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1. Introduction

A definition of stability in the case of homomorphisms between metric groups was suggested
by a problem by Ulam [2] in 1940. Let (G1, ·) be a group and let (G2, ∗) be a metric group with
the metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a mapping h : G1 →
G2 satisfies the inequality d(h(x · y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists
a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1? In this case, the
equation of homomorphism h(x · y) = h(x) ∗ h(y) is called stable. On the other hand, we
are looking for situations when the homomorphisms are stable, that is, if a mapping is an
approximate homomorphism, then there exists an exact homomorphism near it. The concept
of stability for a functional equation arises when we replace the functional equation by an
inequality which acts as a perturbation of the equation. In 1941, Hyers [3] gave a positive
answer to the question of Ulam for Banach spaces. Let f : E1 → E2 be a mapping between
Banach spaces such that

∥
∥f

(

x + y
) − f(x) − f(y)∥∥ ≤ δ (1.1)

for all x, y ∈ E1 and for some δ ≥ 0. Then there exists a unique additive mapping T : E1 → E2

satisfying

∥
∥f(x) − T(x)∥∥ ≤ δ (1.2)
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for all x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then the mapping
T is linear. Rassias [4] succeeded in extending the result of Hyers’ theorem by weakening the
condition for the Cauchy difference controlled by (‖x‖p + ‖y‖p), p ∈ [0, 1) to be unbounded.
This condition has been assumed further till now, through the complete Hyers direct method,
in order to prove linearity for generalized Hyers-Ulam stability problem forms. A number of
mathematicians were attracted to the pertinent stability results of Rassias [4], and stimulated
to investigate the stability problems of functional equations. The stability phenomenon that
was introduced and proved by Rassias is called Hyers-Ulam-Rassias stability. Then the
stability problems of several functional equations have been extensively investigated by a
number of authors and there are many interesting results concerning this problem, see [5–
13].

Bourgin [14] is the first mathematician dealing with stability of (ring) homomorphism
f(xy) = f(x)f(y). The topic of approximate homomorphisms was studied by a number of
mathematicians, see [15–22] and references therein.

Jun and Kim [1] introduced the following functional equation:

f
(

2x + y
)

+ f
(

2x − y) = 2f
(

x + y
)

+ 2f
(

x − y) + 12f(x), (1.3)

and they established the general solution and generalized Hyers-Ulam-Rassias stability
problem for this functional equation. It is easy to see that the function f(x) = cx3 is a solution
of the functional equation (1.3). Thus, it is natural that (1.3) is called a cubic functional
equation and every solution of the cubic functional equation is said to be a cubic function.

Let R be a ring. Then a mapping f : R → R is called a cubic homomorphism if f is a
cubic function satisfying

f(ab) = f(a)f(b), (1.4)

for all a, b ∈ R. For instance, let R be commutative, then the mapping f : R → R, defined by
f(a) = a3(a ∈ R), is a cubic homomorphism. It is easy to see that a cubic homomorphism is
a ring homomorphism if and only if it is zero function. In this paper, we study the stability
of cubic homomorphisms on Banach algebras. Indeed, we investigate the generalized Hyers-
Ulam-Rassias stability of the system of functional equations:

f
(

xy
)

= f(x)f
(

y
)

,

f
(

2x + y
)

+ f
(

2x − y) = 2f
(

x + y
)

+ 2f
(

x − y) + 12f(x),
(1.5)

on Banach algebras. To this end, we need two control functions for our stability. One control
function for (1.3) and an other control function for (1.4). So this is themain difference between
our hypothesis (where two-degree freedom appears in the election for two control functions
φ1 and φ2 in Theorem 2.1 in what follows), and the conditions (with one control function)
that appear, for example, in [1, Theorem 3.1].
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2. Main Results

In the following we suppose that A is a normed algebra, B is a Banach algebra, and f is a
mapping from A into B, and ϕ, ϕ1, ϕ2 are maps from A ×A into R

+. Also, we put 0p = 0 for
p ≤ 0.

Theorem 2.1. Let

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ ϕ1

(

x, y
)

, (2.1)
∥
∥f

(

2x + y
)

+ f
(

2x − y) − 2f
(

x + y
) − 2f

(

x − y) − 12f(x)
∥
∥ ≤ ϕ2

(

x, y
)

(2.2)

for all x, y ∈ A. Assume that the series

Ψ
(

x, y
)

=
∞∑

i=0

ϕ2
(

2ix, 2iy
)

23i
(2.3)

converges, and that

lim
n→∞

ϕ1
(

2nx, 2ny
)

26n
= 0 (2.4)

for all x, y ∈ A. Then there exists a unique cubic homomorphism T : A → A such that

∥
∥T(x) − f(x)∥∥ ≤ 1

16
Ψ(x, 0) (2.5)

for all x ∈ A.

Proof. Setting y = 0 in (2.2) yields

∥
∥
∥2f(2x) − 24f(x)

∥
∥
∥ ≤ ϕ2(x, 0), (2.6)

and then dividing by 24 in (2.6), we obtain

∥
∥
∥
∥

f(2x)
23

− f(x)
∥
∥
∥
∥
≤ ϕ2(x, 0)

2 · 23 (2.7)

for all x ∈ A. Now by induction we have

∥
∥
∥
∥

f(2nx)
23n

− f(x)
∥
∥
∥
∥
≤ 1

2 · 23
n−1∑

i=0

ϕ2
(

2ix, 0
)

23i
. (2.8)
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In order to show that the functions Tn(x) = f(2nx)/23nare a convergent sequence, we use the
Cauchy convergence criterion. Indeed, replace x by 2mx and divide by 23m in (2.8), where m
is an arbitrary positive integer. We find that

∥
∥
∥
∥

f(2n+mx)
23(n+m)

− f(2mx)
23m

∥
∥
∥
∥
≤ 1

2 · 23
n−1∑

i=0

ϕ2
(

2i+mx, 0
)

23(i+m)
=

1
2 · 23

n+m−1∑

i=m

ϕ2
(

2ix, 0
)

23i
(2.9)

for all positive integers m,n. Hence by the Cauchy criterion, the limit T(x) = limn→∞Tn(x)
exists for each x ∈ A. By taking the limit as n → ∞ in (2.8), we see that ‖T(x) − f(x)‖ ≤
(1/2 · 23)∑∞

i=0(ϕ2(2ix, 0)/23i) = 1/16Ψ(x, 0) and (2.5) holds for all x ∈ A. If we replace x by
2nx and y by 2ny, respectively, in (2.2) and divide by 23n, we see that

∥
∥
∥
∥
∥

f
(

2 · (2nx) + 2ny
)

23n
+
f
(

2 · (2nx) − 2ny
)

23n
− 2

f
(

2nx + 2ny
)

23n
− 2

f
(

2nx − 2ny
)

23n
− 12

f(2nx)
23n

∥
∥
∥
∥
∥

≤ ϕ2
(

2nx, 2ny
)

23n
.

(2.10)

Taking the limit as n → ∞, we find that T satisfies (1.3) [1, Theorem 3.1]. On the other hand
we have

∥
∥T

(

xy
) − T(x) · T(y)∥∥ =

∥
∥
∥
∥
∥
lim
n→∞

f
(

2nxy
)

23n
− lim
n→∞

f(2nx)
23n

· lim
n→∞

f
(

2ny
)

23n

∥
∥
∥
∥
∥

= lim
n→∞

∥
∥
∥
∥
∥

f
(

2nx2ny
)

26n
− f

(

2ny
)

f
(

2ny
)

26n

∥
∥
∥
∥
∥

≤ lim
n→∞

ϕ1
(

2nx, 2ny
)

26n
= 0

(2.11)

for all x, y ∈ A. We find that T satisfies (1.4). To prove the uniqueness property of T , let
T ′ : A → A be a function satisfing T ′(2x + y) + T ′(2x − y) = 2T ′(x + y) + 2T ′(x − y) + 12T ′(x)
and ‖T ′(x) − f(x)‖ ≤ (1/16)Ψ(x, 0). Since T, T ′ are cubic, then we have

T(2nx) = 23nT(x), T ′(2nx) = 23nT ′(x) (2.12)
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for all x ∈ A, hence,

∥
∥T(x) − T ′(x)

∥
∥ =

1
23n

∥
∥T(2nx) − T ′(2nx)

∥
∥

≤ 1
23n

(∥
∥T(2nx) − f(2nx)∥∥ +

∥
∥T ′(2nx) − f(2nx)∥∥)

≤ 1
23n

(
1

2 · 23Ψ(2nx, 0) +
1

2 · 23Ψ(2nx, 0)
)

=
1

23(n+1)
Ψ(2nx, 0) =

1
23(n+1)

∞∑

i=0

1
23i
ϕ2

(

2i+nx, 0
)

=
1
23

∞∑

i=0

1
23(i+n)

ϕ2

(

2i+nx, 0
)

=
1
23

∞∑

i=n

1
23i
ϕ2

(

2ix, 0
)

.

(2.13)

By taking n → ∞ we get T(x) = T ′(x).

Corollary 2.2. Let θ1 and θ2 be nonnegative real numbers, and let p ∈ (−∞, 3). Suppose that

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ θ1,

∥
∥f

(

2x + y
)

+ f
(

2x − y) − 2f
(

x + y
) − 2f

(

x − y) − 12f(x)
∥
∥ ≤ θ2

(‖x‖p + ∥
∥y

∥
∥
p)

(2.14)

for all x, y ∈ A. Then there exists a unique cubic homomorphism T : A → A such that

∥
∥T(x) − f(x)∥∥ ≤ 1

16
θ2‖x‖p
1 − 2p−3

(2.15)

for all x, y ∈ A.

Proof. In Theorem 2.1, let ϕ1(x, y) = θ1 and ϕ2(x, y) = θ2(‖x‖p + ‖y‖p) for all x, y ∈ A.

Corollary 2.3. Let θ1 and θ2 be nonnegative real numbers. Suppose that

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ θ1,

∥
∥f

(

2x + y
)

+ f
(

2x − y) − 2f
(

x + y
) − 2f

(

x − y) − 12f(x)
∥
∥ ≤ θ2

(2.16)

for all x, y ∈ A. Then there exists a unique cubic homomorphism T : A → A such that

∥
∥T(x) − f(x)∥∥ ≤ θ2

14
(2.17)

for all x ∈ A.

Proof. The proof follows from Corollary 2.2.
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Corollary 2.4. Let p ∈ (−∞, 3) and let θ be a positive real number. Suppose that

lim
n→∞

ϕ
(

2nx, 2ny
)

26n
= 0, (2.18)

for all x, y ∈ A.Moreover, suppose that

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ ϕ(x, y), (2.19)

and that

∥
∥f

(

2x + y
)

+ f
(

2x − y) − 2f
(

x + y
) − 2f

(

x − y) − 12f(x)
∥
∥ ≤ θ∥∥y∥∥p, (2.20)

for all x, y ∈ A. Then f is a cubic homomorphism.

Proof. Letting x = y = 0 in (2.20), we get that f(0) = 0. So by y = 0, in (2.20), we get
f(2x) = 23f(x) for all x ∈ A. By using induction we have

f(2nx) = 23nf(x) (2.21)

for all x ∈ A and n ∈ N.On the other hand, by Theorem 2.1, the mapping T : A → A, defined
by

T(x) = lim
n→∞

f(2nx)
23n

, (2.22)

is a cubic homomorphism. Therefore it follows from (2.21) that f = T. Hence it is a cubic
homomorphism.

Corollary 2.5. Let p, q, θ ≥ 0, and p + q < 3. Let

lim
n→∞

ϕ
(

2nx, 2ny
)

26n
= 0 (2.23)

for all x, y ∈ A.Moreover, suppose that

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ ϕ(x, y), (2.24)

and that

∥
∥f

(

2x + y
)

+ f
(

2x − y) − 2f
(

x + y
) − 2f

(

x − y) − 12f(x)
∥
∥ ≤ θ‖x‖q∥∥y∥∥p (2.25)

for all x, y ∈ A. Then f is a cubic homomorphism.
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Proof. If q = 0, then by Corollary 2.4 we get the result. If q /= 0, the following results from
Theorem 2.1, by putting ϕ1(x, y) = ϕ(x, y) and ϕ2(x, y) = θ(‖x‖p‖y‖p) for all x, y ∈ A.

Corollary 2.6. Let p ∈ (−∞, 3) and θ be a positive real number. Let

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ θ∥∥y∥∥p,

∥
∥f

(

2x + y
)

+ f
(

2x − y) − 2f
(

x + y
) − 2f

(

x − y) − 12f(x)
∥
∥ ≤ θ∥∥y∥∥p

(2.26)

for all x, y ∈ A. Then f is a cubic homomorphism.

Proof. Let ϕ(x, y) = θ‖y‖p. Then by Corollary 2.4, we get the result.

Theorem 2.7. Let

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ ϕ1

(

x, y
)

, (2.27)
∥
∥f

(

2x + y
)

+ f
(

2x − y) − 2f
(

x + y
) − 2f

(

x − y) − 12f(x)
∥
∥ ≤ ϕ2

(

x, y
)

(2.28)

for all x, y ∈ A. Assume that the series

Ψ
(

x, y
)

=
∞∑

i=1

23iϕ2

(
x

2i
,
y

2i

)

(2.29)

converges and that

lim
n→∞

26nϕ1

( x

2n
,
y

2n
)

= 0 (2.30)

for all x, y ∈ A. Then there exists a unique cubic homomorphism T : A → A such that

∥
∥T(x) − f(x)∥∥ ≤ 1

16
Ψ(x, 0) (2.31)

for all x ∈ A.

Proof. Setting y = 0 in (2.28) yields

∥
∥
∥2f(2x) − 2 · 23f(x)

∥
∥
∥ ≤ ϕ2(x, 0). (2.32)

Replacing x by x/2 in (2.32), we get

∥
∥
∥f(x) − 23f

(x

2

)∥
∥
∥ ≤ 1

2
ϕ2

(x

2
, 0
)

(2.33)
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for all x ∈ A. By (2.33) we use iterative methods and induction on n to prove the following
relation

∥
∥
∥f(x) − 23nf

( x

2n
)∥
∥
∥ ≤ 1

2 · 23
n∑

i=1

23iϕ2

(
x

2i
, 0
)

. (2.34)

In order to show that the functions Tn(x) = 23nf(x/2n) are a convergent sequence, replace x
by x/2m in (2.34), and then multiply by 23m, wherem is an arbitrary positive integer. We find
that

∥
∥
∥23mf

( x

2m
)

− 23(n+m)f
( x

2n+m
)∥
∥
∥ ≤ 1

2 · 23
n∑

i=1

23(i+m)ϕ2

(
x

2i+m
, 0
)

=
1

2 · 23
n+m∑

i=1+m

23iϕ2

(
x

2i
, 0
)

(2.35)

for all positive integers. Hence by the Cauchy criterion the limit T(x) = limn→∞Tn(x) exists
for each x ∈ A. By taking the limit as n → ∞ in (2.34), we see that ‖T(x) − f(x)‖ ≤ 1/2 ·
23

∑∞
i=1 2

3iϕ2(x/2i, 0) = (1/16)Ψ(x, 0), and (2.31) holds for all x ∈ A. The rest of proof is
similar to the proof of Theorem 2.1.

Corollary 2.8. Let p > 3 and θ be a positive real number. Let

lim
n→∞

26nϕ
( x

2n
,
y

2n
)

= 0, (2.36)

for all x, y ∈ A.Moreover, suppose that

∥
∥f

(

xy
) − f(x)f(y)∥∥ ≤ ϕ(x, y), (2.37)

∥
∥f

(

2x + y
)

+ f
(

2x − y) − 2f
(

x + y
) − 2f

(

x − y) − 12f(x)
∥
∥ ≤ θ∥∥y∥∥p, (2.38)

for all x, y ∈ A. Then f is a cubic homomorphism.

Proof. Letting x = y = 0 in (2.38), we get that f(0) = 0. So by y = 0, in (2.38), we get
f(2x) = 23f(x) for all x ∈ A. By using induction, we have

f(x) = 23nf
( x

2n
)

(2.39)

for all x ∈ A and n ∈ N.On the other hand, by Theorem 2.8, the mapping T : A → A, defined
by

T(x) = lim
n→∞

23nf
( x

2n
)

, (2.40)

is a cubic homomorphism. Therefore, it follows from (2.39) that f = T. Hence f is a cubic
homomorphism.
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Example 2.9. Let

A :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 R R R

0 0 R R

0 0 0 R

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (2.41)

thenA is a Banach algebra equipped with the usual matrix-like operations and the following
norm:

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 a1 a2 a3

0 0 a4 a5

0 0 0 a6

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=
6∑

i=1

|ai| (ai ∈ R). (2.42)

Let

a :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 2

0 0 0 1

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (2.43)

and we define f : A → A by f(x) = x3 + a, and

ϕ1
(

x, y
)

:=
∥
∥f

(

xy
) − f(x)f(y)∥∥ = ‖a‖ = 4,

ϕ2
(

x, y
)

:=
∥
∥f

(

2x + y
)

+ f
(

2x − y) − 2f
(

x + y
) − 2f

(

x − y) − 12f(x)
∥
∥ = 14‖a‖ = 56

(2.44)

for all x, y ∈ A. Then we have

∞∑

k=0

ϕ2
(

2kx, 2ky
)

23k
=

∞∑

k=0

56
23k

= 64,

lim
n→∞

ϕ1
(

2nx, 2ny
)

26n
= 0.

(2.45)

Thus the limit T(x) = limn→∞(f(2nx)/23n) = x3 exists. Also,

T
(

xy
)

=
(

xy
)3 = x3y3 = T(x)T

(

y
)

. (2.46)
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Furthermore,

T
(

2x + y
)

+ T
(

2x − y) =
(

2x + y
)3 +

(

2x − y)3 = 16x3 + 12xy2

= 2T
(

x + y
)

+ 2T
(

x − y) + 12T(x).
(2.47)

Hence T is cubic homomorphism.
Also from this example, it is clear that the superstability of the system of functional

equations

f
(

xy
)

= f(x)f
(

y
)

,

f
(

2x + y
)

+ f
(

2x − y) = 2f
(

x + y
)

+ 2f
(

x − y) + 12f(x),
(2.48)

with the control functions in Corollaries 2.4, 2.5 and 2.6 does not hold.
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