*(x* — |x| + 1) > 0. Thus, for
y=land M =2

Y(t,x,y) €[0,1] x R (3.33)

Yknf@xﬁ»+yﬂ+4z

Moreover, Gy = 9/4, (1/2)61 +2Gpé1 = (1/2) x (1/8) +2 x (9/4) x (1/8) =5/8 < 1, Then the
conclusion follows from Theorem 3.3. O
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