
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2009, Article ID 671625, 15 pages
doi:10.1155/2009/671625

Research Article
A Global Description of the Positive
Solutions of Sublinear Second-Order Discrete
Boundary Value Problems

Ruyun Ma, Youji Xu, and Chenghua Gao

Department of Mathematics, Northwest Normal University, Lanzhou, Gansu 730070, China

Correspondence should be addressed to Ruyun Ma, mary@nwnu.edu.cn

Received 12 February 2009; Accepted 20 August 2009

Recommended by Svatoslav Staněk
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and f0 = f∞ = 0, f0 = lims→ 0+f(s)/s, f∞ = lims→+∞f(s)/s. We investigate the global structure of
positive solutions by using the Rabinowitz’s global bifurcation theorem.
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1. Introduction

Let T ∈ N be an integer with T > 1, T := {1, . . . , T}, ̂T := {0, 1, . . . , T + 1}. We study the global
structure of positive solutions of the problem

Δ2u(t − 1) + λa(t)f(u(t)) = 0, t ∈ T,

u(0) = u(T + 1) = 0.
(1.1)

Here λ is a positive parameter, a : T → R
+ and f : [0,∞) → [0,∞) are continuous. Denote

f0 = lims→ 0+f(s)/s and f∞ = lims→+∞f(s)/s.
There are many literature dealing with similar difference equations subject to various

boundary value conditions. We refer to Agarwal and Henderson [1], Agarwal and O’Regan
[2], Agarwal and Wong [3], Rachunkova and Tisdell [4], Rodriguez [5], Cheng and Yen [6],
Zhang and Feng [7], R. Ma and H. Ma [8], Ma [9], and the references therein. These results
were usually obtained by analytic techniques, various fixed point theorems, and global
bifurcation techniques. For example, in [8], the authors investigated the global structure
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of sign-changing solutions of some discrete boundary value problems in the case that f0 ∈
(0,∞). However, relatively little result is known about the global structure of solutions in the
case that f0 = 0, and no global results were found in the available literature when f0 = 0 = f∞.
The likely reason is that the Rabinowitz’s global bifurcation theorem [10] cannot be used
directly in this case.

In the present work, we obtain a direct and complete description of the global structure
of positive solutions of (1.1) under the assumptions:

(A1) a : T → (0,∞);

(A2) f : [0,∞) → [0,∞) is continuous and f(s) > 0 for s > 0;

(A3) f0 = 0, where f0 = lims→ 0+f(s)/s;

(A4) f∞ = 0, where f∞ = lims→+∞f(s)/s.

Let Y denote the Banach space defined by

Y =
{

y | y : T −→ R
}

(1.2)

equipped with the norm

∥

∥y
∥

∥

Y = max
t∈T

∣

∣y(t)
∣

∣. (1.3)

Let E denote the Banach space defined by

E =
{

u : ̂T −→ R | u(0) = u(T + 1) = 0
}

(1.4)

equipped with the norm

‖u‖0 = max
t∈T

|u(t)|. (1.5)

Define an operator L : E → Y by

(Lu)(t) = −Δ2u(t − 1), t ∈ T. (1.6)

To state our main results, we need the spectrum theory of the linear eigenvalue
problem

Δ2u(t − 1) + λa(t)u(t) = 0, t ∈ T,

u(0) = u(T + 1) = 0.
(1.7)

Lemma 1.1 ([5, 11]). Let (A1) hold. Then there exists a sequence {λn}Tn=1 ∈ (0,R) satisfying that

(i) {λn | n ∈ {1, 2, . . . , T}} is the set of eigenvalues of (1.7);
(ii) λn+1 > λn for n ∈ {1, 2, . . . , T − 1};
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(iii) for k ∈ {1, 2, . . . , T}, ker(L − λkI) is one-dimensional subspace of E;

(iv) for each k ∈ {1, 2, . . . , T}, if v ∈ ker(L − λkI) \ {0}, then v has exactly k − 1 simple
generalized zeros in [0, T].

Let Σ denote the closure of set of positive solutions of (1.1) in [0,∞) × E.
LetM be a subset of E. A component ofM is meant a maximal connected subset ofM, that is,

a connected subset of M which is not contained in any other connected subset ofM.

The main results of this paper are the following theorem.

Theorem 1.2. Let (A1)–(A4) hold. Then there exists a component ζ in Σ which joins (∞, θ) with
(∞,∞), and

Proj
R
ζ =

[

ρ∗,∞)

(1.8)

for some ρ∗ > 0. Moreover, there exists λ∗ ≥ ρ∗ > 0 such that (1.1) has at least two positive solutions
for λ ∈ (λ∗,∞).

We will develop a bifurcation approach to treat the case f0 = 0 directly. Crucial to this
approach is to construct a sequence of functions {f [n]} which is asymptotic linear at 0 and
satisfies

f [n] −→ f,
(

f [n]
)

0
> 0,

(

f [n]
)

0
−→ 0. (1.9)

By means of the corresponding auxiliary equations, we obtain a sequence of unbounded
components {C[n]

+ } via Rabinnowitz’s global bifurcation theorem [10], and this enables us
to find an unbounded component C satisfying

C ⊂ lim sup
n→∞

C
[n]
+ . (1.10)

2. Some Preliminaries

In this section, we give some notations and preliminary results which will be used in the
proof of our main results.

Definition 2.1 (see [12]). Let X be a Banach space, and let {Cn | n = 1, 2, . . .} be a family of
subsets of X. Then the superior limit D of {Cn} is defined by

D := lim sup
n→∞

Cn = {x ∈ X | ∃{ni} ⊂ N and xni ∈ Cni , such that xni −→ x}. (2.1)

Definition 2.2 (see [12]). A component of a set M is meant a maximal connected subset of M.

Lemma 2.3 ([12, Whyburn]). Suppose that Y is a compact metric space, A and B are
nonintersecting closed subsets of Y , and no component of Y interests both A and B. Then there exist
two disjoint compact subsets YA and YB, such that Y = YA ∪ YB, A ⊂ YA, B ⊂ YB.



4 Advances in Difference Equations

Using the above Whyburn’s lemma, Ma and An [13] proved the following lemma.

Lemma 2.4 ([13, Lemma 2.2]). Let X be a Banach space, and let {Cn} be a family of connected
subsets of X. Assume that

(i) there exist zn ∈ Cn, n = 1, 2, . . ., and z∗ ∈ X, such that zn → z∗;

(ii) limn→∞rn = ∞, where rn = sup{‖x‖ | x ∈ Cn};
(iii) for every R > 0, (∪∞

n=1Cn) ∩ BR is a relatively compact set of X, where

BR = {x ∈ X | ‖x‖ ≤ R}. (2.2)

Then there exists an unbounded component C in D and z∗ ∈ C.

Let

G(t, s) =
1

T + 1

⎧

⎨

⎩

(T + 1 − t)s, 0 ≤ s ≤ t ≤ T + 1,

t(T + 1 − s), 0 ≤ t ≤ s ≤ T + 1.
(2.3)

It is easy to see that

G(t, s) ≥ 1
T + 1

G(s, s), (t, s) ∈ T × ̂T. (2.4)

Denote the cone K in E by

K =
{

x ∈ E | u(t) ≥ 0 on ̂T, and min
t∈T

u(t) ≥ 1
T + 1

‖u‖
}

. (2.5)

Now we define a map Aλ : K → Y by

(Aλu)(t) = λ
T
∑

s=1

G(t, s)a(s)f(u(s)), t ∈ T. (2.6)

Define an operator j : Y → E by

j
((

y1, . . . , yT

))

=
(

0, y1, . . . , yT , 0
)

, ∀(y1, . . . , yT

) ∈ Y. (2.7)

Then the operator Tλ := j ◦Aλ satisfies Tλ : E → E.
For r > 0, let

Ωr = {u ∈ K | ‖u‖ < r}. (2.8)
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Using the standard arguments, we may prove the following lemma.

Lemma 2.5. Assume that (A1)–(A2) hold. Then Tλ(K) ⊆ K and Tλ : K → K is completely
continuous.

Lemma 2.6. Assume that (A1)–(A2) hold. If u ∈ ∂Ωr , r > 0, then

‖Aλu‖0 ≥ λm̂r

T
∑

s=1

G(1, s)a(s), (2.9)

where

m̂r = min
r/(T+1)≤x≤r

{

f(x)
}

. (2.10)

Proof. Since f(u(t)) ≥ m̂r for t ∈ T, it follows that

‖Aλu‖0 ≥ λ
T
∑

s=1

G(1, s)a(s)f(u(s)) ≥ λm̂r

T
∑

s=1

G(1, s)a(s). (2.11)

3. Proof of the Main Results

Define f [n] : [0,∞) → [0,∞) by

f [n](s) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f(s), s ∈
(

1
n
,∞

)

,

nf

(

1
n

)

s, s ∈
[

0,
1
n

]

.

(3.1)

Then f [n] ∈ C([0,∞), [0,∞))with

f [n](s) > 0, ∀s ∈ (0,∞),
(

f [n]
)

0
= nf

(

1
n

)

. (3.2)

By (A3), it follows that

lim
n→∞

(

f [n]
)

0
= 0. (3.3)

To apply the global bifurcation theorem, we extend f to be an odd function g : R → R by

g(s) =

⎧

⎨

⎩

f(s), s ≥ 0,

−f(−s), s < 0.
(3.4)

Similarly we may extend f [n] to be an odd function g[n] : R → R for each n ∈ N.
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Now let us consider the auxiliary family of the equations

Δ2u(t − 1) + λa(t)g[n](u) = 0, t ∈ T,

u(0) = u(T + 1) = 0.
(3.5)

Let ξ[n] ∈ C(R) be such that

g[n](u) =
(

g[n]
)

0
u + ξ[n](u) = nf

(

1
n

)

u + ξ[n](u). (3.6)

Then

lim
|u|→ 0

ξ[n](u)
u

= 0. (3.7)

Let us consider

Lu − λa(t)
(

g[n]
)

0
u = λa(t)ξ[n](u) (3.8)

as a bifurcation problem from the trivial solution u ≡ 0.
Equation (3.8) can be converted to the equivalent equation

u(t) =
T
∑

s=1

G(t, s)
[

λa(s)
(

g[n]
)

0
u(s) + λa(s)ξ[n](u(s))

]

:= λL−1
[

a(·)
(

g[n]
)

0
u(·)

]

(t) + λL−1
[

a(·)ξ[n](u(·))
]

(t).

(3.9)

Further we note that ‖L−1[a(·)ξ[n](u(·))]‖ = o(‖u‖) for u near θ in E.
The results of Rabinowitz [10] for (3.8) can be stated as follows. For each integer n ≥ 1,

ν ∈ {+,−}, there exists a continuum C
[n]
ν of solutions of (3.8) joining (λ1/(g[n])0, θ) to infinity

in ([0,∞) × νK). Moreover, C[n]
ν \ {(λ1/(g[n])0, θ)} ⊂ ([0,∞) × ν(intK)).

Lemma 3.1. Let (A1)–(A4) hold. Then, for each fixed n, C[n]
+ joins (λ1/(g[n])0, θ) to (∞,∞) in

[0,∞) ×K.

Proof. We divide the proof into two steps.

Step 1. We show that sup{λ | (λ, u) ∈ C
[n]
+ } = ∞.

Assume on the contrary that sup{λ | (λ, u) ∈ C
[n]
+ } =: c0 < ∞. Let {(ηk, yk)} ⊂ C

[n]
+ be

such that

∣

∣ηk
∣

∣ +
∥

∥yk

∥

∥

0 −→ ∞. (3.10)
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Then ‖yk‖0 → ∞. This together with the fact

min
t∈T

yk(t) ≥ 1
T + 1

∥

∥yk

∥

∥

0 (3.11)

implies that

lim
k→∞

yk(t) = ∞, uniformly for t ∈ T. (3.12)

Since (ηk, yk) ∈ C
[n]
+ , we have that

Δ2yk(t − 1) + ηka(t)g[n](yk(t)
)

= 0, t ∈ T,

yk(0) = yk(T + 1) = 0.
(3.13)

Set vk(t) = yk(t)/‖yk‖0. Then

‖vk‖0 = 1. (3.14)

Now, choosing a subsequence and relabelling if necessary, it follows that there exists (η∗, v∗) ∈
[0, c0] × E with

‖v∗‖0 = 1, (3.15)

such that

lim
k→∞

(

ηk, vk

)

=
(

η∗, v∗
)

, in R × E. (3.16)

Moreover, using (3.13), (3.12), and the assumption f∞ = 0, it follows that

Δ2v∗(t − 1) + η∗a(t) · 0 = 0, t ∈ T,

v∗(0) = v∗(T + 1) = 0,
(3.17)

and consequently, v∗(t) ≡ 0 for t ∈ ̂T. This contradicts (3.15). Therefore

sup
{

λ | (λ, y) ∈ C} = ∞. (3.18)

Step 2. We show that sup{||u||0 | (λ, u) ∈ C
[n]
+ } = ∞.

Assume on the contrary that sup{||u||0 | (λ, u) ∈ C
[n]
+ } =: M0 < ∞. Let {(ηk, yk)} ⊂

C
[n]
+ be such that

ηk −→ ∞,
∥

∥yk

∥

∥

0 ≤ M0. (3.19)
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Since (ηk, yk) ∈ C
[n]
+ , for any t ∈ T, we have from (2.6) that

yk(t) = ηk
T
∑

s=1

G(t, s)a(s)g[n](yk(s)
)

≥ ηk
T + 1

T
∑

s=1

G(s, s)a(s)
g[n](yk(s)

)

yk(s)
yk(s)

≥ ηk

(T + 1)2

T
∑

s=1

G(s, s)a(s)
g[n](yk(s)

)

yk(s)

∥

∥yk

∥

∥

0

≥ ηk

(T + 1)2

T
∑

s=1

G(s, s)a(s)b∗
∥

∥yk

∥

∥

0,

(3.20)

(where b∗ := inf{(g[n](x))/x | x ∈ (0,M0]} > 0), which yields that {ηk} is bounded. However,
this contradicts (3.19).

Therefore, C[n]
+ joins (λ1/(g[n])0, 0) to (∞,∞) in [0,∞) ×K.

Lemma 3.2. Let (A1)–(A4) hold and let I ⊂ (0,∞) be a closed and bounded interval. Then there
exists a positive constant M, such that

sup
{

∥

∥y
∥

∥

0 |
(

η, y
) ∈ C

[n]
+ , η ∈ I

}

≤ M. (3.21)

Proof. Assume on the contrary that there exists a sequence {(ηk, yk)} ⊂ C
[k]
+ ∩(I×K) such that

∥

∥yk

∥

∥

0 −→ ∞. (3.22)

Then, (3.11), (3.12), and (3.13) hold. Set vk(t) = yk(t)/‖yk‖0, then

‖vk‖0 = 1. (3.23)

Now, choosing a subsequence and relabeling if necessary, it follows that there exists (η∗, v∗) ∈
I × E with

‖v∗‖0 = 1, (3.24)

such that

lim
k→∞

(

ηk, vk

)

=
(

η∗, v∗
)

, in R × E. (3.25)



Advances in Difference Equations 9

Moreover, from (3.13), (3.12), and the assumption f∞ = 0, it follows that

Δ2v∗(t − 1) + η∗a(t) · 0 = 0, t ∈ T,

v∗(0) = v∗(T + 1) = 0,
(3.26)

and consequently, v∗(t) ≡ 0 for t ∈ ̂T. This contradicts (3.24). Therefore

sup
{

∥

∥y
∥

∥

0 |
(

η, y
) ∈ C

[n]
+ , η ∈ I

}

≤ M. (3.27)

Lemma 3.3. Let (A1)–(A4) hold. Then there exits ρ∗ > 0 such that

(

∪∞
n=1C

[n]
+

)

∩ ((

0, ρ∗
) ×K

)

= ∅. (3.28)

Proof. Assume on the contrary that there exists {(ηk, yk)} ⊂ (∪∞
n=1C

[n]
+ ) ∩ ((0,+∞) × K) such

that ηk → 0. Then

yk(t) = ηk
T
∑

s=1

G(t, s)a(s)g[n](yk(s)
)

, t ∈ T. (3.29)

Set vk(t) = (yk(t))/‖yk‖0, then

‖vk‖0 = 1, (3.30)

and for all t ∈ T,

vk(t) = ηk
T
∑

s=1

G(t, s)a(s)
g[n](yk(s)

)

yk(s)
yk(s)
∥

∥yk

∥

∥

0

≤ ηk
T
∑

s=1

G(s, s)a(s)B∗
n‖vk‖0, (3.31)

where B∗
n = sup{(g[n](x))/x | x ∈ (0,∞), n ∈ N}) . Let

B∗ = sup{B∗
n | n ∈ N}. (3.32)

Then B∗ < ∞, and

vk(t) ≤ ηk
T
∑

s=1

G(s, s)a(s)B∗‖vk‖0 −→ 0, (3.33)

which contradicts (3.30). Therefore, there exists ρ∗ > 0, such that

(

∪∞
n=1C

[n]
+

)

∩ ((

0, ρ∗
) ×K

)

= ∅. (3.34)
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Proof of Theorem 1.2. Take r = 1 . Let ρ∗ be as in Lemma 3.3, and let λ∗ be a fixed constant
satisfying λ∗ ≥ ρ∗ and

λ∗m̂[n]
1

T
∑

s=1

G(1, s)a(s) > 1, (3.35)

where

m̂
[n]
1 = min

1/(T+1)≤x≤1

{

g[n](x)
}

. (3.36)

It is easy to see that there exists n0 ∈ N, such that

1
n0

<
1

T + 1
. (3.37)

This implies that

m̂
[n]
1 = m̂1, ∀n > n0 (3.38)

(see (2.10) for the definition of m̂1), and accordingly, we may choose λ∗ which is independent
of n > n0. From Lemma 2.6 and (3.35), it follows that for λ > λ∗,

‖Tλu‖0 > ‖u‖0, u ∈ ∂Ω1. (3.39)

This together with the compactness of Tλ implies that there exists ε ∈ (0, 1/2), such that

C
[n]
+ ∩ {(

η, u
) | η ≥ λ∗; u ∈ K : 1 − 2ε ≤ ‖u‖0 ≤ 1 + 2ε

}

= ∅, ∀n > n0. (3.40)

Notice that {C[n]
+ } satisfies all conditions in Lemma 2.4, and consequently,

lim supn→∞ C
[n]
+ contains a component ̂ζ which is unbounded. However, we do not know

whether ̂ζ joins (∞, θ) with (∞,∞) or not. To answer this question, we have to use the
following truncation method.

Set

Γ := ([0,∞) ×K) \ {(η, u) | η ≥ λ∗; u ∈ K : ‖u‖0 ≤ 1 + ε
}

. (3.41)

For n ∈ N with λ1/(g[n])0 ≥ λ∗, we define ζ[n]0 a connected subset in C
[n]
+ satisfying

(1) ζ[n]0 ⊂ (C[n]
+ \ ((λ∗,∞) ×Ω1));

(2) ζ[n]0 joins {λ∗} ×Ω1 with infinity in Γ.

We claim that ζ[n]0 satisfies all of the conditions of Lemma 2.4.
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Since

lim
n→∞

λ1
(

g[n]
)

0

= lim
n→∞

λ1
nf(1/n)

= ∞, (3.42)

we have from Lemmas 3.1–3.3 and (3.40) that for n > n0 and λ1/(g[n])0 ≥ λ∗,

ζ
[n]
0 ∩ ({λ∗} ×Ω1−ε)/= ∅. (3.43)

Thus, there exists znj ∈ ζ
[nj ]
0 ∩ ({λ∗} ×Ω1−ε), such that znj → z∗, and accordingly, condition (i)

in Lemma 2.4 is satisfied. Obviously,

rn = sup
{

∣

∣η
∣

∣ +
∥

∥y
∥

∥

0 |
(

η, y
) ∈ ζ

[n]
0

}

= ∞, (3.44)

that is, condition (ii) in Lemma 2.4 holds. Condition (iii) in Lemma 2.4 can be deduced
directly from the Arzelà -Ascoli theorem and the definition of g[n]. Therefore, the superior
limit of {ζ[n]0 } contains a component ζ0 joining {λ∗} ×Ω1 with infinity in Γ.

Similarly, for each j ∈ N, we may define a connected subset, ζ[n]j , in C
[n]
+ satisfying

(1) ζ[n]j ⊂ (C[n]
+ \ ((λ∗ + j,∞) ×Ω1));

(2) ζ[n]j joins {λ∗ + j} ×Ω1 with infinity in Γ,

and the superior limit of {ζ[n]j } contains a component ζj joining {λ∗+ j}×Ω1 with infinity in Γ.
It is easy to verify that

ζk ⊆ Σ, k = 0, 1, 2, . . . . (3.45)

Now, for each (λ∗, v) ∈ ({λ∗} ×Ω1) ∩ Σ, let E(v) (⊂ Σ) be a connected component containing
(λ∗, v). Let

μ(v) := sup{λ | (λ, u) ∈ E(v), u ∈ Ω1}. (3.46)

Set

Π := {(λ∗, v)(λ∗, v) ∈ ({λ∗} ×Ω1) ∩ Σ, E(v) is unbounded in Γ}, (3.47)

then Π/= ∅ since
(

ζj ∩ ({λ∗} ×Ω1)
) ⊆ Π, j = 0, 1, 2, . . . . (3.48)

From Lemma 2.4, it follows that Π is closed in [0,∞) × E, and furthermore, Π is compact in
[0,∞) × E.
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Let

Σ′ :=
⋃

(λ∗, v)∈Π
E(v), (3.49)

then

ζj ⊆ Σ′, j = 0, 1, 2, . . . . (3.50)

If for some (λ∗, v) ∈ Π, μ(v) = +∞, then Theorem 1.2 holds.
Assume on the contrary that μ(v) < +∞ for all (λ∗, v) ∈ Π.
For every (λ∗, v) ∈ Π, let E′(v) be the component in E(v)∩([λ∗,∞)×Ω1)which contains

(λ∗, v). Using the standardmethod, we can find a bounded open setU(v) in [λ∗,∞)×Ω1, such
that

E′(v) ⊂ U(v), ∂U(v) ∩ Σ′ = ∅, (3.51)

sup
{

λ | (λ, u) ∈ U(v)
}

< ∞, (3.52)

where ∂U(v) and U(v) are the boundary and closure ofU(v) in [λ∗,∞) ×Ω1, respectively.
Evidently, the following family of the open sets of {λ∗} ×Ω1:

{U(v) ∩ ({λ∗} ×Ω1) | (λ∗, v) ∈ Π} (3.53)

is an open covering of Π. Since Π is compact set in {λ∗} ×Ω1, there exist v1, . . . , vm such that
(λ∗, vi) ∈ Π, (i = 1, . . . , m), and the family of open sets in {λ∗} ×Ω1:

{U(vi) ∩ ({λ∗} ×Ω1) | i = 1, . . . , m} (3.54)

is a finite open covering of Π. There is

Π ⊆ {U(vi) ∩ ({λ∗} ×Ω1) | i = 1, . . . , m}. (3.55)

Let

U1 =
m
⋃

i=1

U(vi). (3.56)

Then U1 is a bounded open set in [λ∗,∞) ×Ω1,

∂U1 ∩ Σ′ = ∅, (3.57)
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and by (3.52), we have

sup
{

λ | (λ, u) ∈ U1

}

< +∞, (3.58)

where ∂U1 and U1 are the boundary and closure ofU1 in [λ∗,∞) ×Ω1, respectively.
Equation (3.58) together with (3.55) and (3.57) implies that

sup
{

λ | (λ, u) ∈ Σ′, u ∈ Ω1
}

< ∞. (3.59)

However, this contradicts (3.50).
Therefore, there exists (λ∗, v∗) ∈ Π such that ζ := E(v∗) which is unbounded in both Γ

and [λ∗,+∞) ×Ω1.
Finally, we show that ζ(= E(v∗)) joins (∞, θ) with (∞,∞). This will be done by the

following three steps.

Step 1. We show that ζ ∩ ([0,∞) × {θ}) = ∅.
Suppose on the contrary that there exists {(ηn, yn)} ⊂ ζ with

ηn −→ η∗ ≥ 0,
∥

∥yn

∥

∥

0 −→ 0. (3.60)

Then

yn(t) = ηn
T
∑

s=1

G(t, s)a(s)f
(

yn(s)
)

= ηn
T
∑

s=1

G(t, s)a(s)
f
(

yn(s)
)

yn(s)
yn(s)

≤ ηn
T
∑

s=1

G(s, s)a(s)
f
(

yn(s)
)

yn(s)

∥

∥yn

∥

∥

0,

(3.61)

which implies

1 ≤ ηn
T
∑

s=1

G(s, s)a(s)
f
(

yn(s)
)

yn(s)
. (3.62)

This is impossible by (A3) and the assumption ηn → η∗.

Step 2. We show that lim(λ,u)∈ζ, u∈Ω1, λ→+∞‖u‖0 = 0.
Suppose on the contrary that there exists {(ηn, yn)} ⊂ ζ with yn ∈ Ω1 and

ηn −→ +∞,
∥

∥yn

∥

∥

0 ≥ a (3.63)

for some constant a > 0, then

a

T + 1
≤ yn(s) ≤ 1, ∀s ∈ T. (3.64)
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Thus

yn(t) = ηn
T
∑

s=1

G(t, s)a(s)f
(

yn(s)
)

≥ ηn
T + 1

T
∑

s=1

G(s, s)a(s)
f
(

yn(s)
)

yn(s)
yn(s)

≥ ηn

(T + 1)2

T
∑

s=1

G(s, s)a(s)b
∥

∥yn

∥

∥

0,

(3.65)

where b := infa/(T+1)≤x≤1(f(x)/x). By (A2), it follows that b > 0. Obviously, (3.65) implies that
{ηn} is bounded. This is a contradiction.

Step 3. We show that lim(λ,u)∈(ζ∩Γ), λ→+∞‖u‖0 = +∞.
Suppose on the contrary that there exists {(ηn, yn)} ⊂ (ζ ∩ Γ) with

ηn −→ +∞,
∥

∥yn

∥

∥

0 ≤ M (3.66)

for some constant M > 0, then

1
T + 1

≤ yn(s) ≤ M, ∀s ∈ T. (3.67)

Thus

yn(t) = ηn
T
∑

s=1

G(t, s)a(s)f
(

yn(s)
)

≥ ηn
T + 1

T
∑

s=1

G(s, s)a(s)
f
(

yn(s)
)

yn(s)
yn(s)

≥ ηn

(T + 1)2

T
∑

s=1

G(s, s)a(s)B
∥

∥yn

∥

∥

0,

(3.68)

where B := inf1/(T+1)≤x≤M(f(x)/x). By (A2), it follows that B > 0. Obviously, (3.68) implies
that {ηn} is bounded. This is a contradiction.

To sum up, there exits a component ζ which joins (∞, θ) and (∞,∞).
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